СИНТЕЗ И СВОЙСТВА МАТЕРИАЛОВ НА ОСНОВЕ СЛОИСТЫХ КОБАЛЬТИТОВ КАЛЬЦИЯ И ВИСМУТА

© И. В. Мацукевич,¹ А. И. Клындюк,¹ Е. А. Тугова,² М. В. Томкович,² Н. С. Красуцкая,¹ В. В. Гусаров²

¹ Белорусский государственный технологический университет, Минск ² Физико-технический институт им. А. Ф. Иоффе РАН, Санкт-Петербург E-mail: matsukevich515@rambler.ru

Поступило в Редакцию 2 сентября 2015 г.

Методом твердофазных реакций получены материалы на основе слоистых кобальтитов кальция $(Ca_3Co_4O_{9+\delta})$ и кальция-висмута $(Bi_2Ca_2Co_{1,7}O_y)$. Определены их тепловое расширение, электропроводимость и термоэдс. Показано, что эти материалы являются полупроводниками р-типа с коэффициентом линейного теплового расширения $(11.4-12.8)\cdot 10^{-6}$ K⁻¹. Обнаружено, что фазовая неоднородность материалов приводит к уменьшению их электропроводимости и увеличению коэффициента термоэдс и фактора мощности, который достигает наибольшего значения $(0.24 \text{ MBm}\cdot m^{-1}\cdot K^{-2}$ при T = 1100 K) для материалов, содержащих примерно в равных количествах фазы $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$ и $Bi_2Ca_2Co_{1,7}O_y$. Определенные функциональные характеристики данного термоэлектрического материала свидетельствуют о потенциальной перспективности использования его в высокотемпературных термоэлектрогенераторах.

Для создания высокотемпературных термоэлектрических генераторов (ТЭГ) необходимы материалы, характеризующиеся высокими значениями электропроводимости σ и термоэдс *S* и низкой теплопроводностью, а также устойчивые на воздухе при повышенных температурах [1]. Поиск таких материалов ведется на широком классе химических соединений, твердых растворов и композиционных структур [2, 3]. В частности, слоистые кобальтиты кальция Ca₃Co₄O_{9+ δ} и висмута-кальция Bi₂Ca₂Co_{1.7}O_y, удовлетворяющие перечисленным требованиям и являющиеся полупроводниками *p*-типа, рассматриваются как перспективные материалы *p*-ветвей высокотемпературных ТЭГ [4–6].

Кобальтиты $Ca_3Co_4O_{9+\delta}$ и $Bi_2Ca_2Co_1 {}_{7}O_{y}$ кристаллизуются в моноклинной сингонии, их структура образована слоями $[Ca_2CoO_3]$ и $[Bi_2Ca_2O_4]$ соответственно [структурный тип NaCl (*RS*)], чередующимися со слоями $[CoO_2]$ (структурный тип CdI₂) [6–11]. Данные соединения являются представителями класса несоразмерных оксидов [12], формулы которых могут быть записаны в виде $[Ca_2CoO_3]^{RS}[CoO_2]_{1.62}$ и $[Bi_2Ca_2O_4]^{RS}[CoO_2]_{1.65}$ (упрощенно $Ca_3Co_4O_{9+\delta}$ и

Ві₂Са₂Со_{1.7}О_{*y*}) [6, 9]. Перенос заряда осуществляется в высокопроводящих [CoO₂]-слоях фаз Ca₃Co₄O_{9+δ} и Ві₂Ca₂Co_{1.7}O_{*y*} [13, 14], а низкопроводящие слои [Ca₂CoO₃] и [Ві₂Ca₂O₄] играют роль «резервуаров заряда» [15]. Высокие значения удельной электропроводимости этих материалов обусловлены высокой концентрацией носителей заряда («дырок») в проводящих [CoO₂]-слоях их структуры. Слоистость и несоразмерность структуры кобальтитов Ca₃Co₄O_{9+δ} и Ві₂Ca₂Co_{1.7}O_{*y*} обусловливают низкие значения их теплопроводности [16].

Согласно данным [4, 17–21] улучшение термоэлектрических характеристик фазы $Ca_3Co_4O_{9+\delta}$ может быть достигнуто при частичном замещении кальция висмутом в ее структуре, причем максимальными значениями фактора мощности характеризуются материалы, содержащие помимо основной фазы (твердый раствор $Ca_{3-x}Bi_xCo_4O_{9+\delta}$) примесную — слоистый кобальтит кальция-висмута $Bi_2Ca_2Co_{1,7}O_y$ [17, 20, 21]. Таким образом, создание фазовой неоднородности в висмутсодержащем слоистом кобальтите кальция может рассматриваться как эффективный способ улучшения его термоэлектрических свойств. Целью настоящей работы являлся поиск и изучение новых композиционных материалов на основе висмутсодержащих кобальтитов кальция, перспективных для применения в качестве *p*-ветвей высокотемпературных ТЭГ нового поколения.

Экспериментальная часть

Материалы получали методом твердофазных реакций из Co_3O_4 («чистый»), Bi_2O_3 («чистый») и $CaCO_3$ («чистый»), взятых в различных молярных соотношениях (табл. 1). Перемешивание и помол смесей порошков исходных веществ проводили в планетарной мельнице Pulverizette 6 (Fritsch, Germany). Полученную шихту прессовали под давлением 40 МПа и обжигали в течение 12 ч на воздухе при 1173 К. Полученные образцы подвергали повторному помолу, прессованию под давлением 100–130 МПа и спеканию на воздухе при 1193 К в течение 12 ч. Выбор температур твердофазного синтеза и спекания материалов отвечал рекомендациям работ [22, 23].

Рентгенофазовый анализ (РФА) порошков проводили на дифрактометре Bruker D8 XRD Advance ($Cu_{K_{\alpha}}$ -излучение, Ni-фильтр). Кажущуюся плотность материалов определяли на установке GeoPyc 1360 Т.А.Р. Density. Микроструктуру и элементный состав фазовонеоднородных образцов (композиционных материалов) исследовали с помощью методов сканирующей электронной микроскопии (СЭМ) и энергодисперсионного микрорентгеноспектрального анализа (MPCA) на сканирующем электронном микроскопе Quanta 200, оснащенном микрозондовой приставкой EDAX.

Тепловое расширение, электропроводимость и термоэдс материалов определяли на воздухе в интервале температур 300-1100 К по методикам, описанным в работе [24]. Перед измерениями электрических свойств на поверхности образцов формировали Agэлектроды путем вжигания серебряной пасты при 1100 К в течение 15 мин. Экспериментальные значения электропроводимости материалов пересчитывали на нулевую пористость по выражениям, приведенным в работах [24, 25]. Величины энергии активации электропроводимости Е_а и коэффициента линейного теплового расширения (КЛТР) α образцов определяли по линейным участкам зависимостей $\ln(\sigma T) = f(1/T)$ и $\Delta l/l_0 = f(T)$ [коэффициент корреляции $R \ge 0.999$, относительная погрешность $\varepsilon(E_a, \alpha) \leq \pm 5\%$]. Значения фактора мощности термоэлектрических материалов вычисляли по формуле $P = S^2 \sigma$ [4].

Обсуждение результатов

На основе анализа данных табл. 1 можно заключить, что состав образцов после термообработки в целом соответствовал заданному номинальному составу шихты, а наблюдаемые отклонения обусловлены, по-видимому, химической и фазовой неоднородностью материалов.

Согласно результатам РФА после заключительной стадии синтеза образцы I, II были однофазными, имели структуру слоистого кобальтита кальция [9] и представляли собой фазу $Ca_3Co_4O_{9+\delta}$ и висмутсодержащий твердый раствор на ее основе $Ca_{2.7}Bi_{0.3}Co_4O_{9+\delta}$ (рис. 1, дифрактограммы *1*, *2*). Увеличение содержания в шихте Bi_2O_3 (образцы III–VI) сопровождалось появлением на дифрактограммах по-

05	Ном	инальный состав,	мол%	Реальный состав, мол% (данные МРСА)				
Образец	BiO _{1.5}	CaO	CoO _z	BiO _{1.5}	CaO	CoO,		
I		42.86	57.14		38.09	61.91		
II	4.29	38.57	57.14	1.64	34.14	64.22		
Ш	10.00	32.86	57.14	12.05	33.01	54.94		
IV	14.29	28.57	57.14	13.41	28.36	58.23		
V	17.86	25.00	57.14	20.10	29.30	50.60		
VI	21.43	21.43	57.14	26.71	25.70	47.60		

Таблица 1

Номинальный и реальный состав образцов

Рис. 1. Рентгеновские дифрактограммы порошков образцов 1 (1), II (2), III (3), IV (4), V (5), VI (6); о – фаза Со₃О₄. 20 — угол Брэгга (град).

рошкообразных образцов рефлексов дополнительных фаз, идентифицированных как слоистый кобальтит кальция-висмута Bi₂Ca₂Co_{1.7}O_{1.}[6] и оксид кобальта Со₃О₄ [26] (рис. 1, дифрактограммы 3-6). Полученные данные хорошо согласуются с результатами работы [20], в которой было установлено, что однофазные твердые растворы Саз-, Bi, Co4O9+8 образуются при замещении висмутом до 10 мол% кальция. Следует отметить, что в композите III основной фазой выступал твердый раствор Ca2.7Bi0.3Co4O9+8, а присутствующие в меньших количествах фазы Bi₂Ca₂Co_{1.7}O_{1.} и Со₃О₄ являлись примесными. В образцах же IV-VI основной фазой являлся слоистый кобальтит кальция-висмута Bi₂Ca₂Co_{1.7}O_v, а в роли примесных фаз выступали твердый раствор Ca2 7Bi0 3Co4O9+6 и оксид кобальта Co₃O₄, при этом образец VI в пределах погрешности РФА состоял только из двух фаз ---Ві2Са2Со1 70, и Со3О4, а фаза твердого раствора $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$ в нем отсутствовала (рис. 1).

Как следует из анализа результатов СЭМ (рис. 2), композиционные материалы состояли из зерен трех типов: тонких пластин (чешуек) фазы твердого раствора $Ca_{2.7}Bi_{0.3}Co_4O_{9+\delta}$ толщиной 2–3 мкм и шириной до 30 мкм, мелких кристаллов Co_3O_4 и тонких (толщиной менее 1 мкм) пластин (чешуек) фазы $Bi_2Ca_2Co_{1.7}O_v$ шириной около 50–200 мкм, собранных в стопки толщиной до 40 мкм.

В табл. 2 представлены данные МРСА различных областей композиционных материалов (рис. 2). Как показывает сравнение данных, приведенных на рис. 1, 2 и в табл. 2, результаты СЭМ и МРСА хорошо согласуются с данными РФА и подтверждают фазовую и химическую неоднородность образцов III-VI, а также свидетельствуют о сложном характере распределения элементов и отдельных фаз по всему объему композитов. Так, зерна Со₃О₄ в объеме керамики располагаются как между зернами фаз твердого раствора Ca_{2 7}Bi_{0 3}Co₄O_{9+ δ} (рис. 2, *a*) или стопками пластин фазы $Bi_2Ca_2Co_{1,7}O_{\nu}$ (рис. 2, $\delta - \epsilon$), так и внутри этих стопок между отдельными чешуйками фазы Ві2Са2Со17О, Согласно результатам МРСА содержание Со₃О₄ внутри стопки чешуек достигает 40 мол% (область *P*₅ — рис. 2, *г*, табл. 2).

Кажущаяся плотность спеченных материалов возрастала от 2.47 для фазы $Ca_3Co_4O_{9+\delta}$ (образец I) до 2.87 для твердого раствора $Ca_{2.7}Bi_{0.3}Co_4O_{9+\delta}$ (образец II) и 4.14–4.87 г·см⁻³ для композитов III–VI (табл. 3). Таким образом, спекаемость материалов на основе слоистого кобальтита кальция улучшается при введении в шихту Bi_2O_3 , причем наибольший эффект проявляется при переходе от фазовооднородных материалов (образцы I, II) к фазовонеоднородным (композиционным) (образцы III–VI). Следует отметить, что данный результат коррелирует с выводами работы [23].

В табл. 2 представлены рассчитанные на основании результатов РФА параметры кристаллической структуры слоистого кобальтита кальция $Ca_3Co_4O_{9+\delta}$ (образец I), твердого раствора на его основе Са_{2.7}Ві0.3Со4О9+8 (образец II), которые находятся в хорошем согласии с литературными данными [9, 20], а также преобладающих фаз, входящих в состав композиционного материала (образцы III-VI). Необходимо отметить, что близость значений ионных радиусов катионов, входящих в состав фаз $\{R(Bi^{3+}) = 0.102 \text{ нм}, R(Ca^{2+}) = 0.100 \text{ нм и}$ $R(Co^{3+}) = 0.063$ нм, $R(Bi^{5+}) = 0.074$ нм для к. ч. = 6 [27]}, позволяет предположить при образовании фазовонеоднородных материалов (образцы III-VI) возможность комплексного замещения катионов в твердых растворах сложного состава (например, (Ca, Bi)₃(Co, Bi)₄O_{9+б} или Bi₂Ca₂(Co, Bi)_{1.7}O_v за счет частичного замещения катионов кобальта катионами висмута $Bi^{5+} \rightarrow Co^{3+}$, возможность осуществления которого показана в работе [28]).

Рис. 2. Электронные микрофотографии сколов фазовонеоднородных образцов III (*a*), IV (б), V (в), VI (г). *P*₁, *P*₂, ..., *P*₈ — области, для которых определен элементный состав.

Зависимости $\Delta l/l_0 = f(T)$ для исследованных материалов были линейными в температурном интервале 300–1100 К, а величина КЛТР материалов изменялась в пределах (11.4–12.8)·10⁻⁶ К и для висмутсодержащих образов была ниже, чем для слоистого кобальтита кальция Ca₃Co₄O_{9+δ}.

Как следует из анализа данных, приведенных на рис. 3, все исследованные в работе материалы являлись полупроводниками *p*-типа ($\partial \sigma / \partial T > 0$, S > 0, рис. 3 *a*, *б*), при этом характер проводимости фазы Са₃Со₄О_{9+δ} вблизи 900 К изменялся от полупроводникового к металлическому ($\partial \sigma / \partial T < 0$), что обусловлено частичным восстановлением образцов с повышением температуры. Величина электропроводимости была максимальной для образца I (фаза $Ca_3Co_4O_{9+\delta}$), для образца II (твердый раствор $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$) она уменьшалась, после чего возрастала для образцов III, IV и снова уменьшалась для образцов V, VI (рис. 3, *a*). Столь сложный ход концентрационной зависимости электропроводимости полученных в данной работе материалов обусловлен различными причинами. Частичное замещение $Bi^{3+} \rightarrow Ca^{2+}$ в $Ca_3Co_4O_{9+\delta}$ приводит к уменьшению копцентрации основных носителей заряда – «дырок» по реакции $e + p \rightarrow 0$, что и обусловливает синжение проводимости образца II по сравнению с ооразцов III, IV обусловлено наличнем в их составе помимо твердого раствора

Синтез и свойства материалов на основе слоистых кобальтитов кальция и висмута

Обра- зец	Рисунок	Анализируемая область P ₁	Состав по	о данным МРС	А, мол%		
			BiO _{1.5}	CaO	CoO.	Фазовый состав	
Ш	2, a		6.49	37.57	55.94	$Ca_3Co_4O_{9+\delta}$	
		P ₂	25.31	35.55	39.14	$Bi_2Ca_2Co_{1,7}O_y, Co_3O_4$	
		P ₃	6.70	37.80	55.50	$Ca_3Co_4O_{9+\delta}$	
		P4	10.02	35.63	54.35	$Ca_3Co_4O_{9+\delta}$, $Bi_2Ca_2Co_{1,7}O_{\nu}$	
		P ₅	9.89	37.74	52.37	$Ca_3Co_4O_{9+\delta}$, $Bi_2Ca_2Co_{1.7}O_y$	
	-	P ₆	7.56	23.96	68.48	$Ca_{3}Co_{4}O_{9+\delta}, Bi_{2}Ca_{2}Co_{1,7}O_{\nu}, Co_{3}O_{4}$	
		P ₇	5.38	27.21	67.41	$Ca_{3}Co_{4}O_{9+\delta}, Bi_{2}Ca_{2}Co_{1.7}O_{y}, Co_{3}O_{4}$	
		P ₈	25.56	34.97	39.47	$Ca_3Co_4O_{9+\delta}$, $Bi_2Ca_2Co_{1,7}O_{\nu}$, $Co_3O_{2,7}O_{\nu}$	
IV	2, 6	P ₁	13.48	29.54	56.98	$Ca_{3}Co_{4}O_{9+\delta}, Bi_{2}Ca_{2}Co_{1,7}O_{\nu}, Co_{3}O_{2}$	
		P ₂	11.62	23.50	64.88	$Ca_{3}Co_{4}O_{9+\delta}, Bi_{2}Ca_{2}Co_{1}{}_{7}O_{\nu}, Co_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	
		P ₃	15.07	29.08	55.85	$Ca_3Co_4O_{9+\delta}$, $Bi_2Ca_2Co_1 {}_7O_{\nu}$, Co_3O_{1}	
		P ₄	3.89	6.39	89.74	Co ₃ O ₄	
		P ₅	14.30	28.33	57.37	$Ca_{3}Co_{4}O_{9+\delta}, Bi_{2}Ca_{2}Co_{1,7}O_{y}, Co_{3}O$	
		P ₆	3.08	8.33	88.59	Co ₃ O ₄	
	101211	P ₇	6.79	33.71	59.50	Ca ₃ Co ₄ O _{9+δ}	
V	2, 6	P ₁	30.24	34.64	35.12	$Bi_2Ca_2Co_{1,7}O_{y}, Co_3O_4$	
	al, contait	P ₂	24.56	26.83	48.61	$Bi_2Ca_2Co_{1,7}O_y, Ca_3Co_4O_{9+\delta}, Co_3O_{1,7}O_y, Ca_3O_{1,7}O_y, Ca_3O_{1,7}O_y, Ca_3O_{1,7}O_{1,7}O_{1,7}O_y, Ca_3O_{1,7}O_$	
	11 1/15 1-1	P ₃	11.21	13.32	75.47	Co ₃ O ₄	
	11110	P ₄	4.98	8.71	86.31	Co ₃ O ₄	
		P ₅	30.20	32.66	37.15	$Bi_2Ca_2Co_{1,7}O_y, Co_3O_4$	
	1	P ₆	29.07	33.33	37.60	$Bi_2Ca_2Co_{1,7}O_y, Co_3O_4$	
VI	2,2	P ₁	4.14	5.96	89.90	Co ₃ O ₄	
		P ₂	8.07	6.35	85.58	Co ₃ O ₄	
		P ₃	33.80	33.54	32.66	Bi ₂ Ca ₂ Co _{1.7} O ₁	
	1	P4	32.97	31.81	35.22	$Bi_2Ca_2Co_{1.7}O_{v}$.	
		P ₅	25.59	25.35	49.06	$Bi_2Ca_2Co_{1,7}O_{y}$, Co_3O_4	
		P ₆	25.78	23.53	50.69	$Bi_2Ca_2Co_{1,7}O_{\nu}, Co_3O_4$	

Таблица 2

Са_{2.7}Ві_{0.3}Со₄О_{9+δ} высокопроводящей фазы слоистого кобальтита кальция-висмута Bi₂Ca₂Co_{1.7}O_v. Снижение электропроводимости образцов V, VI вызвано, по-видимому, тем, что в них значительно возрастает содержание низкопроводящей фазы Со₃О₄.

Значения кажущейся энергии активации электропроводимости Е_а полученных образцов незначительно изменялись в пределах 0.071-0.089 эВ (табл. 2). Из этого следует, что создание фазовой неоднородности в материале на основе кобальтитов кальция и

Рис. 3. Зависимость электропроводимости σ (См см⁻¹) (*a*), коэффициента термоэдс S (мкВ K⁻¹) (*b*) и фактора мощности *P* (мкВт м⁻¹·K⁻²) (*b*) образцов I (*1*), II (*2*), III (*3*), IV (*4*), V (*5*) и VI (*b*) от температуры *T* (K).

Таблица 3

Значения кажущейся плотности $\rho_{3\kappa cn}$, кажущейся энергии активации электропроводимости E_a и параметров кристаллической структуры преобладающих фаз материалов на основе слоистых кобальтитов кальция и висмута

Образец	ρ _{эксп} , г∙см ^{−3}	<i>Е</i> _а , эВ	Преобладающая фаза	Параметры кристаллической структуры преобладающей фазы					
				а, нм	<i>b</i> ₁ , нм	<i>b</i> ₂ , нм	С, НМ	β, град	<i>V</i> , нм ³
I	2.47	0.072		0.4836(5)	0.4561(5)	0.2821(5)	1.083(1)	98.19(5)	0.2365(7)
11	2.87	0.073	Ca ₃ Co ₄ O ₉	0.4854(7)	0.4588(7)	0.2827(5)	1.090(1)	98.15(8)	0.2402(10)
HI	4.14	0.089		0.4846(9)	0.4563(9)	0.2824(6)	1.090(1)	98.25(11)	0.2385(12)
IV	4.56	0.079		0.4948(9)	0.4739(7)		1.464(2)	93.12(19)	0.3429(17)
V	4.64	0.071	Bi ₂ Ca ₂ Co _{1.7} O _y	0.4937(9)	0.4747(9)	11	1.468(3)	93.30(20)	0.3434(22)
VI	4.87	0.073		0.4961(9)	0.4741(7)		1.466(3)	93.12(19)	0.3425(18)

висмута Ca₃Co₄O_{9+δ} и Bi₂Ca₂Co_{1.7}O_y практически не влияет на энергетику электропереноса в ее объеме; наибольшие значения E_a наблюдались для образцов III, IV, которые характеризовались близким содержашием высокопроводящих фаз (Ca_{2.7}Bi_{0.3}Co₄O_{9+δ} и Bi₂Ca₂Co_{1.7}O_y).

Величина коэффициента термоэдс спеченных поликристаллических материалов возрастала при увеличении температуры и с ростом содержания в ней оксида висмута, причем наиболее заметный рост наблюдался при переходе от однофазных образцов (I и II) к фазовонеоднородным (III–VI) (рис. 3, δ). Значения фактора мощности образцов также увеличивались с ростом температуры (рис. 3, ϵ). Наибольшее значение фактора мощности ($P_{\text{max}} \approx 0.24 \text{ мBt} \cdot \text{м}^{-1} \cdot \text{K}^{-2}$ при 1100 K, что почти в 3 раза больше, чем для однофазных материалов состава Ca₃Co₄O_{9+ δ} и Ca_{2.7}Bi_{0.3}Co₄O_{9+ δ} при той же температуре) наблюдалось у образца IV, содержащего высокопроводящие фазы Ca_{2.7}Bi_{0.3}Co₄O_{9+ δ} и Bi₂Ca₂Co_{1.7}O_y в близком к эквимолярному соотношении.

Полученные результаты позволяют заключить, что создание фазовой неоднородности в оксидных материалах является перспективным методом улучшения их термоэлектрических свойств (в частности, повышения фактора мощности).

Выводы

1. В работе методом твердофазных реакций получены материалы на основе слоистых кобальтитов кальция Ca₃Co₄O₉₊₆ и кальция писмута Bi₂Ca₂Co_{1.7}O_{1.9} являю-

пинеся полупроводниками *p*-типа. Исследован характер температурных зависимостей теплового расширения, электропроводимости, термоэдс материалов.

Показано, что величина КЛТР в зависимости от состава материалов изменяется в интервале (11.4–12.8) $\cdot 10^{-6}$ K⁻¹. Наибольшее значение фактора мощности (≈ 0.24 мВт м⁻¹ K⁻² при температуре 1100 К) установлено для фазовонеоднородного материала, содержащего кобальтиты кальция $C_{a_2,7}Bi_{0,3}Co_4O_{9+\delta}$ и кальция-висмута $Bi_2Ca_2Co_{1,7}O_y$ примерно в эквимолярном соотношении.

3. Определенные функциональные характеристики данного термоэлектрического материала свидетельствуют о потенциальной перспективности испольювания его в высокотемпературных термоэлектрогенераторах.

Работа выполнена при поддержке РФФИ (проект 15-33-50134 мол_нр).

Список литературы

- Иоффе А. Ф. Полупроводниковые термоэлементы. М.: Изд-во АН СССР, 1956. 188 с. (*Ioffe A. F. Semiconductor* Thermoelements, and Thermoelectric Cooling. London: Infosearch, 1957. 184 p.).
- [2] Шевельков А. В. // Успехи химии. 2008. Т. 77. № 1. С. 3–21 (Shevelkov A. V. // Russ. Chem. Rev. 2008. N 77 (1). Р. 1–19).
- [3] Дмитриев А. В., Зеягин И. П. // УФН. 2010. Т.180. №
 8. С. 821–838 (Dmitriev A. V., Zvyagin I. P. // Phys.-Usp. 2010. V. 53. N 8. Р. 789–803).
- [4] Oxide Thermoelectrics. Research Signpost / Eds K. Koumoto, I. Terasaki, N. Murayama. Trivandrum, India, 2002. 255 p.
- [5] Wang H., Sun X., Yan X. et al. // J. Alloys a. Comp. 2014.
 V. 582. P. 294–298.
- [6] Sotelo A., Rasekh Sh., Madre M. A. et al. // J. Eur. Ceram. Soc. 2011. V. 31. P. 1763–1769.
- [7] Zang Y., Wang S.L., Liu A.P. et al. // Appl. Phys. A. 2010.
 V. 98. P. 281–284.
- [8] Sotelo A., Guilmeau E., Madre M.A. et al. // Bol. Soc. Esp. Ceram. 2008. V. 47. N 4. P. 225–228.
- [9] Masset A. C., Michel C., Maignan A. et al. // Phys. Rev. B. 2000. V. 62. N 1. P. 166–175.

- [10] Asahi R., Sugiyama J., Tani T. // Phys. Rev. B. 2002. V. 66.
 P. 155103-1-155103-7.
- [11] Tang G., Tang C., Xu X. et al. // Solid State Commun. 2010. V. 150. P. 1706–1709.
- [12] Boullay P., Domenges B., Hervieu M. et al. // Chem. Mater. 1996. V. 8. P. 1482–1489.
- [13] Takeuchi T., Kondo T., Soda K. et al. // J. Electr. Specr. a. Related Phen. 2004. V. 137. P. 595–599.
- [14] Rasekh Sh., Madre M. A., Diez J. C. et al. // Bol. Soc. Esp. Ceram. 2010. V. 49. N 5. P. 371–376.
- [15] Karppinen M., Yamauchi H. // Mater. Sci. Eng. R. 1999.
 V. 26. P. 51–96.
- [16] Fergus J. W. // J. Eur. Ceram. Soc. 2012. V. 32. P. 525-540.
- [17] Li S., Funahashi R., Matsubara I. et al. // Chem. Mater. 2000. V. 12. P. 2424–2427.
- [18] Xu G., Funahashi R., Shikano M. et al. // Appl. Phys. Lett. 2002. V. 80. P. 3760–3762.
- [19] Liu Yuheng, Lin Yuanhua, Jiang Lei et al. // J Electroceram. 2008. V. 21. P.748–751.
- [20] Park J. W., Kwak D. H., Yoon S. H., Choi S. C. // J. Ceram. Soc. Japan. 2009. V. 117. N 5. P. 643–646.
- [21] Клындюк А. И., Красуцкая Н. С., Мацукевич И. В. и др. // Термоэлектричество. 2011. № 4. С. 49-55 (Klyndyuk A. I., Krasutskaya N. S., Matsukevich I. V. et al. // J. Thermoelectricity. 2011. N 4. P. 47-53).
- [22] Гусаров В. В. // ЖОХ. 1997. Т. 67. № 12. С.1959–1964 (Gusarov V. V. // Russ. J. Gen. Chem. 1997. V. 67. N 12. P. 1846–1851).
- [23] Гусаров В. В., Суворов С. А. // ЖПХ. 1993. Т. 66. № 3.
 С. 525–530 (Gusarov V. V., Suvorov S. А. // Russ. J. Appl. Chem. 1993. V. 66. N 3. Р. 1529–1534).
- [24] Клындюк А. И., Чижова Е. А. // Неорган. материалы. 2006. Т. 42. № 5. С. 611-622 (Klyndyuk A. I., Chizhova E. A. // Inorg. Mater. 2006. V. 42. N 5. P. 550-561).
- [25] Tripathi A. K., Lal H. B. // Mater. Res. Bull. 1980. V. 15. N 2. P. 233–242.
- [26] Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card N 00-042-1467.
- [27] Shannon R. D., Prewitt C. T. // Acta Cryst. 1969. V. B25. Pt 5. P. 946–960.
- [28] Клындюк А. И., Мацукевич И. В. // Неорган. материалы. 2015. Т. 51. № 9. С. 1025–1031 (Klyndyuk A. I., Matsukevich I. V. // Inorg. Mater. 2015. V. 51. N 9. P. 944–950).