А.Е.ПОЧТЕННЫЙ

Лекции по курсу

ФИЗИЧЕСКАЯ ЭЛЕКТРОНИКА И ЭЛЕКТРОННЫЕ ПРИБОРЫ

В 2-х частях

Часть І

1. КЛАССИЧЕСКАЯ ЭЛЕКТРОННАЯ ТЕОРИЯ

Первая электронная теория проводимости была предложена П.Друде в 1900 г. - всего через три года после открытия Дж. Дж.Томсоном электрона. Несмотря на то, что эта теория, или, точнее, модель оказалась принципиально неверной, она представляет не только исторический интерес по двум причинам: во-первых, в ней вводится ряд понятий и соотношений, которые либо в неизменном, либо в подкорректированном виде входят и в современные теории проводимости; во-вторых, модель Друде позволяет быстро построить наглядную картину явления и грубо оценить характеристики, точное определение которых требует сложного анализа.

В модели Друде предполагается, что электрический ток в веществе обусловлен движением электронов, оторвавшихся от атомов и ставших свободными, а наличие электрического сопротивления вызвано столкновениями электронов с положительными ионами, оставшимися в узлах кристаллической решетки.

Если приложенная к образцу разность потенциалов создает внутри образца однородное электрическое поле с напряженностью &, то свободный электрон в таком поле приобретет постоянное ускорение:

$$a = \frac{F}{m} = \frac{e\&}{m},$$

где F - суммарная сила, действующая на электрон; m - масса электрона; e - заряд электрона. В результате такого равноускоренного движения электрон за время t приобретет дрейфовую скорость v_D , равную

$$v_D = at = \left(\frac{e\&}{m}\right)t.$$

Эта скорость будет увеличиваться до тех пор, пока электрон не потеряет ее в результате столкновения с ионом, после чего электрическое поле снова начнет разгонять электрон.

В этом случае для вычисления средней скорости дрейфа достаточно рассмотреть движение электрона в течение промежутка времени т между двумя столкновениями. Такой промежуток времени называется *временем релаксации*. Тогда дрейфовую скорость можно оценить как

$$\mathbf{v}_{\mathrm{D}} = \mathbf{a}\tau = \left(\frac{\mathbf{e}\mathbf{\&}}{\mathbf{m}}\right)\tau = \mu\mathbf{\&},\tag{1.1}$$

где величину

$$\mu = \frac{\mathbf{v}_{\mathrm{D}}}{\mathbf{k}} \tag{1.2}$$

называют *дрейфовой подвижностью*, или просто *подвижностью*, и в модели Друде она равна

$$\mu = \frac{e\tau}{m}.$$
 (1.3)

Соотношение (1.2), в отличие от (1.3), является *определением* подвижности и не связано с конкретной моделью проводимости.

Рассчитаем теперь силу тока в образце, которая, по определению, равна заряду q, проходящему в единицу времени через поперечное сечение образца. Допустим, образец имеет форму цилиндра с площадью поперечного сечения S. За время t через это сечение пройдет N электронов, содержащихся в отрезке этого цилиндра длиной $l = v_{\rm D}$ ·t. Если ввести понятие *концентрации* свободных электронов n как их количества в единице объема V:

$$n = \frac{N}{V}, \tag{1.4}$$

то силу тока можно вычислить как

$$I = \frac{dq}{dt} = \frac{d(eN)}{dt} = \frac{d(enV)}{dt} = \frac{d(enSl)}{dt} = \frac{d(enSl)}{dt} = enSv_{D},$$

так как величины e, n, S и v_D являются константами. Плотность тока будет равна

$$j = \frac{I}{S} = env_D, \qquad (1.5)$$

и в рамках модели Друде

$$\mathbf{j} = \left(\frac{\mathbf{e}^2 \tau \mathbf{n}}{\mathbf{m}}\right) \mathbf{\&}.$$
 (1.6)

Величину

$$\sigma = \frac{e^2 \tau n}{m} \tag{1.7}$$

называют удельной проводимостью. Тогда формула (1.6), представленная в виде

$$\mathbf{j} = \boldsymbol{\sigma} \boldsymbol{\&}, \tag{1.8}$$

является обычным законом Ома, если только σ , а значит, в соответствии с (1.7), время релаксации τ не зависят от поля. Такое предположение выглядит неправдоподобным. Скорее от поля не зависит расстояние Λ , проходимое электроном между двумя столкновениями и называемое *длиной свободного пробега*, которое связано с τ соотношением

$$\tau = \frac{\Lambda}{\left(v_{\rm D} + v_{\rm T}\right)},$$

где v_т - тепловая скорость движения электронов. С другой стороны, мы знаем, что закон Ома часто имеет привычку выполняться. Последняя формула показывает, что это возможно, если дрейфовая скорость электронов пренебрежимо мала по сравнению с тепловой.

Попробуем сделать численные оценки для металлов, типичное значение подвижности электронов в которых составляет $5 \times 10^{-3} \text{ м}^2/\text{B}\cdot\text{c}$. Тогда при напряженности поля 1 В/м

$$v_{\rm D} = \mu \&= 5 \times 10^{-3} \,\text{m/c}.$$

Тепловую скорость электронов оценим из соотношения

$$\frac{1}{2}\mathrm{m}(\mathrm{v}_{\mathrm{T}})^2 = \frac{3}{2}\mathrm{k}\mathrm{T},$$

где k - постоянная Больцмана; Т - абсолютная температура. Тогда при комнатной температуре тепловая скорость

$$v_{\rm T} = \left(\frac{3kT}{m}\right)^{1/2} = \left(\frac{3 \times 1,38 \times 10^{-23} \times 300}{9,1 \times 10^{-31}}\right)^{1/2} \cong 10^5 \,\text{m/c},$$

то есть действительно намного больше (в сто миллионов раз) дрейфовой. Приведенный расчет показывает, что в металлах закон Ома должен выполняться с точностью до одной миллионной доли процента.

Отметим также, что столь малое изменение скорости электрона во внешнем поле по сравнению с его равновесной тепловой скоростью позволяет использовать при описании электропроводности равновесные статистические функции распределения.

Интересно, а к какой величине тока приводят столь малые по сравнению с тепловой дрейфовые скорости электронов? Если на каждый атом металла приходится один свободный электрон, то объемная концентрация электронов

$$n = \frac{\rho N_A}{M},$$

где ρ - плотность; N_A - число Авогадро; М - молярная масса. Приблизительные оценки дают концентрацию свободных электронов в металлах около 10^{29} м⁻³, что при & = 1В/м в соответствии с (1.2) и (1.5) приводит к значению плотности тока порядка 10^8 A/м². Удивительно!

Используя (1.3), мы можем привести формулу (1.7) к виду

$$\sigma = \mathrm{en}\mu, \qquad (1.9)$$

который является наиболее употребительным выражением для удельной проводимости, справедливым не только в рамках модели Друде.

Сформулируем теперь аккуратно те предположения, которые лежат в основе модели Друде:

1) электроны проводимости считаются свободными, то есть не взаимодействуют с ионами в узлах кристаллической решетки, а только упруго сталкиваются с ними и не взаимодействуют друг с другом;

2) соударения электронов с ионами беспорядочные, следовательно, после каждого соударения дрейфовая скорость обращается в ноль ("потеря памяти");

3) все электроны движутся с одной и той же тепловой скоростью, равной среднеквадратичной скорости в распределении Максвелла-Больцмана.

Пока еще наших знаний недостаточно, чтобы критически оценить справедливость этих предположений. Правда, по поводу третьего предположения уже сейчас мы можем сказать, что оно требует улучшения, а именно учета распределения электронов по скоростям, что и было в свое время сделано Г.Лоренцем, но не привело к существенному изменению модели. Однако, не оценивая сами предположения, мы можем рассмотреть выводы из модели Друде и прийти к заключению о ее справедливости.

Одним из таких выводов является расчет электронной теплоемкости. Согласно закону Дюлонга и Пти, молярная теплоемкость С твердых тел, обусловленная колебаниями атомов, равна 3R, где R = 8,31 Дж/моль×К - универсальная газовая постоянная. Такой будет теплоемкость диэлектриков, не имеющих свободных электронов. Металлы же должны обладать дополнительной теплоемкостью, обусловленной наличием свободных электронов. Если на каждый атом металла приходится хотя бы один свободный электрон, то в одном моле металла содержится как минимум N = 6×10^{23} моль⁻¹ таких электронов, обладающих суммарной энергией E = (3/2)kTN_A, что дает добавку С_{Эл} к молярной теплоемкости, равную

$$C_{_{\Im\Pi}} = \frac{dE}{dT} = \frac{3}{2}kN_A = \frac{3}{2}R,$$

то есть молярная теплоемкость металла

$$C_{M} = 3R + \frac{3}{2}R = \frac{9}{2}R = 4,5R,$$

что в полтора раза больше молярной теплоемкости диэлектриков. Приведенные в табл. 1.1 данные свидетельствуют, что ничего подобного на опыте не наблюдается.

Таблица 1.1

Металл	С _м , Дж/(моль К)	Диэлектрик	С _м , Дж/(моль К)
Алюминий	24,35	SiO ₂	44
Серебро	25,49	SiC	26,65
α-железо	25,02	Cepa	23,64
Медь	24,52	Германий	23,4
Натрий	28,12	NaCl	50,79
Золото	25,23	KBr	52,51

Это не единственный пример экспериментально наблюдаемых противоречий модели Друде. Основными из них являются:

1) отсутствие предсказанной электронной теплоемкости;

2) отсутствие магнитной восприимчивости, обусловленной свободными электронами;

3)экспериментальное обнаружение положительного знака заряда носителей тока в ряде металлов и полупроводников.

Как мы увидим в дальнейшем, основные причины недостатков модели Друде в том, что она не учитывает квантовый характер как динамики, так и статистики электронов.

Третье из отмеченных выше противоречий вызывает вопрос о том, как можно измерить знак заряда носителей. Такие измерения основаны на эффекте Холла, с которым нам необходимо ознакомиться.

Пусть образец исследуемого материала, по которому течет электрический ток, помещен в магнитное поле с индукцией В, перпендикулярное направлению движения носителей (рис. 1.1). Если знак заряда носителей отрицательный, то они будут двигаться направо, и действующая на эти носители со стороны магнитного поля сила Лоренца будет отклонять их к верхней грани образца, на которой начнет накапливаться избыточный отрицательный заряд. Между верхней и нижней гранью образца возникнет электрическое поле с напряженностью $\&_{\rm H}$ и разность потенциалов U_H. Такая разность потенциалов называется холловской, а само явление ее возникновения - эффектом Холла.

Рис. 1.1. Механизм возникновения эффекта Холла. Электроны проводимости отклоняются магнитным полем к верхней грани образца, на которой вследствие этого накапливается отрицательный заряд, и между верхней и нижней гранью образца возникает разность потенциалов. А что изменится, если знак заряда носителей будет не отрицательным, а положительным?

Величина холловской разности потенциалов $U_{\rm H}$ = $\&_{\rm H}d$ будет расти до тех пор, пока кулоновская сила $F_{\rm K}$ = $e\&_{\rm H}$, действующая на носители со стороны холловского поля $\&_{\rm H}$, не сравняется с силой Лоренца $F_{\rm II}$ = $ev_{\rm D}$ B, после чего наступит равновесие. Условие равновесия можно записать в виде

$$e\mathbf{\&}_{\mathrm{H}} = \frac{\mathrm{eU}_{\mathrm{H}}}{\mathrm{d}} = \mathrm{ev}_{\mathrm{D}}\mathrm{B},$$

откуда

 $U_{H} = v_{D}Bd.$

Если выразить дрейфовую скорость из (1.5) через силу тока I, протекающего по образцу, и учесть, что S = bd, то окончательно для холловской разности потенциалов получим

$$U_{\rm H} = \frac{IB}{\rm enb} = \frac{R_{\rm H}IB}{\rm b},\tag{1.10}$$

где величина

$$R_{\rm H} = \frac{1}{\rm en} \tag{1.11}$$

называется коэффициентом Холла и зависит только от заряда и концентрации носителей.

Если знак заряда носителей положительный, то на верхней грани образца будет накапливаться положительный заряд, то есть знак холловской разности потенциалов изменится, а все приведенные выше вычисления останутся теми же самыми.

Таким образом, измерив холловскую разность потенциалов и протекающий через образец ток, а также, зная величину магнитного поля и ширину образца, мы можем определить как знак заряда, так и концентрацию носителей.

Отметим, что мы рассмотрели самый простой случай - эффект Холла в материале с одним типом носителей.

2. ЭЛЕКТРОННЫЕ ЭНЕРГЕТИЧЕСКИЕ ЗОНЫ

2.1. Квантовое описание электронов в твердых телах

Как уже отмечалось в предыдущем разделе, корректное описание динамики электрона в твердом теле должно быть квантовым. Из всех возможных формулировок квантовой механики мы будем использовать только одну, основанную на уравнении Шрёдингера:

$$-\left(\frac{\hbar^2}{2\mathbf{m}}\right)\Delta\Psi + \mathbf{U}\Psi = \frac{(\mathbf{i}\hbar)\partial\Psi}{\partial \mathbf{t}},\qquad(2.1)$$

где h = 1,05 • 10⁻³⁴ Дж • с - постоянная Планка; m - масса частицы; U- потенциальная энергия частицы; i - "мнимая единица" (i²=-1); Ψ волновая функция частицы; Δ - оператор Лапласа, в декартовых координатах, равный $\Delta = \partial^2 / \partial x^2 + \partial^2 / \partial y^2 + \partial^2 / \partial z^2$.

Если полная энергия частицы Е со временем не меняется, то *временное* уравнение Шрёдингера (2.1) сводится к *стационарному* уравнению Шрёдингера

$$-\left(\frac{\hbar^2}{2\mathrm{m}}\right)\Delta\Psi + \mathrm{U}\Psi = \mathrm{E}\Psi. \qquad (2.2)$$

Волновая функция Ψ частицы может зависеть от времени и координат частицы и должна быть однозначной, непрерывной и конечной, а также иметь непрерывную и конечную производную. Произведение волновой функции Ψ на комплексно ей сопряженную Ψ^* , а именно: величина $\Psi^*\Psi$ представляет собой плотность вероятности обнаружения частицы около заданной точки.

Обратите внимание, что уравнение Шрёдингера содержит две неизвестные величины - волновую функцию и полную энергию частицы, значения которых, удовлетворяющие уравнению, называют соответственно собственными функциями и собственными значениями энергии.

При рассмотрении одной частицы, в частности одного электрона, речь идет об *одночастичном*, или, соответственно, *одноэлектронном* уравнении Шрёдингера. Твердое тело состоит из большого числа частиц, которые к тому же взаимодействуют между собой, поэтому для его описания необходимо *многочастичное* уравнение Шрёдингера, найти точное решение которого нельзя никогда. Значит, нужно уметь находить такие приближения, которые лучше всего соответствовали бы описываемому явлению.

Поскольку химическая связь обусловлена только валентными электронами, то первое приближение, которое мы сделаем -это разделим *валентные электроны* и *ионы решетки* на две независимые системы. Тогда в уравнении Шрёдингера для твердого тела

$$-\left(\frac{\hbar^2}{2\mathbf{m}}\right)\Delta\boldsymbol{\varphi} + \mathbf{U}\boldsymbol{\varphi} = \mathbf{E}\boldsymbol{\varphi} , \qquad (2.3)$$

где $\varphi = \varphi(x_1, y_1, z_1, x_2, y_2, z_2, ..., x_N, y_N, z_N)$ - функция 3N переменных, то есть координат всех N атомов твердого тела, потенциальную энергию можно представить в виде суммы ионной U_{ии} и электронной (имеются в виду валентные электроны) U_{ээ} компонент, слагаемых,

описывающих взаимодействие электронов с ионами $U_{_{3\!H}}$, а также электронов и ионов с внешними полями $U_{_{B\!H}}$

$$U = U_{33} + U_{UU} + U_{3U} + U_{BH} . \qquad (2.4)$$

Электронная компонента потенциальной энергии представляет собой сумму всех энергий кулоновского взаимодействия электронов между собой:

$$U_{33} = \frac{1}{2} \sum_{i \neq j} \frac{e^2}{\left| \vec{r}_i - \vec{r}_j \right|} , \qquad (2.5)$$

где r - радиус-векторы, задающие положения электронов (подумайте сами, откуда взялся множитель 1/2). Соответственно ионная компонента - сумма энергий взаимодействия всех ионов с координатами R между собой. Каждую из таких энергий мы представим в виде функции расстояния между ионами, тогда

$$\mathbf{U}_{\mu\mu} = \frac{1}{2} \sum_{k \neq l} \mathbf{U}_{\mu\mu} \left(\vec{\mathbf{R}}_k - \vec{\mathbf{R}}_l \right). \tag{2.6}$$

Электрон-ионное взаимодействие соответственно

$$\mathbf{U}_{_{\mathcal{H}}} = \sum_{\mathbf{i},\mathbf{k}} \mathbf{U}_{_{\mathcal{H}}} \left(\vec{\mathbf{r}}_{\mathbf{i}} - \vec{\mathbf{R}}_{\mathbf{k}} \right), \tag{2.7}$$

где множитель 1/2 отсутствует (почему?).

Поскольку ионы колеблются около положения равновесия в узлах кристаллической решетки, ион-ионное и ион-электронное взаимодействие можно разделить на часть U^0 , описывающую взаимодействие с неподвижными ионами, и поправку к ней, учитывающую колебания:

$$U_{\mu\mu} = U_{\mu\mu}^{0} + U_{\mu\phi} , \qquad (2.8)$$
$$U_{\mu\mu} = U_{\mu\mu}^{0} + U_{\mu\phi} ,$$

где происхождение индекса "ф" связано со словом *фонон* - квант колебаний решетки кристалла. Подобное разделение приносит две выгоды. Во-первых, при описании взаимодействия неподвижных ионов часто можно, не решая уравнение Шрёдингера, получить важную информацию, используя свойства *симметрии* кристаллической решетки. Во-вторых, оно позволяет ввести очень мощную концепцию элементарных возбуждений, или квазичастии, которая в настоящее время является, пожалуй, основной в теории твердого тела.

Любое отклонение от равновесия в твердом теле может рассматриваться как возбуждение, энергия которого распределяется по всему телу. Появление этой энергии формально может быть описано как возникновение различных, в зависимости от природы возбуждения, квазичастиц. Если возбуждение невелико, этих частиц немного, и взаимодействием между ними можно пренебречь, что существенно упрощает решение задач конкретного описания свойств твердого тела. Так, например, введение представления о фононах позволяет без труда описать теплоемкость кристаллов.

Однако и теперь еще подстановка выражений (2.4) - (2.8) в уравнение Шрёдингера (2.3) не дает возможности решить это уравнение. Дальнейшие упрощения связаны с тем, какое физическое явление мы хотим описать. Во многих случаях эти упрощения направляют на то, чтобы считать независимыми, во-первых, волновые функции электронной и ионной подсистемы, а во-вторых, волновые функции отдельных электронов. В этих случаях волновая функция системы частиц может быть представлена как произведение волновых функций составляющих эту систему элементов (совсем, как в теории вероятностей - вероятность одновременного осуществления нескольких независимых событий равна произведению вероятностей осуществления каждого из этих событий в отдельности).

"Расцепление" электронной и ионной систем достигается либо заменой взаимодействия электронов с ионами взаимодействием электронов с равномерно распределенным по объему кристалла средним зарядом ионов (континуальная модель), либо фиксацией положения ионов (*адиабатическое приближение*), что позволяет представить волновую функцию кристалла как

 $\boldsymbol{\phi} = \boldsymbol{\phi}_{\scriptscriptstyle \vartheta} \boldsymbol{\cdot} \boldsymbol{\phi}_{\scriptscriptstyle H} \ ,$

где ϕ_3 и ϕ_{μ} - соответственно волновые функции электронной и ионной подсистем. Электронную волновую функцию можно упростить, заменив электрон-электронное взаимодействие взаимодействием каждого отдельного электрона с усредненным кулоновским потенциалом всех остальных электронов (*приближение Хартри-Фока*), что сводит многоэлектронную волновую функцию ϕ_3 к произведению *одноэлектрон-ных* волновых функций, и тем самым вместо многоэлектронного уравнения Шрёдингера мы получаем набор одноэлектронных уравнений, решать которые гораздо проще.

Общее представление о том, какие приближения дают описание различных электронных свойств твердого тела, можно составить на основании табл. 2.1.

Таблица 2.1

Учитываемое взаимодействие электронов	Описываемые свойства	
Без взаимодействия	Теплоёмкость электронного газа; диа- и парамагнетизм свободных электронов; электроны прово- димости в металлах и многих полупроводниках	
Электрон в переменном внешнем поле	Диэлектрическая проницаемость электронного газа	
Электрон в периодическом поле ионов решетки	Образование энергетических зон; различие металлов и ди- электриков	
Электрон в периодическом поле ионов решетки и постоянном внешнем поле	Возможность электропереноса; пробой Зинера	
Электрон-фононное	Электропроводность	
Электрон-фотонное	Поглощение и отражение света, дисперсия, поляризация света	
Электрон-фотонное во внешнем магнитном поле	Магнетооптика	
Электрон-фонон-электронное	Сверхпроводимость	

Аналогичную таблицу для ионной подсистемы можете составить сами в качестве упражнения. Не забудьте при этом продумать не только возможные взаимодействия, но и те реальные физические явления, которые описываются путем учета наличия (или, наоборот, отсутствия) тех или иных взаимодействий.

2.2. Электронные состояния

Несмотря на невообразимую сложность решения уравнения Шрёдингера для твердого тела, физики придумали достаточно простые и эффективные методы описания физических свойств кристаллов. Среди этих методов почетное место занимает *зонная модель*, на которой и базируется, в частности, электронная теория полупроводников и полупроводниковых приборов.

Если мы рассмотрим изолированный атом, допустим, кремния, то электроны в этом атоме, как мы уже знаем, могут обладать только вполне определенными значениями энергии, или, как говорят, могут находиться только на вполне определенных энергетических уровнях, одинаковых во всех атомах одного сорта. Что произойдет, если мы сблизим два таких атома? Взаимодействие между атомами расщепит каждый энергетический уровень на два, один из которых ляжет чуть ниже исходного, а другой - чуть выше. Если мы соберем вместе N атомов, то каждый энергетический уровень отдельного атома, смещаясь, образует систему N уровней, "зазор" между которыми будет тем больше, чем сильней взаимодействие, то есть чем ближе друг к другу атомы. Разрешенные энергии электронов в такой системе будут те-

Рис.2.1. Кривая Вильсона показывает расщепление энергетических уровней при сближении атомов.

перь образовывать не отдельные уровни, а электронные энергетические ЗОНЫ, содержащие столько уровней, сколько атомов входит в систему. Набор разрешенных значений энергии валентных электронов, полученный из расщепления самых верхних заполненных в атоме уровней Е₀, называют обычно валентной зоной, а набор самых нижних возбужденных состояний, полученный из нижнего пустого уровня Е₁, - зоной проводимости. Качественно карти-

на образования зон в твердом теле представлена на рис. 2.1, который часто называют *кривой Вильсона*, на горизонтальной оси которой отложено расстояние между соседними атомами (*период кристаллической решетки*) b. На рис. 2.1 показано образование только верхней заполненной (валентной) и нижней пустой зон, хотя зон будет столько, сколько имеется уровней энергии электронов в атоме вещества.

Представление об энергетических зонах позволяет классифицировать твердые тела по их электрическим свойствам. Допустим, на уровне E_0 в атоме находится один электрон (как, например, в щелочных металлах). Поскольку принцип Паули разрешает находиться на одном уровне двум электронам с противоположной ориентацией спинов, N валентных электронов в кристалле займут в соответствии с принципом минимума энергии нижние N/2 уровней в валентной зоне, а верхняя половина зоны останется пустой. Во внешнем электрическом поле электроны хотели бы двигаться, да некуда - все состояния заняты (позже мы рассмотрим этот вопрос корректно). Вот если бы электрону удалось выскочить в верхнюю половину зоны, тогда он без труда, используя пустые уровни, смог бы реализовать свою охоту к перемене мест. Нужна ли электрону для этого какая-то энергия? В принципе да, но ... Ширина зоны составляет единицы электронвольт, а число уровней в зоне очень велико - допустим, в образце объемом 1 см³ порядка 10²³. Значит, энергетический зазор между соседними уровнями в зоне будет порядка 10⁻²³ эВ, а это много меньше тепловой энергии kT не только при комнатной температуре (около 25 мэВ), но даже при температуре жидкого гелия, и этой тепловой энергии вполне достаточно, чтобы электрон переходил внутри зоны с одного уровня на другой уровень. Следовательно, материал с частично пустой валентной зоной будет хорошим проводником тока - металлом.

А если на уровне E_0 в атоме находятся уже два электрона? Тогда валентная зона окажется полностью заполненной, и электропереноса по ней не будет. Электрону, чтобы двигаться, придется преодолеть энергетический зазор между потолком валентной зоны и дном зоны проводимости, который называется запрещенной зоной, а вероятность такого перехода невелика. Такой материал был бы обязательно диэлектриком (изолятором), если бы не еще одно "но". Посмотрите внимательно на рис.2.1 - если расстояние между атомами меньше, чем b_0 , валентная зона и зона проводимости перекрываются и образуют единую частично заполненную зону, и материал снова будет металлом (хорошая идея: взять изолятор, сильно сжать и превратить его в металл - это один из примеров того, что называется переходом Мотта). Значит, чтобы материал был металлом, необходимо, чтобы его валентная зона или изначально была заполнена частично, или перекрывалась с зоной проводимости - примеров металлов второго типа множество, скажем, бериллий, магний, цинк и т.д. Если же валентная зона заполнена полностью и отделена от зоны проводимости запрещенной зоной, то материал является диэлектриком.

Однако в нашу классификацию не укладываются такие материалы, как полупроводники. Дело в том, что между полупроводниками и диэлектриками нет качественного различия, а есть только количественное: полупроводниками называют такие диэлектрики, у которых ширина запрещенной зоны относительно невелика, так что количество попавших из валентной зоны в зону проводимости электронов (свободных электронов) достаточно, чтобы эти вещества худо-бедно проводили электрический ток (обратите внимание, что у металлов все валентные электроны являются свободными - другой вопрос, все ли они будут участвовать в электропроводности?). Границу между полупроводниками и диэлектриками не установишь. Например, у антимонида индия (InSb) ширина запрещенной зоны 0,18 эВ, а у фосфида галлия (GaP) - 2,25 эВ. Самые популярные в микроэлектронике полупроводники - кремний, германий и арсенид галлия (GaAs) - имеют ширину запрещенной зоны 1,15, 0,65 и 1,38 эВ соответственно. Так что в качестве условной границы между полупроводниками и диэлектриками можно взять максимальную ширину запрещенной зоны полупроводников около 2,5 эВ.

Впрочем, как мы увидим в дальнейшем, практическая ценность полупроводников определяется не столько величиной запрещенной зоны, сколько возможностью их *легировать*, то есть очень сильно менять электрические свойства, вводя очень малое количество примесей.

Для того чтобы получать полезные результаты, качественной картины мало - нам нужна количественная модель электронных энергетических зон, и мы с Вами в качестве таковой будем использовать очень удобную *модель Фейнмана*, обычно не встречающуюся (незаслуженно) в литературе по физике твердого тела.

Для построения этой модели необходимо слегка расширить наше знакомство с аппаратом квантовой механики. При этом минимальные усилия, как мы постепенно убедимся, принесут максимум пользы. Первое, что мы сделаем, - перепишем уравнение Шрёдингера (2.1) в операторной форме:

$$\mathbf{H}\boldsymbol{\Psi} = \mathbf{i}\hbar \left(\frac{\partial \boldsymbol{\Psi}}{\partial \mathbf{t}}\right),\tag{2.9}$$

где

$$\mathbf{H} = -\frac{\hbar^2}{2\mathbf{m}}\Delta + \mathbf{U}$$

называется оператором Гамильтона, или гамильтонианом, и является оператором полной энергии частицы. В квантовой механике каждой физической величине сопоставляется оператор. Может, это и удивительно, но не удивительнее того, что в классической механике каждой физической величине соответствует число, просто к последнему факту мы привыкли, и говорим, что масса футбольного мяча 450 г, не задумываясь о том, как это странно, что массу можно охарактеризовать *числом*.

В соответствии с принципом суперпозиции волновую функцию системы можно представить в виде линейной комбинации полного набора собственных функций:

$$\Psi = \sum_{j} \Psi_{j} \,, \tag{2.10}$$

где мы пренебрегли численными коэффициентами.

Если пространственная и временная части волновой функции независимы, то волновую функцию можно представить в виде:

$$\Psi = \varphi(\mathbf{t})\phi(\mathbf{r}), \qquad (2.11)$$

$$\Psi_{j} = \varphi_{j}(t)\varphi_{j}(r),$$

где ϕ не зависит от координат, а ϕ - от времени. Тогда с учетом (2.10) и (2.11) уравнение (2.9) преобразуется к виду:

$$\sum_{j} \phi_{j} \mathbf{H} \phi_{j} = \mathbf{i} \hbar \sum_{j} \phi_{j} \left(\frac{\mathbf{d} \phi_{j}}{\mathbf{d} t} \right).$$
(2.12)

Дальнейшие наши усилия будут направлены на то, чтобы в (2.12) вообще избавиться от пространственной составляющей $\phi(r)$. Для этого умножим обе части (2.12) на одну из волновых функций ϕ_n , принадлежащих полному набору собственных функций ϕ_j , и проинтегрируем получившееся выражение по объему:

$$\sum_{j} \phi_{j} \int \phi_{n} H \phi_{j} dV = i\hbar \sum_{j} \frac{d\phi_{j}}{dt} \int \phi_{n} \phi_{j} dV. \qquad (2.13)$$

Поскольку волновые функции из полного набора ортогональны по отношению друг к другу, и если они к тому же нормированы на единицу, то есть

$$\int \phi_n \phi_j dV = \begin{cases} 1, & e \ c \ ли \ n = j \\ 0 & e \ c \ ли \ n \neq j \end{cases},$$

соотношение (2.13) после введения обозначения

$$\int \phi_n H \phi_j dV = H_{nj}$$

сводится к виду

$$\mathbf{i}\hbar \frac{\mathbf{d}\boldsymbol{\varphi}_{n}}{\mathbf{d}\mathbf{t}} = \sum_{j} \mathbf{H}_{nj} \boldsymbol{\varphi}_{j} \,, \qquad (2.14)$$

где H_{nj} описывает взаимодействие состояния n с состоянием j.

Давайте теперь сообразим, чего мы добились. Исключив пространственную часть волновой функции, мы не сможем уже узнать вероятность обнаружения электрона в окрестности какой-то точки но нам это и не надо! Мы теперь можем получить ответ на вопрос, с какой вероятностью электрон в момент времени t находится в состоянии с номером n. Допустим (см. рис.2.2), у нас есть одномерная цепочка атомов ("одномерный кристалл"), в которой расстояние между соседями равно b (период решетки). Волновая функция ϕ_n определяет вероятность

Рис.2.2. Одномерная периодическая цепочка атомов.

обнаружения электрона в момент времени t на узле с номером n (такую волновую функцию называют *узельной*). Допустим, электрон на узле n не взаимодействует больше ни с какими узлами, кроме родного. Тогда все H_{nj} при n \neq j в (2.14) равны нулю, и мы имеем уравнение

$$i\hbar \frac{d\phi_n}{dt} = H_{nn}\phi_n = E_n\phi_n,$$

решением которого является гармоническая функция:

$$\boldsymbol{\phi}_{n} = \mathbf{K}_{n} \cdot \exp\left(\frac{-\mathbf{i}\mathbf{H}_{nn}\mathbf{t}}{\hbar}\right) = \mathbf{K}_{n} \cdot \exp\left(\frac{-\mathbf{i}\mathbf{E}_{n}\mathbf{t}}{\hbar}\right),$$

где E_n - энергия электрона на узле n, часто реально не означает ничего, кроме выбора нуля энергии. Следовательно, вероятность обнаружить электрон на узле n равна

$$\psi_n^* \psi_n = \left| K_n \right|^2$$

и не зависит от времени. В общем-то, результат тривиальный: если нет взаимодействия с другими узлами, то электрон, раз попав на узел

n, навсегда останется в нем. Самое интересное начинается, когда мы учтем взаимодействие.

Начнем с самого простого случая и учтем взаимодействие только с ближайшими соседями, имеющими номера n-1 и n+1. Константа взаимодействия с узлами n-1 и n+1 одинакова, т.к. расстояние b до них одинаково, и мы просто обозначим ее -A, где знак "минус" говорит о том, что взаимодействие ослабляет связь электрона с узлом n, и его энергия должна иметь знак, противоположный знаку E. Тогда (2.14) будет выглядеть как

$$\mathbf{i}\hbar \frac{\mathbf{d}\boldsymbol{\varphi}_{n}}{\mathbf{d}\mathbf{t}} = \mathbf{E}_{n}\boldsymbol{\varphi}_{n} - \mathbf{A}\boldsymbol{\varphi}_{n-1} - \mathbf{A}\boldsymbol{\varphi}_{n+1}, \qquad (2.15)$$

и, кстати, такие же уравнения мы получим для любого другого узла электрону одинаково вероятно оказаться около любого атома, ни один из атомов никаких преимуществ не имеет, так как цепочка строго периодична (наш "кристалл" идеален).

Решение уравнения (2.15) будем искать опять в виде

$$\boldsymbol{\varphi}_{j} = \mathbf{K}_{j} \cdot \exp\left(\frac{-\mathbf{i}\mathbf{E}\mathbf{t}}{\hbar}\right), \qquad (2.16)$$

где Е - та энергия, которую мы и хотим найти, а индекс ј принимает три значения: n-1, n, n+1. Подставим (2.16) в (2.15) и получим:

$$EK_{n} = E_{n}K_{n} - A(K_{n-1} + K_{n+1}).$$
(2.17)

Если атом n находится в точке с координатой x, то координаты соседних атомов будут x+b и x-b. Тогда, рассматривая коэффициенты K_j как функции этих координат, мы можем записать (2.17) в виде

$$EK(x) = E_n K(x) - A[K(x+b) + K(x-b)], \qquad (2.18)$$

который является разностным уравнением, очень похожим на дифференциальное, решение которого и поищем в традиционном виде

$$K(x) = \exp(ikx).$$
(2.19)

С учетом (2.19) мы можем свести (2.18) к уравнению

 $Eexp(ikx) = E exp(ikx) - A{exp[ik(x+b)] + exp[ik(x-b)]},$ разделив которое на exp(ikx), получим

$$E = E_n - A[exp(ikb) + exp(-ikb)].$$

Используя формулу Эйлера

exp(ia) + exp(-ia) = 2cos(a), получим окончательно для энергии электрона на узле n

$$E = E_n - 2A\cos(kb). \tag{2.20}$$

Что же это такое получилось? А вот что. Если электрон на изолированном узле (в изолированном атоме) имел энергетический уровень E_n , то в результате взаимодействия его энергетический *уровень* превратился в энергетическую зону шириной 4А. Иначе говоря, электрон теперь может иметь энергию в интервале от E_n -2A до E_n +2A и не может иметь энергию за пределами этого интервала. Если, например, $E_n = E_1$, т.е. энергии первого возбужденного состояния, то в линейной цепочке мы получим ту самую зону проводимости (см. рис.2.3), о которой говорили раньше:

$$\mathbf{E} = \mathbf{E}_1 - 2\mathbf{A}\cos(\mathbf{k}\mathbf{b}).$$

Изображенная на рис.2.3 кривая зависимости энергии Е от k называется *зонной структурой*, или *дисперсионной кривой*. Почему? Чтобы ответить на этот вопрос, надо выяснить смысл величины k, c которой мы уже встречались в предыдущем разделе, вводя ее как $(2mE)^{1/2}$ /h. В более общем виде можно записать

$$\mathbf{k} = \frac{\left[2\mathbf{m}(\mathbf{E} - \mathbf{U})\right]^{1/2}}{\hbar},$$
 (2.21)

если учесть потенциальную энергию частицы. Величина (E-U) -

Рис. 2.3. Дисперсионная кривая для электрона в одномерной решетке.

это кинетическая энергия, тогда числитель в (2.21) не что иное как импульс частицы р:

$$\mathbf{k} = \frac{\mathbf{p}}{\mathbf{h}} = \frac{2\pi\mathbf{p}}{\hbar} = \frac{2\pi}{\lambda},\tag{3.14}$$

где λ - длина волны де Бройля. Значит, k - это просто-напросто волновое число электрона, а ħk - его импульс, то есть кривая на рис.2.3 фактически дает зависимость энергии электрона от его импульса, или закон дисперсии. Обратите внимание, что из (2.20) получается закон дисперсии не такой, как для свободного электрона, у которого зависимость Е от k параболическая:

$$\mathbf{E} = \frac{\mathbf{p}^2}{2\mathbf{m}} = \frac{\hbar^2 \mathbf{k}^2}{2\mathbf{m}}.$$
 (2.23)

Сам характер зависимости (2.20) показывает, что все интересующие нас значения энергии сосредоточены в интервале волновых чисел от $-\pi/b$ до π/b , а за пределами этого интервала нет ничего нового - косинусоида просто повторяет сама себя. Такой интервал волновых чисел в физике твердого тела часто называют *первой зоной Бриллюэна* (это не энергетическая зона!).

Если учесть взаимодействие не только с ближайшими соседями, закон дисперсии изменится. Он вообще не универсален и зависит от сделанных нами допущений. Как мы убедимся, рассматривая зонную структуру реальных полупроводников, это не обязательно косинусоида, и она даже не обязательно симметрична. Зато всегда верно, что все разрешенные состояния спрятаны в первой зоне Бриллюэна, и заботиться о других значениях волнового числа незачем.

В качестве полезного упражнения попробуйте учесть взаимодействие с двумя ближайшими соседями, если константы взаимодействия с первым и вторым соседом относятся друг к другу в одном случае, как 2.83, а в другом - это отношение равно 4.

2.3. Туннелирование электронов в решетке

Уже фейнмановская модель показывает, что электроны в твердом теле описываются только в рамках квантовомеханических представлений, и всякое использование аналогий из классической механики чревато серьезными ошибками. Чтобы прояснить еще раз этот вопрос, рассмотрим другое представление об электронных энергетических зонах, также редко встречающееся в учебной литературе.

Вначале вкратце вспомним, в чем заключается и как описывается туннельный эффект. Явление это, не имеющее никакого аналога в классической механике, представляет собой проникновение частиц сквозь потенциальный барьер. Если свободная частица с энергией Е налетает слева на прямоугольный потенциальный барьер высотой $U_0>E$ и шириной l (рис.2.4), то ее волновая функция в областях 1,2,3 может быть записана как

Поскольку в области 3 нет отраженной волны, а в области 2 - экспоненциально нарастающей, следует положить $B_3 = 0$, $A_2 = 0$. Используя свойства непрерывности волновой функции и ее производной, можно записать:

$$\psi_1(0) = \psi_2(0), \quad \psi_1'(0) = \psi_2'(0),$$

$$\psi_2(1) = \psi_3(1), \quad \psi_2'(1) = \psi_3'(1).$$
(2.25)

Вероятность прохождения электрона (или любой другой частицы) сквозь барьер, т.е. из области 1 в область 3

$$\mathbf{D} = \left(\frac{\mathbf{k}_{3}}{\mathbf{k}_{1}}\right) \cdot \left(\frac{|\mathbf{A}_{3}|^{2}}{|\mathbf{A}_{1}|^{2}}\right) = \frac{|\mathbf{A}_{3}|^{2}}{|\mathbf{A}_{1}|^{2}},$$

после подстановки (2.24) в (2.25) получается в виде:

$$D = D_0 \cdot \exp\left\{\frac{-2l}{h}\sqrt{2m(U_0 - E)}\right\}.$$
 (2.26)

Любой не слишком резкий барьер произвольной формы U(x) может быть разбит на много прямоугольных, тогда коэффициент прохождения такого барьера

$$\mathbf{D} = \mathbf{D}_0 \cdot \exp\left\{\frac{-2}{\mathsf{h}} \int_{x_1}^{x_2} \sqrt{2\mathsf{m}(\mathsf{U}(\mathsf{x}) - \mathsf{E})} \mathsf{d}\mathsf{x}\right\},\tag{2.27}$$

где x₁ и x₂ - координаты точек входа частицы под барьер и выхода изпод барьера соответственно. Таким образом, частица обладает ненулевой вероятностью туннелирования сквозь барьер, сильно возрастающей при уменьшении высоты и ширины барьера, а также массы частицы. Точно также частица, пролетающая над барьером, может отразиться и вернуться в область 1. Графически зависимость вероятности туннелирования от соотношения между энергией частицы и высотой барьера представлена на рис.2.5.

Рис. 2.5. Коэффициент прохождения частицы через прямоугольный потенциальный барьер.

Пусть теперь частица налетает на двугорбый симметричный потенцальный барьер (рис.2.6). В этом случае при некоторых (так называемых квазистационарных) значениях энергии частицы, два из которых, E_0 и E_1 (а их может быть существенно больше в зависимости от параметров барьера) показаны на рис. 2.6 и 2.7, коэффициент прохождения барьера равен единице.

Иначе говоря, такой барьер абсолютно прозрачен для частиц с квазистационарными значениями энергии. Если же взять N-горбый периодический барьер, то каждый квазистационарный уровень расплывается в зону, содержащую N-1 близко расположенных уровней (см. рис. 2.8.), и частицы со значениями энергии, попадающими в эти зоны, туннелируют через такую одномерную решетку совершенно свободно, с единичной вероятностью (рис.2.9).

Рис.2.8

Рис.2.9

Вот такие "прозрачные окна" и являются электронными энергетическими зонами в периодической решетке, то есть в кристалле. Если, например, E_0 - верхний заполненный уровень в изолированном атоме, а E_1 - нижний пустой, то при образовании из таких атомов кристалла ΔE_0 будет валентной зоной, а ΔE_1 - зоной проводимости.

Такое рассмотрение вызывает сильное подозрение, что электрон в периодической решетке не должен испытывать никаких соударений с атомами, а будет двигаться, как говорят, без рассеяния (его будут нести на себе "волны вероятности", благополучно огибая все рифы). Как мы увидим скоро, так оно и оказывается.

2.4. Динамика электронов

Ознакомившись с энергетическими зонами, мы можем сделать следующий шаг к пониманию электронных свойств твердых тел - построить динамику электрона в кристаллической решетке. Ясно, что строить динамику можно различными способами, и мы с Вами поступим наиболее утилитарным, который в итоге позволит нам описывать электронные свойства полупроводников почти во всех практически важных случаях, но абсолютно непригоден, например, для металлов или имеющих узкие энергетические зоны молекулярных кристаллов. Способ этот называется *методом эффективной массы* и основан на хитроумной уловке: вначале вычисляется скорость электрона как квантового объекта, а потом используется обычная ньютоновская динамика.

Когда мы говорим, что электрон - квантовый объект, то в первую очередь имеем в виду, что он обладает волновыми свойствами, и если имеет энергию E, то его распространение характеризуется циклической частотой

$$\boldsymbol{\omega} = \frac{\mathbf{E}}{\hbar} \,. \tag{2.28}$$

Скорость переноса энергии в любой волне - это групповая скорость

$$v=\frac{d\omega}{dk},$$

где k = $2\pi/\lambda$ - волновое число. Тогда с учетом (2.28) скорость электрона

$$\mathbf{v} = \frac{1}{\hbar} \cdot \frac{\partial \mathbf{E}}{\partial \mathbf{k}}.$$
 (2.29)

Например, для свободного электрона, у которого

$$\mathbf{E} = \frac{\mathbf{p}^2}{2\mathbf{m}} = \frac{\hbar^2 \mathbf{k}^2}{2\mathbf{m}}$$

соотношение (2.29) дает

$$\mathbf{v} = \frac{1}{\hbar} \cdot \frac{2\hbar^2 \mathbf{k}}{2\mathbf{m}} = \frac{\hbar \mathbf{k}}{\mathbf{m}} = \frac{\mathbf{p}}{\mathbf{m}}$$

то есть обычную скорость частицы с массой т и импульсом р.

Если мы начнем разгонять электрон электрическим полем с напряженностью &, то за время dt он приобретет энергию dE, равную совершенной за это время полем работе:

$$\mathbf{dE} = \mathbf{F}\mathbf{dx} = \mathbf{e} \otimes \mathbf{v}\mathbf{dt} = \mathbf{e} \otimes \frac{1}{\hbar} \cdot \frac{\partial \mathbf{E}}{\partial \mathbf{k}} \mathbf{dt},$$

откуда

$$\frac{\partial \mathbf{k}}{\partial \mathbf{t}} = \frac{\mathbf{e}\mathbf{\&}}{\hbar} \ . \tag{2.30}$$

Теперь, используя (2.29), найдем ускорение:

$$\mathbf{a} = \frac{\mathbf{d}\mathbf{v}}{\mathbf{d}\mathbf{t}} = \frac{1}{\hbar} \cdot \frac{\mathbf{d}}{\mathbf{d}\mathbf{t}} \left[\frac{\partial \mathbf{E}}{\partial \mathbf{k}} \right] = \frac{1}{\hbar} \cdot \frac{\partial^2 \mathbf{E}}{\partial \mathbf{k}^2} \cdot \frac{\partial \mathbf{k}}{\partial \mathbf{t}}$$

что с учетом (2.30) можно записать как

$$\mathbf{a} = \frac{\mathbf{e} \mathbf{\&}}{\hbar^2} \left(\frac{\partial^2 \mathbf{E}}{\partial \mathbf{k}^2} \right) \,,$$

или, вспомнив, что е& = F - внешняя сила, действующая со стороны электрического поля и разгоняющая электрон, еще интересней:

$$\mathbf{F} = \left(\frac{\hbar^2}{\partial^2 \mathbf{E} / \partial \mathbf{k}^2}\right) \mathbf{a} , \qquad (2.31)$$

что внешне очень напоминает формулу F = ma. Если величину

$$\mathbf{m}^* = \frac{\hbar^2}{\partial^2 \mathbf{E} / \partial \mathbf{k}^2} \tag{2.32}$$

назвать эффективной массой электрона, то мы получим некий аналог второго закона Ньютона:

$$F = m^* a_i$$

в котором, конечно, величина m^{*} не отражает ни инертных, ни гравитационных свойств электрона. Попробуем применить (2.32) для свободного электрона, у которого $E = \hbar^2 k^2 / 2m$, и, следовательно,

$$\frac{\partial \mathbf{E}}{\partial \mathbf{k}} = \frac{\hbar^2 \mathbf{k}}{\mathbf{m}}, \quad \frac{\partial^2 \mathbf{E}}{\partial \mathbf{k}^2} = \frac{\hbar^2}{\mathbf{m}}$$

Тогда

$$\mathbf{m}^* = \frac{\hbar^2}{\partial^2 \mathbf{E} / \partial \mathbf{k}^2} = \frac{\hbar^2}{\hbar^2} \mathbf{m} = \mathbf{m},$$

то есть для свободного электрона мы получаем обычную массу, значит, в этом случае наша формула (2.31) работает как положено.

Теперь рассмотрим одномерную решетку, где в соответствии с моделью Фейнмана

$$E = E_1 - 2A \cos(kb),$$
 (2.33)

и, следовательно, скорость в соответствии с (2.29)

$$\mathbf{v} = \frac{1}{\hbar} \cdot \frac{\partial \mathbf{E}}{\partial \mathbf{k}} = \frac{2\mathbf{A}\mathbf{b}}{\hbar} \sin(\mathbf{k}\mathbf{b}), \qquad (2.34)$$

а эффективная масса

$$\mathbf{m}^* = \frac{\hbar^2}{\partial^2 \mathbf{E} / \partial \mathbf{k}^2} = \frac{\hbar^2}{2\mathbf{A}\mathbf{b}^2 \cos(\mathbf{k}\mathbf{b})}.$$
 (2.35)

Результаты расчетов по формулам (2.33) - (2.35) приведены на рис. 2.10, где буквой В обозначена величина \hbar^2 /2Ab², и наводят на сле-

Рис.2.10. Энергия, скорость и эффективная масса электрона в первой зоне Бриллюэна.

дующие размышления. Эффективная масса m^{*} ведет себя довольно странно. Например, если $k = \pi 2b$ или k = π2b, то эффективная масса бесконечна, и электрон с таволновым числом не ким стронешь никакой силой. В интервале от k = $\pi/2b$ до k = π/b эффективная масса отрицательна, то есть электрон будет разгоняться навстречу действующей силе. Если мы перейдем к трехмерному случаю, то все еще больше запутается. Во-первых, эффективная масса будет зависеть от направления, то есть одно и то же электрическое поле, приложенное по разным осям, создаст разное ускорение. Это уже само по себе достаточно скверно, но может быть еще хуже - поле, приложенное вдоль оси х, может вызвать ускорение вдоль оси у. Как сказал бы математик, эффективная масса является тензором, но для нас с Вами

это означает, что понятием эффективной массы надо пользоваться аккуратно и даже осторожно.

Первый вопрос, в котором нам поможет понятие эффективной массы - это вопрос о том, какие электроны вносят свой вклад в проводимость. Выражение для плотности тока

$$\mathbf{j} = \mathbf{env} \tag{2.36}$$

справедливо только, если у всех электронов одинаковые скорости, что сомнительно. Теперь у нас есть формула (2.34), которая однозначно утверждает, что v зависит от волнового числа k, a следовательно, в

соответствии с (2.33) и от энергии. Значит, мы должны вычислять плотность тока как

$$j = \int ev(E) dn . \qquad (2.37)$$

Однако мы можем попробовать формально использовать соотношение (2.36), введя понятие эффективной концентрации электронов n_{эфф}, которые являются свободными, не взаимодействуют с решеткой и обеспечивают весь перенос заряда. Для таких электронов мы запишем

$$\mathbf{j} = \mathbf{evn}_{\mathbf{y}\phi\phi} = \mathbf{ea\tau}\mathbf{n}_{\mathbf{y}\phi\phi} = \frac{\mathbf{e}^2 \& \tau}{\mathbf{m}} \mathbf{n}_{\mathbf{y}\phi\phi} .$$
 (2.38)

В свою очередь (2.37) можно представить в виде:

$$\mathbf{j} = \int \mathbf{ea}(\mathbf{E}) \tau d\mathbf{n} = \int \mathbf{e} \frac{\mathbf{e} \mathbf{k}}{\mathbf{m}^*} \tau d\mathbf{n} = \frac{\mathbf{e}^2 \mathbf{k} \tau}{\hbar^2} \int \frac{\partial^2 \mathbf{E}}{\partial \mathbf{k}^2} d\mathbf{n}$$

Поскольку для одномерного случая $dn = dk/\pi$, то мы получаем

$$\mathbf{j} = \frac{\mathbf{e}^2 \& \tau}{\pi \hbar^2} \int \frac{\partial^2 \mathbf{E}}{\partial \mathbf{k}^2} \, \mathrm{d}\mathbf{k}$$

что после сопоставления с (2.38) дает нам выражение для эффективной концентрации электронов:

которое, конечно, справедливо только при нулевой температуре, так как никакой заселенности уровней мы не учитывали; в данном случае это совершенно неважно. Интеграл мы должны вычислить для всех волновых чисел, которыми обладают электроны. Значит, если все уровни от самого нижнего до E_M заполнены, то интеграл в (2.39) надо брать в пределах от $-k_1$ до k_1 (рис. 2.11), то есть

$$\mathbf{n}_{\mathbf{h}\phi\phi} = \frac{\mathbf{m}}{\mathbf{\pi}\hbar^2} \left[\left(\frac{\partial \mathbf{E}}{\partial \mathbf{k}} \right)_{\mathbf{k}=\mathbf{k}_1} - \left(\frac{\partial \mathbf{E}}{\partial \mathbf{k}} \right)_{\mathbf{k}=-\mathbf{k}_1} \right],$$

или, поскольку косинус - четная функция,

$$\mathbf{n}_{\mathbf{h}\phi\phi} = \frac{2\mathbf{m}}{\pi\hbar^2} \left(\frac{\partial \mathbf{E}}{\partial \mathbf{k}}\right)_{\mathbf{k}=\mathbf{k}_1}, \qquad (2.40)$$

а в явном виде

$$\mathbf{n}_{\mathbf{a}\mathbf{b}\mathbf{b}} = \frac{4\mathbf{m}\mathbf{A}\mathbf{b}}{\pi\hbar^2} \sin(\mathbf{k}_1\mathbf{b}). \qquad (2.41)$$

Рис.2.11. Эффективная концентрация электронов определяется граничной энергией E_M и граничным волновым числом k₁.

Полученное соотношение (2.41) очень любопытно. Во-первых, если $k_1 = 0$, то $n_{9\phi\phi} = 0$ и тока нет - ну, это тривиально, если зона пуста и нет носителей, то откуда вообще возьмется ток? Но если $k_1 = \pi/b$, то есть зона вся заполнена, то тока опять нет! А когда же проводимость будет самой большой? Когда $k_1 = \pi/2b$, то есть $E_M = E_1$ - когда зона заполнена ровно наполовину (типичный случай металла с одним электроном проводимости на каждый атом).

Следует отметить, что соотношение (2.40) носит более общий характер, чем (2.41) (подумайте сами, почему).

Еще одна возможность, которую нам предоставляет эффективная масса - это введение понятия дырки, и мы эту возможность не упустим. Как Вы знаете, дырка - это пустое место с положительным зарядом, и такой полностью самостоятельной частицы не существует. Зачем вводится понятие дырки, Вам объясняли еще в школе, но почему это можно делать?

Давайте уберем из полностью заполненной зоны, по которой, как мы только что доказали, ток не течет, немного электронов, так что величина $k_1b = \pi$ уменьшилась на α . Тогда в цепочке появится ток с плотностью

$$\mathbf{j} = \frac{\mathbf{e}^2 \& \tau}{\mathbf{m}} \mathbf{n}_{\mathsf{s} \phi \phi} = \frac{4 \mathbf{e}^2 \& \tau \mathbf{A} \mathbf{b}}{\pi \hbar^2} \sin(\pi - \alpha)$$

а поскольку $sin(\pi - \alpha) = sin \alpha$, то это такой же ток, который создавало бы такое же количество электронов у дна зоны. Вот только посмотри-

те на (2.35) - электроны у потолка зоны имеют отрицательную эффективную массу. Значит, исчезновение электрона с отрицательной массой приводит к возникновению тока, однако не проще ли говорить о появлении положительно заряженной дырки? Тогда если в каком-то материале проводимость обусловлена, например, двумя зонами, в одной из которых мало электронов с подвижностью μ_e и концентрацией n_e , а в другой мало дырок (много электронов) с подвижностью μ_h и концентрацией n_h , то удельная проводимость такого материала (так называемая амбиполярная проводимость)

$$\sigma = e n_e \mu_e + e n_h \mu_h . \qquad (2.42)$$

Не правда ли, очень похожа на параллельное соединение проводников? И действительно, в этом случае говорят о *параллельных каналах* проводимости просто потому, что у нас суммируются токи в этих "каналах".

2.5. Зонная структура реальных полупроводников

При вычислении концентраций электронов и дырок в полупроводниках и соответствующей им энергии Ферми совершенно безразлично, являются ли эффективные массы скалярами или тензорами, так как в последнем случае в плотность состояний достаточно подставить усредненный "скалярный эквивалент" тензора эффективной массы. Однако ряд явлений в полупроводниковых материалах определяется именно фактической формой поверхностей постоянной энергии в трехмерном k-пространстве. Мы до сих пор для простоты полагали, что полупроводники обладают простой кубической структурой. На самом же деле это не так. Например, наиболее широко используемые в микроэлектронике кремний и германий имеют кристаллическую решетку типа алмаза, совершенно не похожую на простую кубическую. Вследствие этого, дисперсионные кривые для разных направлений будут различными. Кроме того, для каждого фиксированного направления зонная структура заметно сложнее, чем это предсказывается простой моделью Фейнмана (см. рис. 2.12). Например, в валентной зоне существует три типа дырок (h - тяжелые, l - легкие, s отщепленные), что связано, вообще говоря, с тем, что валентная зона формируется электронами как s-состояний атомов, так и p-состояний, и эти электроны к тому же взаимодействуют между собой. В зоне проводимости подобные фокусы тоже происходят, но электрические свойства определяются фактически только одной дисперсионной кривой, минимум которой зато не совпадает с центром первой зоны

Бриллюэна. Вследствие этого, полупроводники такого типа называются *непрямозонными*. Происхождение этого названия связано с процессами поглощения света в полупроводниках.

Дело в том, что при поглощении света, то есть при поглощении электроном валентной зоны фотона, должны одновременно выполняться законы сохранения энергии и импульса. Фотон, обладающий достаточной для возбуждения электрона энергией, обладает в то же время весьма малым импульсом (попробуйте сами оценить численно, что это означает, связывая ширину зоны Бриллюэна с постоянной решетки). Поэтому на рис. 2.12 вызванный поглощением света электронный переход будет изображаться практически вертикальной линией, или, как говорят, оптические переходы являются *прямыми*. Следовательно, фотоны не могут возбудить электроны из максимума валентной зоны в минимум зоны проводимости. Поэтому, кстати, ширина запрещенной зоны, определенная по краю полосы собственного поглощения в кремнии или германии, будет больше табличной.

Сложность зонной структуры полупроводников, к счастью, не приводит ни к каким фатальным последствиям при описании электрических свойств монокристаллов. После выполнения всех необходимых процедур усреднения эффективная масса и время релаксации в конечном итоге оказываются изотропными. Соответственно, измеренная в разных направлениях проводимость оказывается одной и той

Рис. 2.12. Структура зон для одного из направлений в кремнии.

Рис. 2.13. Зонная структура арсенида галлия.

Другое важное отклонение зонной структуры от идеальной наблюдается в ряде соединений элементов третьей и пятой группы таблицы Менделеева. У таких соединений, типичным и промышленно важным представителем которых является арсенид галлия, в зоне проводимости появляется дополнительная долина (см. рис 2.13).

Электроны в нижней долине GaAs имеют эффективную массу 0,067 m₀ (m₀ - масса покоя электрона), а в верхней - 0,35 m₀. Появление второй долины связано со значительным вкладом ионной компоненты в полную энергию химической связи в таких материалах (вспомните задачу из раздела, посвященного модели Фейнмана!). Наличие дополнительной долины проявляется в сильных электрических полях, составляя основу функционирования очень интересных электронных приборов - диодов Ганна.

В заключение следует отметить, что детали зонной структуры все же, как правило, несущественны при разработке подавляющего большинства полупроводниковых устройств.

же.

3. РАВНОВЕСНЫЕ НОСИТЕЛИ ЗАРЯДА

3.1. Статистика свободных электронов

Мы уже знаем, что в твердом теле энергетические уровни отдельных атомов превращаются в зоны, или наборы уровней. На каждом из таких уровней принцип Паули позволяет разместиться только двум электронам с противоположной ориентацией спинов, поэтому различные электроны в кристалле будут иметь различную энергию, а значит, видимо, и различную скорость. Кроме того, сами уровни вряд ли будут расположены через равномерные промежутки по шкале энергий, вспомним, хотя бы электрон в прямоугольной яме. Интересно было бы знать, как эти уровни распределены по энергиям и как зависит от энергии скорость электрона. Зачем? Причин для такого любопытства множество, но одна из них сразу бросается в глаза. Мы хотим описать электрический ток в твердом теле, а плотность тока (по определению), как нам известно из первой главы,

$$\mathbf{j} = \mathbf{env}_{\mathbf{D}} \,. \tag{3.1}$$

Если электроны с разными энергиями имеют разные скорости, то есть $v_D = v_D(E)$, то совершенно непонятно, какую скорость подставлять в (3.1). Надо, конечно, поступить так: взять узкий интервал энергий dE, в пределах которого скорость практически не меняется, и если концентрация электронов, имеющих энергии, лежащие в этом интервале, равна dn, то можно по формуле (3.1) посчитать плотность тока, создаваемого этими электронами:

$$dj = ev_D(E)dn, (3.2)$$

чтобы затем, проинтегрировав (3.2) по энергиям, получить полную плотность тока, создаваемого всеми электронами. Однако для этого надо знать в явном виде функции $v_D(E)$ и n(E). Первую задачу (динамическую) мы уже решили, а второй задачей займемся сейчас.

Прежде всего мы должны ввести понятие *плотности состояний* g(E) - это, по определению, количество электронных энергетических уровней, или, как чаще говорят, количество электронных состояний, приходящихся на единицу объема твердого тела и на единичный интервал энергий. С использованием функции g(E) величина dn в (3.2) может быть представлена как

$$dn = 2g(E)f(E,T)dE, \qquad (3.3)$$

где f - вероятность того, что на данном уровне есть электрон, зависящая, вообще говоря, от энергии и температуры, а множитель 2 просто говорит о том, что на уровне может быть 2 электрона с противоположной ориентацией спинов. Теперь для вычисления тока нам понадобилась в явном виде функция g(E). А где ее взять? В общем случае ее приходится определять экспериментально, и эксперименты эти непростые - позже мы с ними ознакомимся. Однако в простых случаях, которых нам хватит на половину курса, плотность состояний можно рассчитать теоретически, используя для твердого тела *модель Зоммерфельда*, придуманную, вообще-то, для металлов. В этой модели весь кристалл считается одной бесконечно глубокой прямоугольной потенциальной ямой, в пределах которой электроны проводимости свободны. Иначе говоря, теория Зоммерфельда - это теория свободных электронов.

Для вычисления плотности состояний удобнее всего воспользоваться понятием фазового пространства, то есть объединенного абстрактного пространства координат и импульсов. Для одной частицы такое пространство будет иметь шесть измерений, соответствующих трем координатам и трем проекциям импульса частицы. Элемент объема такого пространства:

$$d\Gamma = dx \; dy \; dz \; dp_x \; dp_y \; dp_z$$
 .

На одно электронное состояние в таком пространстве приходится объем, равный h^3 , как это следует из соотношения неопределенностей Гайзенберга:

$$\begin{array}{ll} \Delta p_x & \Delta x \geq h, \\ \Delta p_y & \Delta y \geq h, \\ \Delta p_z & \Delta z \geq h, \end{array}$$

что после перемножения дает:

$$(\Delta\Gamma)_{\min} = (\Delta x \ \Delta y \ \Delta z \ \Delta p_x \ \Delta p_y \ \Delta p_z)_{\min} = h^3$$
.

Тогда число электронных состояний в объеме пространства

$$dV = dx dy dz$$

и в интервале импульсов от р до p+dp будет равно

$$\frac{4\pi p^2 dp dv}{h^3}$$

что на единицу объема дает число электронных состояний

$$\frac{4\pi p^2 dp}{h^3}$$

Поскольку мы рассматриваем свободные электроны, то их энергия - это просто кинетическая энергия, связанная с импульсом как

$$\mathbf{E} = \frac{\mathbf{p}^2}{2\mathbf{m}}.$$

Значит,

$$\mathbf{p}^2 = 2\mathbf{m}\mathbf{E},$$

$$dp = \left(\frac{2m}{E}\right)^{1/2} \cdot \frac{dE}{2}$$

и число электронных состояний в единице объема равно

$$\frac{4\pi 2mE\sqrt{2m}dE}{2h^3\sqrt{E}} = 2\pi \left(\frac{2m}{h^2}\right)^{3/2}\sqrt{E} dE$$

а в единице объема и единичном интервале энергий (что и является плотностью состояний)

$$g(\mathbf{E}) = 2\pi \left(\frac{2\mathbf{m}}{\mathbf{h}^2}\right)^{3/2} \sqrt{\mathbf{E}} \quad . \tag{3.4}$$

Такова плотность состояний в модели Зоммерфельда, полученная в приближении свободных электронов. Таким образом, чем выше мы поднимаемся по шкале энергий, тем гуще расположены энергетические уровни. А как они заселены? Чтобы ответить на этот вопрос, нам нужна вероятность заполнения уровней, задаваемая функцией распределения f(E,T), каковой для электронов является функция распределения Ферми-Дирака:

$$\mathbf{f}(\mathbf{E},\mathbf{T}) = \frac{1}{\exp\left(\frac{\mathbf{E} - \mathbf{E}_{\mathrm{F}}}{\mathbf{k}\mathbf{T}}\right) + 1},$$
(3.5)

где E_F - энергия Ферми, или, как часто говорят, уровень Ферми. Чтобы дать определение уровня Ферми, подставим в (3.5) $E = E_F$ и получим f(E,T) = 1/2. Значит, уровень Ферми - это энергетический уровень, вероятность заполнения которого 1/2.

В идеализированном случае T = 0 соотношение (3.5) приводит к значениям функции распределения:

$$\mathbf{f}(\mathbf{E},\mathbf{T}) = \begin{cases} \mathbf{1} & \mathbf{при} & \mathbf{E} < \mathbf{E}_{\mathbf{F}} \\ \mathbf{0} & \mathbf{при} & \mathbf{E} > \mathbf{E}_{\mathbf{F}} \end{cases},$$
(3.6)

то есть при абсолютном нуле температур все разрешенные состояния ниже уровня Ферми заполнены электронами, а все состояния выше уровня Ферми пусты. Иначе говоря, *при* T = 0 *уровень Ферми - это граница на шкале энергий, отделяющая заполненные и пустые уровни энергии электронов*. Физический смысл (3.6) очевиден - при T = 0электроны заполняют самые низкие энергетические уровни. Однако по принципу Паули каждое состояние может быть занято только одним электроном, поэтому уровни до некоторого максимального заняты с единичным числом заполнения, а для вышележащих уровней числа заполнения равны нулю. Рис. 3.1 иллюстрирует заполнение электронных уровней в металлах при нулевой температуре в приближении Зоммерфельда. Используя (3.3) и (3.4), мы можем записать выражение для концентрации свободных электронов

Рис.3.1. Функция распределения Ферми-Дирака, функция плотности электронных состояний и произведение этих двух функций при абсолютном нуле температур.

которое при T = 0 примет вид, в соответствии с (3.6),

$$n = 4\pi \left(\frac{2m}{h^2}\right)^{3/2} \int_0^{E_F} \sqrt{E} \ dE = \frac{8\pi}{3} \left(\frac{2m}{h^2}\right)^{3/2} E_F^{3/2} \ ,$$

откуда мы можем вычислить энергию Ферми в металле при нулевой температуре:

$$E_{F0} = \left(\frac{3n}{8\pi}\right)^{2/3} \frac{h^2}{2m} , \qquad (3.8)$$

что при подстановке $n = 10^{29} \text{ м}^{-3}$ дает численное значение $E_{F0} \cong 1, 2 \cdot 10^{-5}$ ¹⁸ Дж \cong 8 эВ, то есть типичное значение энергии Ферми в металле составляет несколько электронвольт.

А что будет при ненулевой температуре? В соответствии с (3.5) резкая ступенька на зависимости f(E) в окрестности уровня Ферми станет более плавной (см. рис. 3.2), причем функция Ферми-Дирака будет существенно отличаться от нуля и единицы только на расстояниях порядка kT от уровня Ферми, то есть в полосе энергий шириной около 2kT вблизи E_F. Это означает, что полученная выше формула (3.8) и возможные следствия из нее будут хорошо выполняться при условии kT « E_{F0}, то есть при температурах

$$\Gamma \ll T_0 = E_{F0} / k, \qquad (3.9)$$

где Т₀ называют температурой вырождения. Если условие (3.9) выполняется, то электронный газ называется вырожденным, в противном случае, - невырожденным. Оценив численное значение $T_0 \cong 10^5$ K, мы убеждаемся, что электронный газ в металлах остается вырожденным при любых температурах вплоть до точки плавления. Но что это означает? Чтобы прояснить этот вопрос, рассмотрим свойства невырожденного электронного газа. В таком газе практически для всех энергий Е будет выполняться условие Е - Е_F » kT, а значит, единицей в знаменателе выражения (3.5) можно пренебречь, и функция распределения примет вид

$$f(E,T) \cong \exp\left(\frac{E_F - E}{kT}\right)$$
,

то есть станет классической функцией распределения Максвелла-Больцмана. Таким образом, вырожденный электронный газ является сугубо квантовым и подчиняется статистике Ферми-Дирака, а невырожденный можно считать классическим.
Теперь становится ясно, что пользоваться какими-либо классическими представлениями об электронах в металле, как мы пытались делать это в первой главе, просто бесполезно. Рассмотрим физические следствия из квантового характера статистики электронов на примере электронной теплоемкости металлов, разрешив тем самым загадку, которая оказалась не "по зубам" классической теории.

Какие электроны в металле могут поглощать тепловую энергию? Ясно, что не те, которые располагаются существенно ниже уровня Ферми, так как, поглотив энергию порядка kT, электрон оказался бы на уже занятом уровне, а это запрещено принципом Паули. В состояниях же существенно выше (придайте, пожалуйста, сами количественный смысл слову "существенно") уровня Ферми электронов просто нет, то есть энергию поглощать некому. Таким образом, поглощают тепловую энергию только те электроны, которые имеют энергию в полосе шириной порядка 2kT около уровня Ферми, а эти электроны составляют долю около 2kT/E_F от общего количества электронов (то, что мы сейчас делаем - это, конечно, только полуколичественная оценка). При комнатной температуре kT \cong 25 мэB, 2kT/E_F \cong 0,05/8, то есть меньше 0,01. Это означает, что вклад в теплоемкость вносят менее одного процента свободных электронов, потому-то электронная теплоемкость и не обнаруживается на опыте.

Приведенные выше рассуждения справедливы и для других процессов, связанных с поглощением и переносом энергии, таких, к примеру, как теплопроводность и электропроводность - внешние возмущения воздействуют только на электроны близ уровня Ферми, подобно тому, как шторм на море треплет только корабли на поверхности, не затрагивая глубоководных обитателей.

3.2 Собственные полупроводники

Теперь, вооружившись минимально необходимой теорией, мы можем приступить к изучению электрических свойств особенно интересующих нас материалов - полупроводников. При этом мы начнем с чистых материалов, которые обычно называют *собственными полу-проводниками*. Мы уже знаем, что это диэлектрики, ширина запрещенной зоны в которых имеет значения от нескольких сотен милли-электронвольт до двух-трех электронвольт, что много больше тепловой энергии kT, составляющей при комнатной температуре около 25 мэВ. При нулевой температуре валентная зона такого материала вся заполнена электронами, а зона проводимости пуста, и никакого тока нет. Если полупроводник подогреть, некоторые электроны, получив-

шие достаточное количество тепловой энергии, перейдут из валентной зоны в зону проводимости и смогут обеспечить проводимость. Давайте попробуем посчитать концентрацию этих электронов, которые мы обычно называем свободными. Мы уже знаем, что эту концентрацию можно записать как

$$\mathbf{n}_{e} = \int \mathbf{g}(\mathbf{E}) \mathbf{f}(\mathbf{E}, \mathbf{T}) \mathbf{d}\mathbf{E} , \qquad (3.10)$$

где нужно вычислить интеграл по всем энергиям от дна до потолка зоны проводимости. f(E,T) - это просто функция распределения Ферми-Дирака, которая нам известна. А вот где взять вид функции плотности состояний g(E)? Здесь нам поможет то, что функция распределения экспоненциально, то есть очень быстро убывает с энергией, а значит, свободные электроны будут преимущественно скапливаться у дна зоны проводимости. Вспомнив модель Фейнмана, мы сообразим, что поскольку у дна зоны значения kb близки к нулю, то выражение

$$E = E_1 - 2A \cos(kb)$$

можно разложить в ряд Тейлора по степеням kb в окрестности точки kb = 0 (здесь мы пользуемся одномерной моделью, но этого нам достаточно).

Ограничиваясь членами ряда до второго порядка включительно, получим:

$$E = E_1 - 2A + Ak^2 b^2.$$
 (3.11)

Вспомнив, что эффективная масса

$$\mathbf{m}^* = \frac{\hbar^2}{\partial^2 \mathbf{E} / \partial \mathbf{k}^2} = \frac{\hbar^2}{2\mathbf{A}\mathbf{b}^2} ,$$

перепишем (3.11) в виде

$$\mathbf{E} = \mathbf{E}_1 - 2\mathbf{A} + \frac{\hbar^2 \mathbf{k}^2}{2\mathbf{m}^*} \quad . \tag{3.12}$$

Первые два слагаемых в (3.12) фактически дают нам просто уровень отсчета энергии, поэтому, полагая $E_1 - 2A = 0$, (3.12), можно представить просто как

$$\mathbf{E} = \frac{\hbar^2 \mathbf{k}^2}{2\mathbf{m}^*} \; ,$$

что полностью идентично выражению для энергии свободного электрона, если только в качестве его массы взять эффективную массу m^{*}. А это означает, что для описания плотности электронных состояний у дна зоны проводимости мы можем воспользоваться моделью Зоммерфельда.

Что еще мы забыли? А то, что, кроме свободных электронов в зоне проводимости, у нас появились и дырки в валентной зоне. Поскольку они будут скапливаться у потолка валентной зоны, то все, что мы получили для свободных электронов, справедливо и для дырок. Только в (3.10) интеграл надо брать по энергиям от дна до потолка валентной зоны, а применяя модель Зоммерфельда, использовать не эффективную массу электрона m_e^* , а эффективную массу дырки m_h^* . И еще одна маленькая хитрость. Поскольку в (3.10) f(E,T) - функция распределения по энергиям электронов, для дырок в (3.10) мы должны подставить в качестве функции распределения 1 - f(E,T). Поняли, почему?

Рис.3.3. Плотность состояний электронов и дырок в собственном полупроводнике.

Поскольку мы хотим одновременно рассматривать две зоны, нам надо выбрать какую-то удобную шкалу энергий, и в дальнейшем всегда ее придерживаться. Обычно в качестве нуля на шкале энергий выбирают потолок валентной зоны, а ширину запрещенной зоны обозначают E_g (от английского gap - щель). Тогда плотности состояний (см. рис. 3.3) для электронов и дырок равны:

$$g(E) = 4\pi \frac{\left(2m_{e}^{*}\right)^{3/2}}{h^{3}} \left(E - E_{g}\right)^{1/2},$$

$$g(E) - 4\pi \frac{\left(2m_{h}^{*}\right)^{3/2}}{h^{3}} \left(-E\right)^{1/2},$$
(3.13)

и, соответственно концентрации свободных электронов и дырок:

$$n_{e} = 4\pi \frac{\left(2m_{e}^{*}\right)^{3/2}}{h^{3}} \int_{E_{g}}^{\infty} (E - E_{g})^{1/2} f(E, T) dE,$$

$$n_{h} = 4\pi \frac{\left(2m_{h}^{*}\right)^{3/2}}{h^{3}} \int_{-\infty}^{0} (-E)^{1/2} \left[1 - f(E, T)\right] dE,$$
(3.14)

где мы положили вместо энергии потолка зоны проводимости ∞ , учитывая резкое убывание концентрации электронов с энергией, и по этой же причине для дырок вместо энергии дна валентной зоны можно положить - ∞ .

Если мы подставим в (3.14) функцию Ферми-Дирака

$$f(E,T) = \frac{1}{\exp\left(\frac{E-E_F}{kT}\right) + 1}$$

то получим интегралы, не вычисляемые в квадратурах. Однако нетрудно сообразить, что уровень Ферми в собственном полупроводнике расположен где-то в середине запрещенной зоны (очень скоро мы найдем его точное положение), а значит, для всех электронов в зоне проводимости и валентной зоне (вспомните численные значения E_g !) Е - $E_F \gg kT$, то есть функцию распределения можно представить в больцмановском виде:

$$\mathbf{f}(\mathbf{E},\mathbf{T}) = \exp\left(-\frac{\mathbf{E} - \mathbf{E}_{g}}{\mathbf{k}\mathbf{T}}\right). \tag{3.15}$$

Интересно, как следует назвать газ свободных электронов в полупроводнике - вырожденным или невырожденным?

Вот теперь все вычисляется! Подставим (3.15) в первый интеграл из (3.14), введем переменную х = (Е - Е_g)/kT и, учитывая, что

$$\int_{0}^{\infty} x^{1/2} e^{-x} dx = \sqrt{\pi} / 2,$$

получим концентрацию электронов в зоне проводимости:

$$n_e = 2 \left(\frac{2\pi m_e^* kT}{h^2}\right)^{3/2} exp\left(-\frac{E_g - E_F}{kT}\right)$$

или, если ввести обозначение

$$N_{C} = 2 \left(\frac{2\pi m_{e}^{*} kT}{h^{2}} \right)^{3/2},$$
$$n_{e} = N_{C} \exp \left(-\frac{E_{g} - E_{F}}{kT} \right).$$
(3.16)

Еще немного помучившись с вычислениями, Вы получите из второй формулы в (3.14) концентрацию дырок:

$$\mathbf{n}_{h} = \mathbf{N}_{v} \exp\left(-\frac{\mathbf{E}_{F}}{\mathbf{k}T}\right),$$

$$\mathbf{N}_{v} = 2\left(\frac{2\pi \mathbf{m}_{h}^{*}\mathbf{k}T}{\mathbf{h}^{2}}\right)^{3/2}.$$
(3.17)

Теперь мы с Вами можем без труда рассчитать концентрации носителей тока в собственном полупроводнике, если только будем знать численные значения ширины запрещенной зоны и эффективных масс (они определяются экспериментально, а как - об этом позже). Нужные Вам значения приведены в табл. 3.1, где буквой m₀ обозначена масса свободного электрона (9,1 · 10⁻³¹ кг).

Полупро- волник	E _g , эВ	Эффективные мас-		Подвижности,	
водинк		СЫ		$10^4 \mathrm{M}^2 / \mathrm{B} \cdot \mathrm{c}$	
		$\mathbf{m}_{\mathbf{e}}^{*}$ / \mathbf{m}_{0}	$\mathbf{m}_{\mathbf{h}}^{*}$ / \mathbf{m}_{0}	$\mu_{ m e}$	$\mu_{ m h}$
Ge	0,67	0,12	0,04		
			0,28	3600	1800
			0,08		
Si	1,11	0,26	0,16		
			0,50	1500	500
			0,24		
GaAs	1,40	0,067	0,65	8500	400
GaP	2,25	0,35	0,5	150	140
InP	1,30	0,08	0,2	4600	150
InSb	0,17	0,013	0,18	70000	1000
CdS	2,5	0,27	0,07	340	18

Табл. 3.1. Свойства собственных полупроводников при Т = 300 К.

Обратите внимание, что для эффективной массы дырок в германии и кремнии приведены по три значения - она различна для различных направлений в кристаллической решетке. Для вычисления концентрации дырок в этих материалах Вы можете использовать *среднее геометрическое* этих трех масс (то есть кубический корень из их произведения).

Еще одна величина, необходимая нам для расчетов по формулам (3.16) и (3.17), - энергия Ферми Е_F. Ее мы можем рассчитать, учитывая, что в собственном полупроводнике концентрации свободных электронов и дырок одинаковы. Согласны? Если несогласны, предлагаю аргументы на выбор. Во-первых, *каждый* появляющийся в зоне проводимости электрон порождает *одну* дырку в валентной зоне. Вовторых, не забывайте о законе сохранения заряда - наш материал, что бы там внутри не происходило, должен оставаться электронейтральным. Убедились? Тогда приравняйте n_e и n_h и, используя (3.16) и (3.17), получите

$$E_{\rm F} = \frac{E_{\rm g}}{2} + \frac{3}{4} \, kT \, ln \! \left(\frac{m_{\rm h}^*}{m_{\rm e}^*} \right) \,, \qquad (3.18)$$

то есть уровень Ферми в собственном полупроводнике действительно, как мы и предполагали выше, близок к середине запрещенной зоны, немного смещаясь вверх при повышении температуры. Полученный результат (3.18) доказывает применимость к собственным полупроводникам статистики Больцмана вместо статистики Ферми-Дирака. Еще одно существенное предположение, которое мы делали, заключается в том, что достаточно учесть только электроны и дырки на краях зон. Попробуйте убедиться сами в справедливости этого предположения.

3.3 Примесные полупроводники

Как мы с Вами уже отмечали, практическая ценность полупроводников обусловлена тем, что введение в них малого количества примеси (примерно одного атома на миллион атомов полупроводника) вызывает очень большое изменение проводимости. Химизм легирования полупроводников Вам хорошо известен, и нет смысла его обсуждать снова. Наша задача заключается в переводе этого химизма на язык зонной теории с тем, чтобы можно было количественно описывать электрические свойства примесных полупроводников. Для такого перевода в первую очередь необходимо оценить энергии ионизации примесных атомов.

Когда мы внедряем в полупроводник типа кремния или германия атом химического элемента V группы таблицы Менделеева (атом фосфора, мышьяка или сурьмы), то лишний пятый валентный электрон примесного атома, не встроившийся в систему ковалентных связей кристалла-матрицы, оказывается слабо связанным со своим родным атомом. А это означает, что такой электрон находится далеко от атомного остатка примеси, образуя вместе с ним нечто, очень похожее на атом водорода. Тогда, используя, как говорят, *водородоподобное приближение*, мы можем оценить энергию ионизации такой *донорной* примеси. Для этого нам достаточно даже боровской модели атома водорода, в соответствии с которой момент импульса электрона может иметь только значения

$$mvr = n\hbar, \qquad (3.19)$$

где n - любое целое число, начиная с единицы; r - радиус электронной орбиты; v - скорость движения электрона по орбите. Используя второй закон Ньютона в виде

$$\frac{\mathrm{mv}^2}{\mathrm{r}} = \frac{1}{4\pi\varepsilon_0 \chi} \cdot \frac{\mathrm{e}^2}{\mathrm{r}^2}, \qquad (3.20)$$

где χ - относительная диэлектрическая проницаемость легируемого материала, и, учитывая, что полная энергия электрона равна сумме кинетической и потенциальной, а именно,

$$\mathbf{E} = \frac{\mathbf{mv}^2}{2} - \frac{1}{4\pi\varepsilon_0 \chi} \cdot \frac{\mathbf{e}^2}{\mathbf{r}}, \qquad (3.21)$$

из (3.19) - (3.21) получим

$$\mathbf{E} = -\frac{\mathbf{m}\mathbf{e}^4}{32\pi^2\boldsymbol{\varepsilon}_0^2\boldsymbol{\chi}^2\hbar^2\mathbf{n}^2}$$

откуда энергия ионизации

$$\Delta \mathbf{E} = \mathbf{E}_{\infty} - \mathbf{E}_{1} = \frac{\mathbf{m}\mathbf{e}^{4}}{32\pi^{2}\varepsilon_{0}^{2}\chi^{2}\hbar^{2}}.$$
 (3.22)

Используя численные значения диэлектрической проницаемости, получим энергию ионизации примесей в германии ($\chi = 15,4$) $\Delta E \cong 10$ мэВ и в кремнии ($\chi = 12$) $\Delta E \cong 30$ мэВ. Применяя концепцию дырки, мы получим точно такие же значения энергии ионизации *акцепторов* (от английского accept - принимать) - атомов химических элементов III группы (бор, алюминий, галлий, индий).

Посмотрев теперь на рис. 3.4, Вы поймете, что же означают на языке зонной модели рассчитанные нами энергии - это энергетические зазоры между примесными уровнями и краями разрешенных зон, то есть для доноров $\Delta E = E_g - E_D$, а для акцепторов $\Delta E = E_A$. Конечно, полученные нами энергии - только оценочные значения, а точные значения можно получить из эксперимента. Экспериментальные методы мы будем обсуждать позже, а пока воспользуемся известными данными, приведенными в табл. 3.2.

Рис.3.4. Примесные уровни в полупроводнике.

Все эти энергии ионизации имеют величину порядка kT при комнатной температуре (учитывая это и посмотрев на рис. 3.4, Вы сразу поймете, почему такие примеси называют "мелкими"), а значит, активно поставляют носители заряда - электроны в зону проводимости и дырки в валентную зону.

Чтобы больше не возвращаться к водородоподобной модели, отметим, что если из (3.19) - (3.21) рассчитать величину г для мелких примесей в кремнии и германии, то можно убедиться: армейский анекдот о том, что между ядром и электронами находится воздух не всегда бессмыслен.

Табл. 3.2. Свойства примесных полу-

Тип	Примесь	Энергия ионизации примеси,	
		мэВ	
		Ge	Si
Доноры			
	Сурьма (Sb)	9,6	39
	Фосфор (Р)	12,0	45
	Мышьяк (As)	12,7	49
Акцепторы			
	Индий (In)	11,2	160
	Галлий (Ga)	10,8	65
	Бор (В)	10,4	45
	Алюминий (Al)	10,2	57

проводников при T = 300 K (kT ≅ 25 мэВ).

Прежде чем двигаться дальше, давайте оговорим следующее: во-первых, мы будем рассматривать только слабо легированные полупроводники, в которых примесные уровни локальны и не образуют примесную зону. Примесные уровни только поставляют носители тока, а по ним самим никакого электропереноса нет, иначе наша теория не сработает (сильно легированные полупроводники больше напоминают по своим электронным свойствам металлы). Во-вторых, давайте сообразим, что будет, если в полупроводнике есть и доноры, и акцепторы. В этом случае принцип минимума энергии заставит электроны с гораздо большей вероятностью "опуститься" на акцепторные уровни, а не "подняться" в зону проводимости - такое явление называют компенсацией примесей, а отношение концентрации тех примесей, которых меньше, к концентрации тех примесей, которых больше, называют степенью компенсации К. Например, если концентрация доноров n_D больше, чем концентрация акцепторов n_A , то $K = n_A/n_D$, и полупроводник называют полупроводником n-типа (от английского "negative" - отрицательный). Догадываетесь, почему? В противном случае $K = n_D / n_A$, и полупроводник будет p-типа (positive - положительный). Ту примесь, которой больше, называют основной, а которой меньше - неосновной. Точно такую же терминологию применяют и к носителям - в полупроводнике n-типа основными носителями будут электроны, а неосновными - дырки, в полупроводнике р-типа наоборот. В большинстве полупроводниковых приборов используются слабо компенсированные полупроводники (К « 1), в которых неосновные примеси - это те, от которых просто не удалось очистить исходный материал.

Вот теперь мы можем начать вычислять концентрации носителей тока. А, собственно говоря, что значит начать? Мы их можем просто записать!

$$\mathbf{n}_{e} = 2 \frac{\left(2\pi m_{e}^{*} kT\right)^{3/2}}{h^{3}} \exp\left(-\frac{E_{g} - E_{F}}{kT}\right) = N_{c} e^{-\left(E_{g} - E_{F}\right)/kT},$$

$$\mathbf{n}_{h} = 2 \frac{\left(2\pi m_{h}^{*} kT\right)^{3/2}}{h^{3}} \exp\left(-\frac{E_{F}}{kT}\right) = N_{v} e^{-E_{F}/kT}.$$
(3.23)

Вы сомневаетесь? А разве при выводе этих формул что-нибудь говорилось о том, есть в материале примеси или их нет? Говорилось только о том, что уровень Ферми должен располагаться далеко от разрешенных зон и пока это так, формулы (3.23) справедливы. А где же в формулах (3.23) "спрятаны" примеси? Конечно, в величине $E_F!$ Поэтому все, что нам остается сделать дальше - это найти положение уровня Ферми и проанализировать его поведение при разных концентрациях примесей и разных температурах. Это удобнее всего сделать, используя закон сохранения заряда. Считая, что примеси могут быть только однократно ионизованными, запишем

$$\mathbf{n}_{\mathbf{e}} + \mathbf{n}_{\mathbf{A}}^{-} = \mathbf{n}_{\mathbf{h}} + \mathbf{n}_{\mathbf{p}}^{+}, \qquad (3.24)$$

где \mathbf{n}_{A}^{-} и \mathbf{n}_{D}^{+} - концентрации ионизованных акцепторов и доноров соответственно. Если полные концентрации акцепторов и доноров соответственно \mathbf{n}_{A} и \mathbf{n}_{D} , то без всяких комментариев можно записать:

$$\mathbf{n}_{A}^{-} = \mathbf{n}_{A} \mathbf{f}(\mathbf{E}, \mathbf{T}) = \mathbf{n}_{A} \frac{1}{\mathbf{e}^{(\mathbf{E}_{A} - \mathbf{E}_{F})/\mathbf{k}T} + 1},$$

$$\mathbf{n}_{D}^{-} = \mathbf{n}_{D} \left[\mathbf{1} - \mathbf{f}(\mathbf{E}, \mathbf{T}) \right] = \mathbf{n}_{D} \frac{1}{\mathbf{e}^{(\mathbf{E}_{F} - \mathbf{E}_{D})/\mathbf{k}T} + 1}.$$
(3.25)

Теперь, найдя из формул (3.23) - (3.25) и табл. 3.1 и 3.2 все, что нам нужно, мы можем рассчитать проводимость примесного полупроводника. Однако необходима осторожность! (Вспомните, что мы только что говорили о применимости формул (3.23)). Давайте все-таки разберемся с нашими результатами подробнее. Прежде всего, полупроводник будет, скорее всего, слабо компенсированным (пусть для определенности, n-типа). Тогда в (3.24) явно можно пренебречь слагаемыми n_{A}^{-} и n_{h} , оставив только

$$n_{e} = n_{D}^{+}$$

ИЛИ

$$N_{C} \exp\left(-\frac{E_{g}-E_{F}}{kT}\right) = \frac{n_{D}}{e^{\left(E_{F}-E_{D}\right)/kT}+1}$$

Пока примеси очень мало, уровень Ферми все еще где-то около середины запрещенной зоны, то есть (см. рис. 3.4)

$$\left| \frac{\mathbf{E}_{_{\mathrm{F}}} - \mathbf{E}_{_{\mathrm{D}}}}{kT} \right| >> 1, \quad \frac{\mathbf{E}_{_{\mathrm{F}}} - \mathbf{E}_{_{\mathrm{D}}}}{kT} < 0, \quad \mathbf{u} \quad \mathbf{n}_{_{\mathrm{D}}}^{+} \cong \mathbf{n}_{_{\mathrm{D}}}.$$

Тогда, обозначив $N_C \exp(-E_g/kT) = C$ (это константа), получим

$$\mathbf{C} \exp\left(\frac{\mathbf{E}_{\mathrm{F}}}{\mathbf{k}\mathbf{T}}\right) \cong \mathbf{n}_{\mathrm{D}}$$

откуда

$$\mathbf{E}_{\mathrm{F}} \cong \mathbf{k} \mathbf{T} \ln \left(\frac{\mathbf{n}_{\mathrm{D}}}{\mathbf{C}} \right), \tag{3.26}$$

то есть энергия Ферми довольно слабо (логарифмически) растет с увеличением концентрации доноров. Посмотрим теперь, что происходит с изменением температуры. Ситуация изображена на рис.3.5 и качественно понятна.

При нулевой температуре уровень Ферми расположен точно посередине между донорными уровнями и дном зоны проводимости. При очень высокой температуре все примеси ионизованы и больше не могут увеличивать концентрацию носителей, резервуар же валентных электронов гораздо больше и по сравнению с примесями неисчерпаем, поэтому полупроводник становится практически собственным. Ясно, что чем больше концентрация примеси, тем при большей температуре это произойдет. Штриховая линия, начинающаяся от значения $E_g/2$ при T = 0, отражает поведение уровня Ферми в собственном полупроводнике (вспомните предыдущий раздел). Аналогичный рисунок для полупроводника р-типа Вы можете сделать сами в качестве упражнения.

Таким образом, нашими формулами при очень низких температурах явно пользоваться нельзя, при очень больших (правда, нереальных) - тоже. Значит, нам всегда нужно внимательно выяснить применимость теории, и если она применима - нет проблем! Тогда нам не нужно больше ничего, кроме табл. 3.1 и 3.2, для расчета проводимости полупроводника.

4. РАССЕЯНИЕ НОСИТЕЛЕЙ ЗАРЯДА

До сих пор мы рассматривали только концентрацию носителей заряда в полупроводнике. Однако удельная проводимость материала σ зависит не только от концентрации носителей n, но и от их подвижности μ . Для подвижности мы располагаем пока только классическим соотношением (1.3):

$$\mu = \frac{e\tau}{m}$$

Ясно, что с учетом наших новых знаний мы должны заменить массу носителя m на его эффективную массу m^* . А что делать со временем релаксации τ ?

Обычно вопрос о времени релаксации решается с использованием кинетического уравнения Больцмана, с чем при желании Вы можете ознакомиться по литературе из рекомендуемого списка. Однако необходимо отметить, что никому пока не удалось рассчитать τ из первых принципов, не обращаясь к экспериментальным данным. Поэтому мы проанализируем этот вопрос только качественно, выяснив наиболее важный с практической точки зрения аспект - температурную зависимость подвижности.

Вспомним, что причиной рассеяния являются не соударения носителей заряда с атомами в узлах кристаллической решетки, а взаимодействие носителей с *дефектами*: тепловыми колебаниями атомов решетки (фононами), нейтральными и ионизованными примесями, дислокациями, границами зерен в поликристалле, таким страшным дефектом кристалла, как его поверхность и т.д.

Рассматривая только процессы, происходящие вдали от поверхности тщательно выращенного монокристалла, мы можем ограничиться случаями рассеяния носителей на точечных дефектах - нейтральных и ионизованных (заряженных).

Прежде всего вспомним, что, как было показано в разд. 1, время релаксации связано с длиной свободного пробега Λ , тепловой скоростью $\upsilon_{\rm T}$ и дрейфовой скоростью $\upsilon_{\rm D}$ соотношением

$$\tau = \frac{\Lambda}{\upsilon_{\rm p} + \upsilon_{\rm T}} \cong \frac{\Lambda}{\upsilon_{\rm T}},$$

причем $\upsilon_{\scriptscriptstyle T} \thicksim T^{1/2}$. Тогда

$$\tau \sim \Lambda T^{-1/2} \,. \tag{4.1}$$

Разумно предположить, что длина свободного пробега обратно пропорциональна *площади эффективного сечения* S рассеивающего центра (как в молекулярно-кинетической теории газов).

В случае нейтральных дефектов радиусом площади эффективного сечения можно считать амплитуду тепловых колебаний А, пропорциональную квадратному корню из энергии тепловых колебаний Е_т, которая, в свою очередь, пропорциональна температуре Т. Таким образом,

$$\Lambda ~ \sim ~ 1/S ~ \sim ~ 1/A^2 ~ \sim ~ 1/E ~ \sim T^{-1}$$
 .

и время релаксации τ_0 при рассеянии на нейтральных точечных дефектах, т.е. на фононах и незаряженных примесных атомах, в соответствии с формулой (4.1)

$$\tau_0 \sim T^{-3/2}$$
, (4.2)

вследствие чего подвижность носителей при таком механизме рассеяния должна убывать с температурой по такому же закону.

В случае заряженных точечных дефектов, которыми будут являться ионизованные примесные атомы (а какие, интересно, конкретно для электронов и какие для дырок?), величина эффективного сечения рассеяния будет определяться электрическим полем дефекта и температурой материала. Действительно, столкновение носителя с ионом произойдет только тогда, когда тепловая энергия носителя (т.е. его кинетическая энергия) сравняется с потенциальной энергией отталкивания между носителем заряда и ионом:

$$\frac{\mathrm{Ze}^2}{4\pi\epsilon_0\chi r} = \frac{3}{2}\,\mathrm{kT}\,,$$

откуда площадь эффективного сечения рассеяния

$$\mathbf{S} \sim \tau^2 \sim 1/\mathrm{T}^2$$

соответственно длина свободного пробега

$$\Lambda \sim 1/S \sim T^2$$
 ,

и время релаксации τ_u при рассеянии на ионизованных дефектах в соответствии с (4.1)

$$\tau_{\rm u} \sim T^{3/2} \tag{4.3}$$

При наличии обоих механизмов рассеяния результирующее время релаксации следует находить по правилу:

$$\frac{1}{\tau} = \frac{1}{\tau_0} + \frac{1}{\tau_u} \tag{4.4}$$

(Вам ничего не напоминает эта формула?).

Поскольку все вышесказанное одинаково справедливо как для электронов, так и для дырок, в случае амбиполярной проводимости

$$\boldsymbol{\sigma} = \frac{\mathbf{e}^2 \boldsymbol{\tau}_{\mathbf{e}} \mathbf{n}_{\mathbf{e}}}{\mathbf{m}_{\mathbf{e}}^*} + \frac{\mathbf{e}^2 \boldsymbol{\tau}_{\mathbf{h}} \mathbf{n}_{\mathbf{h}}}{\mathbf{m}_{\mathbf{h}}^*}.$$
 (4.5)

Обратите внимание, что подвижность зависит от температуры степенным образом, в то время как концентрация носителей в полупроводниках - экспоненциальным. Поэтому в полупроводниках (в отличие от металлов) температурная зависимость проводимости определяется, как правило, температурной зависимостью концентрации носителей. Из этого правила, естественно, есть исключения. Например, при температурах, достаточно высоких для истощения примесных уровней, но слишком низких для эффективной тепловой генерации собственных носителей, температурная зависимость проводимости обусловлена в основном температурной зависимостью подвижности. В этой области температур проводимость полупроводника может убывать при нагревании.

5. РЕКОМБИНАЦИЯ

Обратимся снова к уравнениям (3.16) и (3.17), задающим концентрации электронов в зоне проводимости и дырок в валентной зоне полупроводника вне зависимости от того, собственный он или примесный. Если перемножить эти концентрации, то из (3.16) и (3.17) получим:

$$n_{e}n_{h} = N_{c}N_{v}\exp\left(-\frac{E_{g}}{kT}\right) = 4\left(\frac{2\pi kT}{h^{2}}\right)^{3}\left(m_{e}^{*}m_{h}^{*}\right)^{3/2}\exp\left(-\frac{E_{g}}{kT}\right).$$
 (5.1)

В этом выражении крайне интересно отсутствие уровня Ферми E_F . В собственном полупроводнике $n_e = n_h = n_i$ (буква і означает анг-

лийское слово "intrinsic" - собственный). Тогда из (5.1) следует, что для данного конкретного полупроводника, будь он собственный или примесный, выполняется соотношение

$$\mathbf{n}_{\mathbf{e}}\mathbf{n}_{\mathbf{h}} = \mathbf{n}_{\mathbf{i}}^2 \,. \tag{5.2}$$

Допустим, мы вводим в собственный полупроводник донорную примесь. При этом концентрация электронов в зоне проводимости возрастет, и это естественно. Но концентрация дырок в валентной зоне тогда в соответствии с (5.2) должна уменьшиться. Не странно ли?

Не странно, если аккуратно разобраться с понятием теплового равновесия электронов и дырок в полупроводнике. Не забывайте, что понятие температуры имеет строгий смысл только, если вещество действительно находится в равновесии с окружающими телами. Если мы хотим описать процесс электропроводности, то мы можем только приблизительно пользоваться равновесными функциями распределения, правда, как мы с Вами выяснили в разд. 1, с большой степенью точности.

Когда термодинамическое равновесие в полупроводнике существует, именно температура определяет количество и спектры электронов, дырок, фононов и фотонов внутри твердого тела. Фононы и фотоны подчиняются закону распределения Бозе-Эйнштейна, а электроны - закону распределения Ферми-Дирака.

В каждый момент времени происходит поглощение фотонов теплового излучения или фононов, рожденных колебаниями решетки, приводящее к возбуждению электронов в состояния с более высокой энергией. Например, электроны могут переходить в зону проводимости из валентной зоны или с примесных уровней - осуществляется тепловая генерация носителей. В то же время каждый электрон может перейти в незанятые состояния с более низкой энергией. Например, электрон из зоны проводимости может перейти на пустые уровни в валентной зоне или на примесях - осуществляется процесс рекомбинации носителей, обратный процессу генерации. В состоянии термодинамического равновесия эти противоположные процессы должны совпадать по скорости - количество генерированных в единицу времени носителей должно совпадать с количеством рекомбинировавших; этого требуют законы термодинамики. Таким образом, тепловое равновесие является динамическим (очень похоже на равновесие насыщенного пара над поверхностью жидкости, не правда ли?).

С ростом концентрации примеси растет концентрация носителей одного типа, например, электронов в зоне проводимости в случае донорной примеси. Однако, тогда будет расти и вероятность "встречи" электрона с дыркой, т.е. вероятность рекомбинации, и концентрация дырок будет уменьшаться, что и объясняет соотношение (5.2).

Таким образом, если примесные добавки приводят к увеличению n_e , они должны одновременно *во столько же раз* (а не на ту же величину) уменьшить n_h и наоборот. При рассмотрении свойств полупроводников и полупроводниковых приборов полезно знать, что смещение уровня Ферми на величину kT приводит к увеличению концентрации носителей одного типа в е = 2,718 раз и уменьшению концентрации носителей другого типа во столько же раз.

Отметим, что соотношение (5.2) является частным случаем закона действующих масс, известного из термодинамики и широко применяемого в химии.

6. НЕРАВНОВЕСНЫЕ НОСИТЕЛИ ЗАРЯДА

При отклонении распределения электронов по разрешенным состояниям от равновесного в полупроводнике возникает много интересных явлений. С такими отклонениями от термодинамического равновесия мы сталкиваемся в любом биполярном полупроводниковом приборе. Однако и в однородном полупроводнике можно создать в заметном количестве неравновесные носители, например, облучая его фотонами достаточной энергии (а что значит "достаточной"?). При поглощении электронами таких фотонов будут образовываться избыточные по отношению к равновесным электроны и (или) дырки, что приведет к увеличению удельной проводимости материала. Такое явление называется фотопроводимостью.

Рассмотрим развитие этого процесса во времени, или, как обычно говорят, его *кинетику*, полагая для простоты, что освещение (не обязательно в видимой области спектра) создает (генерирует) один тип носителей, допустим, электроны в зоне проводимости, со скоростью А. Этот процесс будет сопровождаться обратным процессом рекомбинации, скорость которого пропорциональна концентрации Δn избыточных носителей, в данном случае электронов, которые обычно называют *фотоносителями*. Тогда изменение концентрации неравновесных фотоносителей в единицу времени:

$$\frac{d(\Delta n)}{dt} = A - B(\Delta n).$$
 (6.1)

Разделив в этом уравнении переменные и проинтегрировав его с учетом начального условия $\Delta n = 0$ при t = 0, получим:

$$\Delta \mathbf{n} = (\mathbf{A}/\mathbf{B}) \cdot (1 - \mathrm{e}^{-\mathrm{Bt}}). \tag{6.2}$$

Поскольку из соображений размерности удобно ввести обозначение $\tau = 1/B$, соотношение (6.2) обычно записывают в виде

$$\Delta n = A\tau (1 - e^{-t/\tau}), \qquad (6.3)$$

а величину τ называют *временем жизни* неравновесных носителей (не путайте с временем релаксации в выражениях для подвижности, которое тоже обычно обозначают τ !).

При t $\rightarrow \infty$ величина Δn стремится к установившемуся значению

$$\Delta \mathbf{n}_{\mathrm{m}} = \mathbf{A} \mathbf{\tau}. \tag{6.4}$$

Скорость генерации фотоносителей А пропорциональна интенсивности I падающего на полупроводник света (вообще говоря, монохроматического) и коэффициенту поглощения α:

$$A = \gamma \alpha I, \tag{6.5}$$

а коэффициент пропорциональности γ называют *квантовым выходом*, так как он представляет собой число носителей заряда (или пар носителей), образуемых одним квантом света, если интенсивность света I измерять числом квантов в секунду. Обычно квантовый выход γ не превышает единицу. Тогда установившаяся концентрация неравновесных носителей

$$\Delta n = \gamma \alpha I \tau. \tag{6.6}$$

Видите, от чего она зависит?

Если же прекратить освещение полупроводника, то уравнение (6.1) примет вид

$$\frac{d(\Delta n)}{dt} = -B(\Delta n) = -\frac{\Delta n}{\tau}, \qquad (6.7)$$

а его решение с учетом начальных условий $\Delta n = \Delta n_m$ при t=0:

$$\Delta n = \Delta n_{\rm m} \, {\rm e}^{-t/\tau} \,. \tag{6.8}$$

Изменение со временем удельной проводимости $\Delta \sigma$, представляющей собой разность удельных проводимостей освещенного и затемненного материала, будет в соответствии с (6.3) и (6.8) описываться формулами (объясните аккуратно, почему):

$$\Delta \sigma = \Delta \sigma_{\rm m} \left[1 - \exp(t / \tau) \right] \tag{6.9}$$

при освещении и

$$\Delta \sigma = \Delta \sigma_{\rm m} \, \exp(-t/\tau) \tag{6.10}$$

при прекращении освещения.

Посмотрите внимательно на формулы (6.9) и (6.10), дайте на их основе определение величины τ и предложите экспериментальную методику определения времени жизни неравновесных носителей в полупроводнике.

7. ДИФФУЗИОННЫЙ И ДРЕЙФОВЫЙ ТОК

До сих пор мы рассматривали только ток, возникающий исключительно в результате действия внешнего электрического поля, под действием которого носители заряда приобретают скорость дрейфа. Такой ток называется *дрейфовым* и именно он доминирует в металлах, обладающих равномерным по объему распределением носителей. Не так обстоит дело в полупроводнике, так как в нем очень легко получить в разных местах разную концентрацию носителей заряда, создав, например, градиент температур, или освещая часть полупроводнике. При этом образца, или неоднородно легируя полупроводник. При этом образуется градиент концентраций носителей заряда grad n и, как следствие, возникает *диффузионный ток*, плотность которого \vec{J} описывается обычным законом диффузии:

$$\mathbf{J} = -\mathbf{e}\mathbf{D}\,\mathbf{grad}\,\mathbf{n}\,,\tag{7.1}$$

где D - коэффициент диффузии. Как показал Эйнштейн при анализе броуновского движения, коэффициент диффузии и подвижность связаны соотношением

$$\mathbf{D} = \mathbf{k} \mathbf{T} \boldsymbol{\mu} / \mathbf{e} , \qquad (7.2)$$

которое и называется *соотношением* Эйнштейна. Формулы (7.1) и (7.2) применимы как к электронам, так и к дыркам, надо лишь быть аккуратным при выборе знаков.

Суммарный ток в полупроводнике будет складываться из дрейфового и диффузионного тока (уточните сами это утверждение, не забывая, что плотность тока - векторная величина).В состоянии теплового равновесия не существует *результирующего*_потока носителей заряда в неоднородно легированном кристалле, хотя могут существовать равные по величине и противоположные по направлению диффузионные и дрейфовые потоки. Если тепловое равновесие нарушить, возможность компенсации диффузионного и дрейфового тока утрачивается и возникает результирующий поток носителей.

Предположим, что в зоне проводимости находятся избыточные электроны при таких условиях, что движение этих электронов обусловлено диффузией, а не электрическим полем. В конце концов все они рекомбинируют, и доля электронов, которая до рекомбинации пройдет при беспорядочном движении расстояние L, будет порядка exp(-L/L_e). Характерную длину L_e называют *диффузионной длиной электронов*. Она равна

$$L_{e} = (\tau_{e} D_{e})^{1/2} \quad . \tag{7.3}$$

Аналогичное соотношение справедливо и для диффузионной длины дырок $L_{\rm h}$:

$$L_{\rm h} = (\tau_{\rm h} D_{\rm h})^{1/2}$$
 . (7.3a)

Диффузионные длины электронов и дырок чрезвычайно важны для работы биполярных полупроводниковых приборов, действие которых основано на инжекции неосновных носителей в часть полупроводникового кристалла.

8. ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ ПОЛУПРОВОДНИКОВ

Попробуем теперь подвести итог: что нужно для описания электрических свойств полупроводника, а именно, его удельной проводимости? Какие параметры необходимо измерять экспериментально, чтобы сказать: да, я знаю о проводимости все. Если Вы усвоили материал предыдущих разделов, то сразу сможете ответить на этот вопрос и перечислить такие параметры. Это подвижности электронов и дырок, эффективные массы электронов и дырок, ширина запрещенной зоны и (для примесных полупроводников) энергии ионизации примесей. В случае неравновесных процессов следует добавить время жизни неравновесных носителей.

Именно перечисленные выше параметры, которые являются *параметрами зонной теории*, и были приведены в таблицах свойств собственных и примесных полупроводников. Теперь нам следует обсудить вопрос о том, как эти параметры могут быть определены экспериментально.

При измерении подвижности первое, что приходит в голову использовать само определение подвижности как скорости дрейфа носителей v_D при единичной напряженности & электрического поля:

$$\mu = \upsilon_D / \& . \tag{8.1}$$

Тогда, если в плоском образце толщиной d, к которому приложено напряжение U, создать у одной поверхности пакет носителей, который затем в электрическом поле & = U/d будет дрейфовать через образец, и измерить *время пролета* носителей через образец t = d/v_D , то тем самым можно определить подвижность как

Рис. 8.1. Схема времяпролетного метода измерения подвижности носителей при использовании фотовозбуждения.

 $\mu = d^2/tU$. (8.2)

Все методы измерения подвижности такого типа навремяпрозываются летными и отличаются друг от друга способами создания носителей. пакета Пакет носителей может создаваться инжекцией носителей ИЗ металлического контакта, как в клас-

сическом опыте Шокли-Хейнса; световым импульсом; импульсным пучком высокоэнергетичных электронов и т.д.

На рис. 8.1 приведена схема для случая возбуждения носителей фотонами, имеющими энергию большую, чем ширина запрещенной зоны полупроводника. Основная доля фотонов при этом поглощается в тонком приповерхностном слое полупроводника, генерируя как электроны, так и дырки. Следовательно, меняя напряженность "тянущего" напряжения, можно измерить время пролета как электронов, так и дырок, регистрируя с помощью запоминающего осциллографа интервал времени между срабатыванием оптического затвора и возникновением максимума тока в нагрузочном резисторе R. Длительность светового импульса при этом должна быть много меньше, чем время пролета, поэтому (убедитесь численно сами!) затвор должен быть электрооптическим (работающим на эффекте Керра или эффекте Поккельса) либо в качестве источника света следует использовать импульсный лазер.

Другой экспериментальный метод определения подвижности основан на одновременном измерении удельной проводимости и постоянной Холла. В первом разделе мы с Вами получили соотношение для постоянной Холла $R_{\rm H} = 1$ /еп. Поскольку в случае одного типа носителей $\sigma = {\rm en}\mu$, мы можем сразу записать

$$\mu = \sigma R_{\rm H} \,. \tag{8.3}$$

Однако соотношение (8.3) справедливо только для металлов и вырожденных полупроводников, т.е. для материалов, у которых все

электроны двигаются с одинаковой скоростью, равной скорости Ферми. В общем случае постоянная Холла

$$R_{\rm H} = \gamma/{\rm en}, \qquad (8.4)$$

где безразмерная величина γ , называемая холл-фактором, зависит от комбинации процессов рассеяния, эффективных в данных условиях, и от того, как меняется время релаксации с энергией электрона. Как правило, холл-фактор близок по величине к единице. Например, $\gamma = 3\pi/8$, если преобладает рассеяние на фононах и электронный газ не вырожден. Когда существенно рассеяние на заряженных центрах, γ для изотропной зоны близко к 1,9; с другой стороны, γ может уменьшиться до 0,7, если изоэнергетические поверхности существенно отклоняются от сферической формы.

Таким образом, в подобных экспериментах измеряется величина

$$\mu_{\rm H} = \gamma \mu = \sigma R_{\rm H} , \qquad (8.5)$$

которая называется *холловской подвижностью* в отличие от µ, называемой *дрейфовой подвижностью*. Для многих полупроводников в настоящее время имеются экспериментальные данные только по холловской подвижности, что создает очевидные трудности.

В полупроводниках со смешанной электронно-дырочной проводимостью постоянная Холла

$$\mathbf{R}_{\mathrm{H}} = \frac{\gamma}{\mathrm{e}} \cdot \frac{\mu_{\mathrm{h}}^{2} \mathbf{n}_{\mathrm{h}} - \mu_{\mathrm{e}}^{2} \mathbf{n}_{\mathrm{e}}}{\mu_{\mathrm{h}} \mathbf{n}_{\mathrm{h}} + \mu_{\mathrm{e}} \mathbf{n}_{\mathrm{e}}},\tag{8.6}$$

знак постоянной Холла может быть и положительным, и отрицательным.

Для собственных полупроводников $n_e = n_h = n$, и формула (8.6) принимает вид

$$\mathbf{R}_{\mathrm{H}} = \frac{\gamma}{\mathrm{en}} \cdot \frac{\mu_{\mathrm{h}} - \mu_{\mathrm{e}}}{\mu_{\mathrm{h}} + \mu_{\mathrm{e}}},\tag{8.7}$$

то есть в области собственной проводимости знак постоянной Холла определяется знаком заряда носителей, подвижность которых выше. Обычно такими носителями являются электроны (почему?). Поэтому, например, в примесном дырочном полупроводнике при переходе к собственной проводимости холловская ЭДС проходит через нуль и изменяет знак.

Измерение_эффективной массы представляет собой гораздо более серьезную проблему. Фактически единственным методом измерения эффективной массы является наблюдение циклотронного резонанса.

Заряженная частица с зарядом q, например электрон, движущаяся со скоростью v в магнитном поле с индукцией B, испытывает на себе действие силы Лоренца:

$\vec{\mathbf{F}}_{n} = q\vec{\upsilon} \times \vec{\mathbf{B}}$.

 $evB = mv^2/R$.

Поскольку эта сила всегда направлена перпендикулярно вектору скорости, она создает только нормальное ускорение $a_n = v^2 / R$, где R - радиус кривизны траектории частицы. Тогда, если магнитное поле перпендикулярно вектору скорости, уравнение движения электрона имеет вид

откуда

$$\upsilon/\mathbf{R} = \mathbf{e}\mathbf{B}/\mathbf{m}.\tag{8.8}$$

Траектория движения электрона в магнитном поле будет представлять собой окружность, а циклическая частота движения электрона по этой окружности

$$\omega = \frac{2\pi}{T} = \frac{2\pi\upsilon}{2\pi R} = \frac{\upsilon}{R},$$

откуда, сопоставляя это выражение с (8.8), получим

$$\omega = eB/m. \tag{8.9}$$

Если электрон (или дырка) двигаются в твердом теле, в качестве m в (8.9) должна (вспомните, почему!) фигурировать соответствующая эффективная масса. Если образец из исследуемого вещества поместить, кроме постоянного магнитного поля с индукцией В, в переменное электромагнитное поле, то при частоте этого переменного поля, удовлетворяющей условию (8.9), возникает резонанс, который и называется циклотронным резонансом, и энергия переменного электромагнитного поля будет поглощаться образцом. Тогда в соответствии с (8.9) эффективные массы носителей m^{*} связаны с резонансной *циклотронной частотой* ω_{II} соотношением

$$\mathfrak{D}_{\mathfrak{u}} = \mathrm{eB/m}^* \,, \tag{8.10}$$

откуда и могут быть найдены эффективные массы носителей в полупроводнике.

Схема эксперимента по циклотронному резонансу представлена на рис. 8.2. Электромагнитная волна с частотой в десятки ГГц от

Рис. 8.2. Схема эксперимента по циклотронному резонансу.

СВЧ-генератора по волноводу 1 поступает в циркулятор, направляющий эту волну в волновод 2, содержащий образец исследуемого материала. Пройдя через образец, волна отражается от специального отражателя, снова проходит через образец и поступает в циркулятор, который по волноводу 3 направляет ее в приемник СВЧ-излучения. Образец помещен между полюсами электромагнита, регулируя ток в обмотке которого, можно изменять индукцию магнитного поля В. При значениях В, удовлетворяющих условию (8.10), будет наблюдаться поглощение образцом мощности СВЧ-волны, регистрируемое приемником.

Рис.8.3. Спектр циклотронного резонанса в германии. Пики 1 соответствуют дыркам, а пики 2 - электронам. Частота СВЧ-излучения $\omega = 24 \ \Gamma \Gamma \mu$.

На рис. 8.3 приведены результаты подобного эксперимента для германия, имеющего такую же зонную структуру, что и кремний. На спектре циклотронного резонанса наблюдаются два резонансных пика, соответствующих дыркам, и два электронных пика. Попробуйте догадаться сами, куда пропал третий дырочный пик и откуда взялся второй электронный. А вот вопрос посложней - попробуйте сообразить, как отличить электронные пики от дырочных (подсказка: просто по картинке это сделать нельзя, нужно какое-то экспериментальное ухищрение).

Получить спектр циклотронного резонанса довольно трудно. Как и при любом резонансе, пик поглощения не наблюдается, если затухание велико, то есть если большинство носителей испытывает рассеяние прежде, чем повернет на угол хотя бы в один радиан. Так как число соударений в единицу времени - есть величина, обратная времени релаксации т, условие резонанса имеет вид

$$\omega_{\rm u} > 1/\tau. \tag{8.11}$$

Это условие налагает жесткие ограничения на возможность наблюдения циклотронного резонанса в диапазоне СВЧ: τ должно быть больше, чем 10⁻¹⁰ с. Это достигается только при температуре жидкого гелия (около 4 К) и лишь в некоторых полупроводниках высокой чистоты, такой, чтобы можно было пренебречь рассеянием на ионизованных и нейтральных примесях, доминирующим при такой низкой температуре. Именно при таких условиях и получен приведенный на рис.8.3 спектр германия.

Другой метод наблюдения основан на применении инфракрасного излучения вместо излучения СВЧ, а также сильного магнитного поля, которое можно создать либо в импульсном режиме (с индукцией приблизительно до 100 Тл), либо с помощью сверхпроводящего магнита (до 12 Тл). В этом случае условие резонанса можно выполнить даже при комнатной температуре($\tau = 10^{-13}$ с). Правда, поскольку с импульсными магнитами трудно работать из-за потерь на индукцию, циклотронный резонанс в инфракрасном диапазоне при комнатной температуре позволяет измерить эффективную массу носителей, не превышающую 0,2 m₀.

Перейдем теперь к методам определения энергетических параметров зонной модели - *ширины запрещенной зоны* полупроводника и энергий ионизации примесей.

Наиболее простой метод измерения ширины запрещенной зоны основан на изменении проводимости с температурой. Проводимость полупроводника можно представить в виде

$$\sigma = e(n_e \,\mu_e + n_h \,\mu_h \,),$$

а для собственного полупроводника, у которого

$$n_e = n_h = n_i$$

в еще более простом виде

$$\sigma = en_i (\mu_e + \mu_h) = \sigma_0 exp (-E_g/2kT),$$
 (8.12)

где величина σ_0 зависит от температуры, но степенным образом, т.е. температурная зависимость проводимости будет в основном определяться экспонентой в выражении (8.12). График зависимости $\ln \sigma$ от величины 1/T, обратной температуре, будет представлять собой прямую линию с тангенсом угла наклона

$$tg\alpha = -E_g/2k,$$
 (8.13)

что и позволяет определить экспериментально ширину запрещенной зоны $\mathrm{E}_{\mathrm{g}}.$

У примесного полупроводника температурная зависимость проводимости имеет более сложный вид (рис.8.4). При высоких температурах (область 1) преобладающей будет собственная проводимость, и остаются справедливыми выражения (8.12) и (8.13). По мере охлаждения полупроводника вероятность межзонных переходов уменьшается, и в некотором промежуточном температурном интервале (область 2), когда примесные уровни не ионизованы, а собственной проводимости практически нет, температурная зависимость проводимости определяется температурной зависимостью подвижности носителей. При дальнейшем охлаждении полупроводника происходит вымораживание примесной проводимости (область 3), и температурная зависимость проводимости описывается соотношением

Рис. 8.4. Температурная зависимость удельной проводимости примесного полупроводника.

 $\sigma \sim \exp(-Ei/2kT), \qquad (8.14)$

а график зависимости $\ln \sigma$ от 1/Т вновь представляет собой прямую линию, но уже с тангенсом угла наклона

 $tg\alpha = - Ei/2kT,$ (8.15)

откуда можно определить энергию ионизации примеси Еі.

Еще более простой способ определения ширины запрещенной зоны основан на исследовании спектра оптического поглощения полупроводника. Фотоны с энергией hv,

меньшей, чем ширина запрещенной зоны, поглощаться полупровод-

ником не могут, поэтому спектр поглощения полупроводника имеет ярко выраженный край полосы поглощения, соответствующий условию

$$h\nu = h\nu_0 = E_g . \tag{8.16}$$

При этом, однако, следует учесть, что соотношение (8.16) справедливо только для прямозонных полупроводников, как это уже обсуждалось раньше. В противном случае $hv_0 > E_g$, и спектр поглощения не позволяет определить точное значение ширины запрещенной зоны без дополнительных экспериментальных ухищрений, выходящих за рамки нашего курса.

Совершенно аналогично (и с теми же ограничениями) ширина запрещенной зоны может быть определена на основе спектра фото-проводимости полупроводника.

Таким образом, рассмотренные нами теоретические положения и экспериментальные методы позволяют составить достаточно полную картину электрических свойств полупроводников, позволяющую осмысленно создавать различные электронные устройства на основе таких материалов.

9. КОНТАКТ ПОЛУПРОВОДНИКОВ 9.1. Р-п-переход

Первый значительный прогресс в полупроводниковой электронике связан с использованием контакта двух примесных полупроводников с различным типом проводимости. Такой контакт называют электронно-дырочным переходом, или *p*-*n*-*nepexodom*.

Если привести в контакт полупроводники p- и n-типа, то разность концентраций электронов и дырок в этих материалах приведет к возникновению диффузионных потоков - дырки начнут диффундировать из полупроводника p-типа в полупроводник n-типа, а электроны в противоположном направлении. Такой процесс диффузии сопровождается переносом не только массы, но и заряда. Перенесенные заряды создают электрическое поле, препятствующее диффузии, так что между полупроводниками возникает разность потенциалов U_k, которая называется *контактной*. При установлении равновесия, как

Рис.9.1. Энергетическая диаграмма равновесного состояния рп-перехода.

это следует из общих термодинамических принципов, должны уравняться химические потенциалы, т.е. уровни Ферми этих полупроводников, что и отражено на рис. 9.1. Область толщиной d в окрестности p-nперехода содержит мало носителей заряда (подумайте сами, почему!), поэтому называется обедненной областью. В то же время она содержит неподвижные заряды - отрицательно заряженные акцепторы слева от контакта и положительно заряженные доноры справа от контакта, напоминая заряженный конденсатор. Действительно, р-

n-переход обладает емкостью, которая называется *барьерной* и будет рассмотрена чуть позже. А пока займемся вычислением контактной разности потенциалов, чтобы затем на основе этого расчета найти толщину обедненного слоя.

Пусть толщина обедненного слоя в p-области paвна $d_{\rm p}$, а в n-области соответственно $d_{\rm n}$, т.е.

$$\mathbf{d} = \mathbf{d}_{\mathbf{p}} + \mathbf{d}_{\mathbf{n}} \,. \tag{9.1}$$

Поскольку исходные материалы были электронейтральными и за пределами обедненной области они таковыми и остались, из закона сохранения заряда следует, что отрицательный заряд р-области обедненного слоя равен положительному заряду п-области обедненного слоя. Если площадь контакта равна S, а концентрации акцепторов и доноров в соответствующих полупроводниках равны n_A и n_D, то, полагая все примеси ионизованными, можно записать:

$$en_A Sd_p = en_D Sd_n$$

откуда следует выражение

$$n_A d_p = n_D d_n , \qquad (9.2)$$

связывающее толщины обедненных слоев с концентрацией примесей.

В соответствии с уравнениями Максвелла напряженность электрического поля $\vec{\epsilon}$ подчиняется соотношению

$$\nabla \cdot \vec{\varepsilon} = \frac{\rho}{\chi \varepsilon_0} , \qquad (9.3)$$

где ρ - объемная плотность заряда, χ - относительная диэлектрическая проницаемость среды (в данном случае полупроводника), $\epsilon_0 = 8,86 \cdot 10^{-12} \text{ }\Phi/\text{M}$ - электрическая постоянная.

В рассматриваемом случае электрическое поле меняется только вдоль оси *x*, перпендикулярной контакту полупроводников, т.е. (9.3) сводится к виду

$$\frac{\partial \varepsilon}{\partial \mathbf{x}} = \frac{\rho}{\chi \varepsilon_0} \,. \tag{9.4}$$

Тогда, выбирая ноль на оси *x* в месте контакта, для напряженности поля в р-области получим

$$\boldsymbol{\varepsilon}_{p} = \int_{-d_{p}}^{x} \left(\frac{\rho}{\boldsymbol{\chi}\boldsymbol{\varepsilon}_{0}}\right) d\mathbf{x} = \int_{-d_{p}}^{x} \left(-\frac{\mathbf{e}\mathbf{n}_{A}}{\boldsymbol{\chi}\boldsymbol{\varepsilon}_{0}}\right) d\mathbf{x} = -\frac{\mathbf{e}\mathbf{n}_{A}}{\boldsymbol{\chi}\boldsymbol{\varepsilon}_{0}} \left(\mathbf{x} + \mathbf{d}_{p}\right), \quad (9.5)$$

т.е. напряженность поля меняется по линейному закону от нуля на границе обедненной области (при $x = -d_p$) до значения (-en_A $d_p / \chi \epsilon_0$) в месте контакта (при x = 0).

Поскольку напряженность поля связана с потенциалом ф соотношением

$$\vec{\boldsymbol{\varepsilon}} = -\nabla \boldsymbol{\varphi}, \qquad (9.6)$$

а в одномерном случае $|\nabla \phi| = \partial \phi / \partial x$, распределение потенциала в обедненной р-области можно вычислить из соотношения

$$\&=-\frac{\partial \varphi}{\partial \mathbf{x}}.\tag{9.7}$$

Если через ϕ_1 обозначить потенциал на границе обедненного рслоя (при $x = -d_p$), а через ϕ_0 - потенциал в месте контакта полупроводников (при x = 0), то из (9.7) получим

$$\boldsymbol{\varphi}_{0} - \boldsymbol{\varphi}_{1} = \int_{\boldsymbol{\varphi}_{1}}^{\boldsymbol{\varphi}_{0}} d\boldsymbol{\varphi} = \int_{-\mathbf{d}_{p}}^{0} \frac{\mathbf{en}_{A}}{\boldsymbol{\chi}\boldsymbol{\varepsilon}_{0}} \left(\mathbf{x} + \mathbf{d}_{p}\right) d\mathbf{x} = \frac{\mathbf{en}_{A}}{2\boldsymbol{\chi}\boldsymbol{\varepsilon}_{0}} \mathbf{d}_{p}^{2} \,. \tag{9.8}$$

Аналогично для п-области получим

$$\mathbf{\&}_{\mathbf{n}} = \int_{\mathbf{d}_{\mathbf{n}}}^{\mathbf{x}} \left(\frac{\mathbf{e}\mathbf{n}_{\mathrm{D}}}{\mathbf{\chi}\mathbf{\varepsilon}_{0}} \right) \mathbf{d}\mathbf{x} = \frac{\mathbf{e}\mathbf{n}_{\mathrm{D}}}{\mathbf{\chi}\mathbf{\varepsilon}_{0}} \left(\mathbf{x} - \mathbf{d}_{\mathrm{n}} \right), \tag{9.9}$$

причем, как показывают соотношения (9.2), (9.5) и (9.9), при x=0 $\varepsilon_n = \varepsilon_p$, как и следовало ожидать. Если потенциал в точке $x = d_n$ обозначить φ_2 , то из (9.7) и (9.9) получим

$$\varphi_{2} - \varphi_{0} = \int_{\varphi_{0}}^{\varphi_{2}} d\varphi = -\int_{0}^{d_{n}} \frac{en_{D}}{\chi \varepsilon_{0}} (x - d_{n}) dx = \frac{en_{D}}{2\chi \varepsilon_{0}} d_{n}^{2}. \qquad (9.10)$$

Тогда контактная разность потенциалов (см. рис.9.2):

$$\mathbf{U}_{\mathbf{k}} = \boldsymbol{\varphi}_{2} - \boldsymbol{\varphi}_{1} = \frac{\mathbf{e}}{2\boldsymbol{\chi}\boldsymbol{\varepsilon}_{0}} \Big(\mathbf{n}_{\mathbf{A}} \mathbf{d}_{\mathbf{p}}^{2} + \mathbf{n}_{\mathbf{D}} \mathbf{d}_{\mathbf{n}}^{2} \Big).$$
(9.11)

Используя (9.2), выражение (9.11) можно свести к виду (проделайте необходимые вычисления сами!):

$$\mathbf{U}_{k} = \frac{\mathbf{e}}{2\chi\varepsilon_{0}} \cdot \frac{\mathbf{n}_{A}\mathbf{n}_{D}}{\left(\mathbf{n}_{A} + \mathbf{n}_{D}\right)} \mathbf{d}^{2}, \qquad (9.12)$$

откуда

$$\mathbf{d} = \left[\frac{2\chi\epsilon_{0}\mathbf{U}_{k}}{\mathbf{e}} \cdot \frac{\left(\mathbf{n}_{A} + \mathbf{n}_{D}\right)}{\mathbf{n}_{A}\mathbf{n}_{D}}\right]^{1/2}.$$
 (9.13)

Таким образом, толщина обедненного слоя тем больше, чем ниже концентрация примесей, причем из (9.2) следует, что глубина проникновения электрического контактного поля больше в тот полупроводник, концентрация примесей в котором меньше.

Приведенный расчет справедлив для резкого p-n-перехода, в котором концентрация примесей на границе между p- и n- полупроводниками меняется практически скачкообразно. Если же изменение концентрации примесей n в переходе происходит плавно, так, что за-

Рис.9.2. Распределение напряженности поля и потенциала в области p-n-пе-рехода.

области p-n-пе-рехода. можно, еще какое-нибудь упрощающее предположение относительно концентраций примесей в pи n-полупроводниках.

В заключение отметим, что типичная толщина обедненного слоя в p-n-переходе составляет доли микрона, а типичное значение контактной разности потенциалов около 0,3 В для германия и около 0,5 В для кремния.

9.2. Полупроводниковый диод

Фактически конструкция из двух полупроводников с различным типом проводимости, образующих р-п-переход, представляет собой готовый полупроводниковый прибор -диод. Чтобы разобраться с тем, как он работает, рассмотрим текущий через p-n-переход электронный ток (для дырочного тока получится все то же самое, в чем легко убедиться, перевернув рис.9.1 вверх ногами). Если рассмотреть внимательно рис.9.1, то бросается в глаза, что слева от p-n-перехода (в pобласти) электронов проводимости очень мало, а справа (в п-области) очень много. Зато переходить электроны слева направо могут совершенно беспрепятственно, а для переходов справа налево электронам необходимо "запрыгивать" со дна зоны проводимости п-области на дно зоны проводимости р-области, то есть преодолевать потенциальный барьер высотой eU_k. Ток, текущий слева направо, обозначим просто I_0 , а через $I_1 \exp(-eU_k/kT)$ обозначим ток, текущий справа налево, учитывая задаваемую распределением Больцмана вероятность преодоления электронами потенциального барьера в контакте. В от-

висимость этой концентрации от координаты *х* можно описать линейным законом

n(x) = ax

с коэффициентом пропорциональности *a*, то расчеты по изложенной выше методике приведут к результату

$$\mathbf{d} = \left(\frac{12\mathbf{U}_{k}\chi\varepsilon_{0}}{\mathbf{ea}}\right)^{1/3}.$$

(9.14)

Попробуйте получить этот

результат сами, используя, воз-

сутствие внешнего электрического поля суммарного тока через p-nпереход нет, то есть

$$\mathbf{I}_{0} = \mathbf{I}_{1} \exp\left(-\frac{\mathbf{e}\mathbf{U}_{k}}{\mathbf{k}\mathbf{T}}\right). \tag{9.15}$$

Приложим теперь к p-n-переходу напряжение U плюсом к pобласти, а минусом - к n-области. Такое напряжение, называемое *прямым напряжением*, понизит потенциальный барьер на величину eU, и текущий справа налево ток станет равен I₁ exp[-e(U_k - U)/kT], то есть увеличится. Ток же, текущий слева направо, не изменится и останется равным I₀. В результате в p-n-переходе возникнет суммарный ток

$$\mathbf{I} = \mathbf{I}_1 \exp\left[-\frac{\mathbf{e}(\mathbf{U}_k - \mathbf{U})}{\mathbf{k}\mathbf{T}}\right] - \mathbf{I}_0.$$
(9.16)

Используя (9.15), соотношение (9.16) можно привести к виду

$$\mathbf{I} = \mathbf{I}_0 \left[\exp\left(\frac{\mathbf{eU}}{\mathbf{kT}}\right) - \mathbf{1} \right],\tag{9.17}$$

где величину I₀ называют обратным током диода.

Рис.9.3. Теоретическая вольтамперная характеристика p-n-перехода, описываемая формулой (9.17).

го ди-ода (см. рис.9.3).

Если к p-n-переходу приложить обратное напряжение плюсом к nобласти, а минусом к pобласти, то, я думаю, Вы догадываетесь сами, что получится снова соотношение (9.17), только в нем будет U < 0 и, соответственно, I < 0.

Выражение (9.17) называется уравнением Шокли, или просто уравнением выпрямителя, и описывает вольтамперную характеристику полупроводниково-

Прежде всего следует осо-знать, что природа тока, теку-щего через p-n-переход, принципиально иная, чем у тока в однородном полупроводнике, где электрическое поле просто заставляет электроны двигаться в каком-то направлении. В p-n-переходе же при прямом смещении в p-область хлынет поток электронов, для которых резко снизился "стерегущий" их потенциальный барьер eU_k. Р-об-ласть заполняется электронами, которые здесь являются чужаками - неосновными носителями. Точно так же п-область заполняется инжектиро-

Рис.9.4. Компоненты полного тока в диоде.

ванными из p-области дырками. В итоге оказывается, что устройство с p-n-переходом, которое называют полупроводниковым диодом, работает на инжектированных неосновных носителях, а электрическое поле, в отличие от однородного материала, в диоде не только упорядочивает движение носителей, но и (самое главное!) генерирует их за счет инжекции в тех областях, где в отсутствие поля таких носителей

го тока в диоде. почти не было. Безусловно, попавшие "за границу" неосновные носители, например, электроны в робласти, далеко от перехода не уйдут - они исчезнут, рекомбинировав с основными носителями, но, впрочем, проходя до гибели расстояния в 1 мм, т.е. в тысячу раз больше, чем толщина переходной области. Таким образом, ток в каждой из областей диода является двухкомпонентным - представляет собой сумму токов основных и инжектированных неосновных носителей - и неоднородным (см. рис.9.4): ток основных носителей из-за рекомбинации уменьшается по мере приближения к p-n-переходу, а ток инжектированных неосновных носи-

Рис.9.5. Принципиальная схема однополупериодного выпрямителя.

телей по той же причине убывает по мере удаления от рn-перехода.

Как и во всех других случаях, когда внешнее поле влияет не только на перенос, но и на

генерацию носителей (типичный пример - вакуумный диод), ток в полупроводниковом диоде не подчиняется закону Ома, а подчиняется придуманному Шокли уравнению выпрямителя. Графически это выражается в том (см. рис.9.3), что вольтамперная характеристика, в отличие от линейной омической, не представляет собой прямой линии, т.е. является нелинейной. Соответственно и элементы электронных схем, не подчиняющиеся закону Ома, называют нелинейными. Именно нелинейные элементы позволяют реализовывать фантастическое многообразие электронных устройств - от элементарной (хотя и не совсем уж простенькой) бытовой аппаратуры до сложнейшего научного и технологического оборудования. Простейшее из таких устройств - знакомый Вам однополупериодный выпрямитель на одномединственном полупроводниковом диоде, изображенный на рис.9.5. Осциллограф в этой схеме будет измерять пропорциональное току в цепи падение напряжения на резисторе R, равное U_R =IR, и на экране мы увидим фактически (рис.9.6) зависимость тока в цепи от времени.

В те полупериоды, когда напряжение U от источника создает прямое смещение на диоде, ток в цепи (прямой ток диода) большой. В полупериоды, создающие обратное смещение диода, ток в цепи (обратный ток диода) очень маленький - на рис.9.6 этот ток сильно преувеличен, в чем нетрудно убедиться, подставив числа в уравнение выпрямителя (не говоря уже о том, что реально обратный ток еще раз в сто меньше, чем это следует из уравнения выпрямителя, из-за процессов рекомбинации в обедненной области). В итоге мы вместо пе-

Рис.9.6. Графики напряжений на входе и выходе однополупериодного выпрямителя.

ременного тока имеем ток, текущий в одном направлении, то есть постоянный, правда, пульсирующий. Частоту этих пульсаций увеличивают вдвое, используя вместо одного диода четыре (диодный мостик), затем эти пульсации сглаживают фильтром, состоящим, например, из резистора и электролитического конденсатора большой емкости. А затем...затем чуть позже, когда мы узнаем, что такое стабилитрон.

9.3. Барьерная емкость

Специалисты по схемотехнике часто любят заменять при расчетах схем нелинейные элементы так называемыми эквивалентными схемами, состоящими из набора линейных элементов - резисторов, конденсаторов, катушек индуктивности - и источников (генераторов) тока и напряжения. В частности, эквивалентная схема диода будет

Рис.9.7. Эквивалентная схема полупроводникового диода. выглядеть так, как это изображено на рис. 9.7. Ну, что касается резисторов, тут все ясно - R_1 представляет собой просто обычное сопротивление однородных полупроводников р- и п-типа, входящих в состав диода; R(U) - это дифференциальное сопротивление p-n-перехода, которое следует вычислять как R = dU/dI, используя для связи U и I уравнение выпрямителя. Значения R(U) для диода, включенного в прямом направлении, составляют 0,1-10 Ом, а для диода, включенного в обратном направлении, 1-100

МОм. А вот, что это за емкость такая присутствует в схеме? Дело в том, что при обратном смещении в обедненном слое практически отсутствуют носители, т.е. он является диэлектриком. Кроме того, в этом слое есть два набора разделенных зарядов - отрицательные акцепторы в р-области и положительные доноры в п-области. Таким образом, мы имеем типичный конденсатор, емкость которого называется барьерной емкостью.

Измерения этой величины, как мы вскоре увидим, весьма полезны, поэтому рассмотрим барьерную емкость подробнее. По определению, емкость равна заряду, накопленному конденсатором при изменении напряжения на нем в один вольт, т.е. C = dq/dU. Заряд какого-то одного знака, допустим положительного, будет равен, как мы это недавно выяснили,

$$q = en_D Sd_n, \qquad (9.18)$$

где n_D - объемная концентрация доноров в полупроводнике n-типа. Из соотношений (9.2) и (9.11) величину d_n можно выразить как

$$\mathbf{d}_{\mathrm{n}} = \left[\frac{2\varepsilon_{0}\chi \mathbf{n}_{\mathrm{A}}\mathbf{U}_{\mathrm{K}}}{\mathrm{en}_{\mathrm{D}}(\mathbf{n}_{\mathrm{A}}+\mathbf{n}_{\mathrm{D}})}\right]^{1/2}$$

При подаче на p-n-переход напряжения U высота потенциального барьера будет не U_k , а U_k - U, толщина обедненного слоя изменится и станет равной

$$\mathbf{d}_{n} = \left[\frac{2\varepsilon_{0}\chi \mathbf{n}_{A}(\mathbf{U}_{\kappa} - \mathbf{U})}{\mathbf{e}\mathbf{n}_{D}(\mathbf{n}_{A} + \mathbf{n}_{D})}\right]^{1/2}.$$
(9.19)

Подставляя (9.19) в (9.18) и дифференцируя заряд по напряжению, получим барьерную емкость резкого (подчеркнем - именно резкого) p-n-перехода:

$$\mathbf{C} = \frac{\mathbf{dq}}{\mathbf{dU}} = \sqrt{\frac{\boldsymbol{\epsilon}_{0} \boldsymbol{\chi} \mathbf{e} \mathbf{S}^{2}}{2(\mathbf{U}_{k} - \mathbf{U})}} \cdot \frac{\mathbf{n}_{A} \mathbf{n}_{D}}{\mathbf{n}_{A} + \mathbf{n}_{D}}.$$
 (9.20)

Если ввести обозначение $B=2(n_A+n_D$)/ $\epsilon_0\chi eS^2$ n_A n_D , то (9.20) можно представить в виде:

$$\frac{1}{C^2} = B(U_k - U). \tag{9.21}$$

Графически зависимость (9.21) представлена на рис. 9.8, называется вольтфарадной характеристикой и позволяет сделать пару

Рис.9.8. Вольтфарадная характеристика резкого рn-перехода. приятных выводов. Во-первых, сняв экспериментально такую характеристику, мы можем найти численное значение контактной разности потенциалов U_k - вольтметром же эту величину не измеришь (а, кстати, почему?). Во-вторых, мы получили соотношение (9.21), предполагая, что p-ппереход резкий; если же он таковым не является, то вместо зависимости (9.21) мы получим другую зависимость -C(U), например, для линейного и вообще достаточно плавного p-n-перехода вольтфарадная характеристика линейна в координа-

тах $(1/C^3)$ -U. Таким образом, вольтфарадные характеристики дают информацию о распределении примесей в p-n-переходе, или, иначе, о качестве p-n-перехода, а относительная простота измерения этих характеристик позволяет использовать такой метод в заводских условиях для контроля качества продукции.

Обратите внимание, что на рис.9.8 в области положительных смещений вольтфарадная характеристика изображена пунктиром, т.е.

просто как экстраполяция из области отрицательных смещений. Действительно, при прямых смещениях обедненная область заполняется носителями и барьерная емкость исчезает, так что мерить там нечего. Однако здесь начинает проявляться другой любопытный эффект. Если мы резко увеличим величину прямого смещения, то количество инжектированных носителей, а следовательно, и переносимый ими заряд тоже возрастет скачкообразно. Поскольку сила тока - это скорость переноса заряда, то в первый момент ток через p-n-переход возрастет очень сильно, а затем постепенно уменьшится до стационарного значения, определяемого уравнением выпрямителя. Внешне это выглядит точно так же, как если бы мы подали ступенчатый перепад напряжений на параллельно соединенные резистор и конденсатор (R и C на рис.9.7)! Формально это явление можно описать, приписав p-nпереходу, кроме барьерной, еще некую емкость, называемую диффузионной емкостью, которая пропорциональна exp(eU/kT), и, значит, при обратных смещениях исчезающе мала, зато играет весьма большую роль при прямых смещениях. Конечно, все приведенные выше формулы для барьерной емкости к диффузионной емкости абсолютно неприменимы.

9.4. Пробой р-п- перехода и стабилитрон

Рассмотрим теперь поведение p-n-перехода при больших напряжениях, не уточняя пока численные значения этих напряжений. В случае прямого напряжения будет наблюдаться дальнейший рост тока до тех пор, пока диод просто не выйдет из строя. Это важный вопрос в плане создания мощных выпрямителей, но мы его касаться не будем. Если же на p-n-переход подано обратное напряжение, то при некотором значении этого напряжения возникает пробой, то есть ток начинает очень сильно изменяться с изменением напряжения (рис.9.9).

Рис.9.9. Вольтамперная характеристика p-nперехода, содержащая участок, обусловленный пробоем.

Рис.9.10. Энергетическая диаграмма p-n-перехода, иллюстрирующая переходы электронов при туннельном и лавинном пробое.

Этот пробой не выводит диод из строя, являясь обратимым, а следовательно, может находить (и находит) практическое применение, в первую очередь, для стабилизации напряжения. Работающий на основе этого явления полупроводниковый диод называется *стабилитроном*. Кроме того, поскольку пробой происходит весьма быстро, такой диод можно использовать как электронный ключ.

Возможных механизмов такого пробоя существует три: *тепловая неустойчивость*, *туннельный пробой* и *лавинный пробой*. В стабилитронах используются два последних механизма, которые мы и рассмотрим.

Туннельный пробой, который часто называют *пробоем Зинера* (Зинер в 1934 г. впервые описал подобный механизм пробоя), связан, как это следует из самого названия, с туннельным эффектом. При низких значениях обратного напряжения дно зоны проводимости в п-области расположено выше на шкале энергий, чем потолок валентной зоны р-области, и через p-nпереход течет только малый обратный ток, обусловленный неосновными носителями. Если увеличивать обратное напряжение, то при некотором значении этого напряжения энергетические зоны начинают перекры-

ваться, и появляется возможность для туннелирования электронов из валентной зоны р-области в зону проводимости п-области (см. рис.9.10).

Уровень легирования полупроводников в такой конструкции можно подобрать таким образом, чтобы при перекрытии зон туннельный эффект еще не наблюдался из-за большой ширины барьера (вспомните, от чего зависит толщина обедненного слоя!). И только при достижении определенного значения обратного напряжения (это значение и будет напряжением стабилизации) барьер станет достаточно узким, и возникнет туннельный ток, очень сильно возрастающий при дальнейшем росте напряжения. Концентрация примесей в лавинных диодах несколько меньше, чем в диодах Зинера, поэтому обедненный слой в них шире и туннельный пробой наступает при гораздо больших напряжениях. Однако до возникновения туннельного тока дело в таких диодах вообще не доходит, так как срабатывает совершенно другой механизм пробоя - возникает лавина. Качественная сторона этого процесса достаточно проста. Электроны проводимости в кристалле ускоряются электрическим полем, увеличивая свою кинетическую энергию, которую они могут передавать кристаллической решетке при рассеянии. В достаточно сильном поле (а чем будет определяться величина этого поля?) этой энергии может хватать для ионизации атома решетки и, соответственно, рождения электрондырочной пары. Эти вновь созданные электроны и дырки, возбуждаясь электрическим полем, могут порождать новые пары. Процесс развивается очень быстро, лавинообразно, почему и получил название лавины.

Два рассмотренных выше механизма пробоя принципиально отличаются друг от друга. Действительно, при туннельном пробое электроны из валентной зоны р-области перемещаются в зону проводимости п-области по горизонтали (рис.9.10), а при лавинном пробое - по вертикали. Однако вольтамперная характеристика диода при обоих видах пробоя совершенно одинакова (рис.9.9), и различить экспериментально эти механизмы пробоя не так-то просто.

Впрочем, с практической точки зрения не так и важно знать, чем порождено явление - существенно лишь быстрое возрастание тока, позволяющее стабилизировать напряжение. Отметим, что, как правило, низковольтные стабилитроны с напряжением стабилизации меньше 6 В изготавливают на основе сильнолегированного кремния, в котором происходит туннельный пробой. Высоковольтные стабилитроны делают на основе слаболегированного кремния, и принцип их действия основан на лавинном пробое.

9.5. Биполярный транзистор

23 декабря 1947 года в Bell Telephone Laboratories заработал первый транзистор. Это событие в итоге оказало даже большее влияние на повседневную жизнь, чем создание атомной бомбы. Малая энергоемкость в расчете на один бит информации, сравнимая с энергопотреблением нейронов головного мозга, и исключительная долговечность транзисторов привела к революции в области электронных средств связи и к созданию быстродействующих ЭВМ с большим объемом памяти. Поэтому неудивительно, что создатели транзистора - Джон Бардин, Уолтер Браттейн и Уильям Шокли - были удостоены Нобелевской премии по физике за 1956 г. Собственно, Нобе-левская премия была присуждена им даже не за изобретение транзистора как таковое, а за реализацию целой исследовательской программы. Как говорил Бардин в своей Нобелевской лекции, "общая цель программы состояла в том, чтобы, как можно глубже разобраться в явлениях, наблюдаемых в полупроводниках, причем не эмпирически, а объяснить их на основе атомной теории". Но, хотя такая цель и не ставилась, в виду постоянно имелась возможность создания полупроводникового триода, или усилителя, что и было блестяще реализовано.

Попробуем разобраться с принципом работы транзистора на примере самой популярной в учебниках (но не на практике) схемы включения - схемы с общей базой (рис.9.11).

Рис.9.11. Транзистор типа p-n-p, включенный по схеме с общей базой. 1 - источник сигнала; 2 - эмиттер; 3 - база; 4 - коллектор; R_H - сопротивление нагрузки в коллекторной цепи; U_{вых} - выходное напряжение схемы.

Биполярный транзистор состоит из трех областей, называ- емых эмиттером, базой и коллектором и образующих два p-n-перехода, которые обычно именуют эмиттерным и коллекторным. На рис. 9.11. приведен p-n-p-транзистор, хотя с равным основанием будет работать и n-p-n-транзистор - не забудьте только поменять полярность источников напряжения.

Эмиттерный переход включен в прямом направлении, и поток дырок из эмиттера беспрепятственно хлынет в базу. Коллекторный переход включен в обратном направлении..., но ведь для пришедших из эмиттера дырок он не помеха! Надо только, чтобы толщина базы была существенно меньше диффузионной длины дырок, составляющей величину около 1 мм. И тогда практически все пришедшие из эмиттера дырки попадут в коллектор и будут благополучно участво-

вать в протекании коллекторного тока. Отношение α тока коллектора $I_{\kappa}\,$ к току эмиттера $I_{\scriptscriptstyle 9}$

$$\alpha = I_{\kappa}/I_{\mathfrak{H}} \tag{9.22}$$

называется коэффициентом передачи тока эмиттера. Этот коэффициент близок к единице и составляет величину 0,98 - 0,99 и больше.

А теперь задумаемся, что же мы получили? Вроде бы ничего ценного. Почти весь ток от источника 1 на рис.9.11 поступает в нагрузку R_H , и коэффициент усиления тока в нашем устройстве чуть меньше единицы (это и есть величина α). Так что здесь усиливается? Оказывается, схема с общей базой усиливает напряжение. Действительно, эмиттерный переход включен в прямом направлении, поэтому имеет очень малое сопротивление. Значит, даже малое напряжение от источника сигнала 1 создаст во входной (эмиттерной) цепи

заметный ток. Почти весь этот ток передается в выходную цепь как коллекторный ток. Но ведь коллекторный переход включен в обратном направлении, и его сопротивление очень велико. Значит, и нагрузочный резистор R_H может иметь достаточно большое сопротивление. (Уяснили? Если нет, вспомните закон Ома для замкнутой цепи.) Протекая через высокоомный резистор R_H , ток коллектора создает на нем выходное напряжение, существенно превышающее напряжение источника сигнала 1. Таким образом, транзистор, включенный по схеме с общей базой, представляет собой усилитель напряжения. А поскольку входной и выходной токи почти равны друг другу, такая схема является и усилителем мощности.

Итак, вся прелесть транзистора заключается в том, что он имеет низкое входное и высокое выходное сопротивления, обеспечиваемые разным включением эмиттерного и коллекторного переходов. Теперь мы можем с пониманием расшифровать название "транзистор". Это сокращение английских слов "transfer resistor" - преобразование сопротивления.

Если Вы заглянете внутрь любого бытового электронного устройства, то увидите, что транзисторы в усилительных каскадах соединены не так, как на рис.9.11, а так, как на рис.9.12 - по схеме с общим эмиттером. Для разнообразия на рис.9.12 изображен транзистор типа n-p-n. Это, кстати, более распространенный тип кремниевых транзисторов (не забудьте задать вопрос "почему?", когда будете изучать курс технологии!), и наиболее распространенный маломощный транзистор КТ-315 относится именно к этому типу. Кроме того, на

рис.9.12 приведено и схемное обозначение транзистора. Обратите внимание на направление стрелочки, которой снабжен эмиттерный вывод - это направление указывает тип транзистора.

В схеме с общим эмиттером по-прежнему большая часть тока поступает в коллектор через эмиттерный переход, включенный в прямом направлении, и выражение (9.22) остается справедливым. В то же время (см. рис.9.12)

$$\mathbf{I}_{\mathfrak{I}} = \mathbf{I}_{\mathfrak{H}} + \mathbf{I}_{\kappa} \,. \tag{9.23}$$

Исключая из формул (9.22) и (9.23) ток эмиттера I_э, получим соотношение, связывающее токи коллектора и базы:

Рис.9.12. Транзистор, включенный по схеме с общим эмиттером: а условная схема; б - принципиальная схема. 1 - источник сигнала; 2 эмиттер; 3 - база; 4 - коллектор.

$$\mathbf{I}_{\kappa} = \frac{\alpha \mathbf{I}_{\delta}}{1 - \alpha} = \beta \mathbf{I}_{\delta}, \qquad (9.24)$$

где величина

$$\beta = \frac{\alpha}{1 - \alpha} \tag{9.25}$$

называется коэффициентом передачи тока базы. Если, например, $\alpha = 0,99$, то $\beta \approx 100$, то есть мы получим усиление тока базы в сто раз. Таким образом, транзистор, включенный по схеме с общим эмиттером, представляет собой усилитель тока.

Рис.9.13. Транзистор как логический элемент.

До сих пор мы с Вами говорили об использовании транзисторов в качестве усилительных приборов, то есть об аналоговых устройствах. Однако в компьютерах нужпринципиально ΗЫ иные устройства - цифровые, или логические. Эти устройства должны иметь два устойчивых состояния, которые называют логическим нулем и логической единицей, а также должны легко переключаться из одного устойчивого состояния в другое. Транзистор позволяет легко реа-

лизовать такое устройство. Рассмотрим схему, приведенную на рис.9.13 и очень похожую на усилитель тока. Если ток базы $I_6 = 0$, то нет и тока коллектора (см. рис.9.13). Транзистор в этом случае, как говорят, "закрыт", то есть имеет очень большое (в идеале бесконечно большое) сопротивление, во всяком случае, гораздо большее, чем сопротивление резистора R. Тогда практически все напряжение питания $U_{пит}$ падает на транзисторе, и $U_{вых} = U_{пит}$ (допустим, +5 вольт, что по современным стандартам соответствует логической единице). Если же создать некоторый ток базы, появится ток в цепи коллектора. Транзистор, как говорят, "откроется", и его сопротивление станет существенно меньше сопротивления резистора R (конечно, надо разумно выбрать номинал резистора R - где-то около нескольких килоом). Все (конечно, *почти* все) напряжение $U_{пит}$ придется на резистор R, и $U_{вых} = 0$, что соответствует логическому нулю. Вот на таких элементах с двумя устойчивыми состояниями и работают компьютеры.

В завершение этого раздела хочу обратить Ваше внимание на следующее обстоятельство. Иногда приходится слышать(к счастью, редко), что транзистор - это полупроводниковый аналог вакуумного триода. Не верьте этому. Принцип работы биполярного транзистора, управляемого током, не имеет ничего общего с принципом работы вакуумного триода, управляемого электрическим полем. Все сходство между этими устройствами ограничивается тем, что оба они "трехно-

гие", то есть имеют по три электрода, и оба являются усилителями электрической мощности.

В то же время существует большое семейство полупроводниковых приборов, которые по своему принципу действия (по крайней мере, в схемотехнической части) находятся с вакуумными лампами в гораздо более близком родстве. Эти приборы называются *полевыми транзисторами*, и к их изучению мы скоро приступим.

9.6. Тиристор

На явлении лавинного пробоя основана работа еще одного прибора - *тиристора*, содержащего четыре полупроводниковых слоя с чередующимися типами проводимости (рис.9.14). Между омическими контактами К (катод) и А (анод) располагаются три p-n-перехода 1, 2 и 3, причем напряжение от внешнего источника на переходах 1 и 3 оказывается прямым, а на переходе 2 - обратным. Все сопротивление устройства фактически определяется большим сопротивлением перехода 2, ограничивающего ток в цепи при увеличении внешнего напряжения. Однако при некотором напряжении U_{вкл} в этом переходе происходит лавинный пробой, сопротивление перехода резко уменьшается и "включается" ток, примерно описываемый вольтамперной характеристикой p-n-перехода с прямым напряжением (рис. 9.15).

Рис.9.14. Схема включения тиристора.

Подобное устройство с двумя устойчивыми состояниями называется диодным тиристором, или *динистором*. Динистор при напряжении U_{вкл} переключается из *закрытого* состояния с сопротивлением несколько МОм в *открытое* состояние с сопротивлением единицы Ом. Если к n-области между переходами 1 и 2 добавить еще один контакт (*управляющий электрод*) (см. рис. 9.14), то мы получим возможность с помощью положительного управляющего напряжения инжектировать в n-область дырки. Инжекция избыточных неосновных носителей в область перехода 2 позволяет уменьшить напряжение включения U_{вкл} тиристора, причем величина этого напряжения уменьшается с увеличением управляющего тока I_{упр} (рис. 9.15). Такое устройство называют триодным тиристором, или *тринистором*; оно

Рис.9.15. Вольтамперная характеристика тиристора. Напряжение переключения зависит от управляющего тока.

широко используется в схемах переключения, являясь аналогом реле или газонатриода (тираполненного трона). В частности, тиристоры крайне необходимы всем любителям цветомузыки, так как позволяют с помощью небольших токов от музыкальной аппаратуры включать выключать И большие токи, питающие осветительные лампы.

10. УНИПОЛЯРНЫЕ ПРИБОРЫ

10.1. Полевой транзистор с управляющим p-n-переходом Полевыми (униполярными) транзисторами с управляющим p-nпереходом называют приборы, работа которых основана на управлении размерами токопроводящей области (канала) посредством изменения напряженности поперечно-приложенного электрического поля. Проводимость канала в таких устройствах определяется основными носителями заряда.

Рис.10.1. Распределение потенциала ток, в полевом транзисторе.

Прибор этот был (U_{ан})₂ предложен (как и многие другие) Шокли в 1952 г. Состоит он просто ИЗ куска легированного полупроводника (например, кремния п-типа), к которому присоединены два омических контакта - исток и сток (рис. 10.1). Если приложить к стоку положительный потенциал относительно истока U_{си}, то по полупроводнику потечет электронный подчиняющийся обычному закону Ома.

На боковой грани расположен еще один электрод, который называется *затвором*. Он представляет собой сильно легированную робласть (обозначается символом p^+). Следовательно, между затвором и каналом мы имеем p-n-переход. Даже если напряжение между затвором и истоком U_{зи} = 0 (см. рис.10.2), этот p-n-переход все равно включен в обратном направлении, так как в любой точке n-канала есть положительный потенциал, создаваемый напряжением между стоком и истоком (рис.10.1).

Значит, в окрестности p-n-перехода мы имеем обедненную область, по которой ток не течет. Ширина обедненной области зависит, во-первых, от уровня легирования полупроводника, а во-вторых, от приложенного к p-n-переходу обратного напряжения. Поскольку потенциал n-канала растет по мере приближения к стоку, соответственно растет обратное напряжение p-n-перехода и ширина обедненной области, что и отражено на рис.10.2.

только в токопроводящем канале между обедненными областями. Если теперь приложить к затвору отрицательный потенциал U_{зи} относительно истообратное ка. то напряжение между затвором и каналом увеличит-СЯ, соответственно увеличится

Ток

будет

стока

протекать

Рис.10.2. Схема включения полевого транзистора с общим истоком.

ширина обедненной области, токопроводящий канал сузится, и ток стока I_c уменьшится (см. рис.10.3). Если и дальше увеличивать отрицательный потенциал затвора, то при каком-то напряжении $U_{3u} = U_{orc}$, которое называется *напряжением отсечки*, обедненные области сомкнутся и ток стока уменьшится практически до нуля.

Рис.10.3. Переходная (стокозатворная) характеристика полевого транзистора, представляющая собой зависимость тока стока от напряжения затвор-исток.

Физическая природа зависимости тока стока от напряжения между стоком и истоком (такая зависимость называется выходной характеристикой транзистора) немного сложнее. При увеличении напряжения сток-исток ток стока, с одной стороны, должен увеличиваться в соответствии с законом Ома, а с другой стороны - уменьшаться из-за увеличения обратного напряжения между затвором и каналом и, соответственно, сужетокопроводящего ния канала.

При малых напряжениях U_{си} первый эффект преобладает, и ток стока растет (рис.10.4). Однако по мере роста U_{си} и сужения канала второй эффект усиливается, и при достижении некоторого порогового значе-

ния напряжения U_{си} оба эффекта уравновешивают друг друга. Этот баланс сохраняется и при дальнейшем увеличении напряжения, и ток стока остается постоянным, иначе говоря, достигается режим насыщения.

Рис.10.4. Выходная характеристика полевого транзистора.

Физические механизмы протекания тока в полевом транзисторе вакуумном И триоде принципиально различны. Однако выходная и переходная характеристики полевого транзистора и старого доброго триода удивительно похожи. Малое изменение напряжения на затворе вызывает значительное изменение тока стока, подобно тому, как

в вакуумной лампе малое изменение напряжения на сетке приводит к существенному изменению анодного тока. Включая в цепь затвора источник малого переменного напряжения, на нагрузочном резисторе R_H в выходной цепи (см. рис.10.2) мы получим усиленное напряжение $U_{\rm вых}$, т.е. полевой транзистор в схеме с общим истоком является усилителем напряжения.

10.2. МДП-структуры

Поговорим еще немного о контактах. Когда мы приводим различные материалы в соприкосновение, возникает множество любопытных эффектов - в этом мы уже убедились на примере p-nперехода. Рассмотрим сейчас специфическую трехслойную структуру, содержащую металл, диэлектрик и полупроводник - МДП- струк-

Рис.10.5. Энергетическая диаграмма МДП-структуры в тепловом равновесии.

туру (рис.10.5). Будем для простоты считать, что до объединения всех трех материалов их уровни Ферми Е_F совпадали. Кроме того, для определенности выберем полупроводник n-типа.

Приложим к такой структуре напряжение плюсом на металл, а минусом на полупроводник. В результате энергетическая диаграмма примет вид, изображенный на рис.10.6, - электрическое поле создаст искривление зон в полупроводнике. В результате уровень Ферми в полупроводнике около контакта с диэлектриком станет еще ближе к дну зоны проводимости и дальше от потолка валентной зоны. Следовательно, вблизи границы раздела диэлектрик-полупроводник концентрация электронов проводимости в полупроводнике увеличится, а

Рис.10.6. Энергетическая диаграмма МДП-структуры при подаче на металл положительного потенциала.

концентрация дырок уменьшится. Иначе говоря, в полупроводнике на границе с диэлектриком образуется слой, *обогащенный* основными носителями.

Это явление нетрудно по- нять и без всяких зонных диаграмм. Положительный потенциал на металле оттолкнет положитель-

ные дырки и притянет отрицательные электроны к границе полупроводник-диэлектрик. Деваться притянутым электронам некуда - ток через диэлектрик не течет, поэтому в полупроводнике образуется и сохраняется обогащенный слой.

Приложим теперь к металлу "минус", а к полупроводнику "плюс", т.е. обратное напряжение. Все произойдет наоборот электроны оттолкнутся от границы раздела, а дырки притянутся. В полупроводнике у границы с диэлектриком образуется *обедненный* слой. Чем обедненный? Конечно, основными носителями. Энергетическая диаграмма, иллюстрирующая явление обеднения, приведена на рис.10.7.

Пока все это достаточно тривиально, но посмотрите внимательно на рис.10.8. По мере увеличения обратного напряжения на МДПструктуре дно зоны проводимости в полупроводнике близ границы с диэлектриком становится все дальше от уровня Ферми, а потолок валентной зоны - все ближе. В один прекрасный момент, точнее, при одном прекрасном напряжении уровень Ферми станет ближе к валентной зоне, чем

к зоне проводимости. Однако на языке статистики это означает, что концентрация дырок станет больше концентрации электронов проводимости. Вот это фокус! Полупроводник n-типа только за счет внешнего электрического поля стал полупроводником p-типа. Такое

Рис.10.8. Энергетическая диаграмма МДП-структуры, иллюстрирующая явление инверсии.

явление называется инверсией.

Толщина слоя, в котором могут происходить обогащение, обеднение или инверсия, рассчитывается аналогично тому, как мы с Вами это делали для толщины обедненного слоя в p-n-переходе, и имеет типичное значение порядка 1 мкм.

Давайте проведем некоторые прикидки. Подвижность электронов в кремнии при комнатной температуре со-

ставляет 0,15 м²/В·с (см. таблицу свойств собственных полупроводников). Если мы создадим в МДП-структуре электрическое поле с напряженностью 1000 В/м (это очень слабое поле!), то электроны приобретут дрейфовую скорость 150 м/с и пробегут расстояние в 1 мкм примерно за 7 нс. Время же тепловой генерации носителей может составлять несколько секунд.

Теперь представьте себе, что мы прикладываем к МДПструктуре достаточное для инверсии обратное напряжение импульсами длительностью, допустим, около 1 мс. Примерно за 0,001% этого времени электроны вытолкнутся из приповерхностной области, а дырки за счет тепловой генерации еще не успевают появиться. Практически все время действия импульса в граничном слое находится крайне мало носителей, поэтому такой режим работы МДПструктуры называется *режимом глубокого обеднения*.

Конечно, явления инверсии и глубокого обеднения очень интересны с точки зрения физики, но какая от них может быть польза, если через МДП-структуру не течет ток? Пользу можно извлечь, если пропустить ток вдоль границы раздела полупроводник-диэлектрик! Тогда можно построить наиболее современные полупроводниковые приборы - так называемые МОП-транзисторы и ПЗС - приборы с зарядовой связью. Об этих приборах, отражающих сегодняшний уровень микроэлектроники, и пойдет речь.

10.3. МОП-транзистор

Сокращение МОП означает "металл-окисел (или оксид, если Вам так больше нравится)-полупроводник". МОП-транзистор представляет собой МДП-структуру, в которой в качестве диэлектрика выступает слой диоксида кремния, что очень удобно с точки зрения технологии. МОП-транзисторы обычно подразделяют на транзисторы с индуцированным каналом и транзисторы со встроенным каналом.

МОП-транзистор с индуцированным каналом схематически

изображен на рис.10.9. МДПструктура состоит из металлического затвора, диэлектрического слоя диоксида кремния и полупроводника кремния, в данном случае, для опреде-

ленности, р-типа. Типичные размеры такого транзистора - единицы микрон в плоскости поверхности полупроводниковой пластины и не

Рис.10.10. Переходная (стокозатворная) характеристика МОП-транзистора с индуцированным пканалом. более 1 мкм в направлении, перпендикулярном поверхности, толщина оксидного слоя 0,02-0,25 мкм. У границы оксидного слоя в кремнии созданы сильнолегированные области п-типа, к которым подсоединяются проводники - исток и сток.

Если между стоком и истоком U₃подключить источник напряжения плюсом к стоку, а на затвор относительно истока напряжение не подавать, то ток по кремнию практически течь не будет, так как в полученной n⁺-p-n⁺ -структуре хотя бы один p-n-переход всегда будет включен в обратном направлении. Если же на затвор подать положительное относительно истока напряжение U_{3u} , то по мере увеличения этого напряжения в полупроводнике образуется вначале обедненный слой (что, естественно, не способствует увеличению тока), а затем при достижении некоторого *порогового напряжения* U_{nop} , произойдет (внимание!) инверсия. В полупроводнике у границы раздела с диэлектриком создается инверсный слой, в данном случае п-типа, который и является индуцированным (созданным внешним электрическим полем) каналом. По этому каналу охотно потечет ток, и, я думаю, Вы без труда сообразите сами, что этот ток будет тем больше, чем больше напряжение между затвором и истоком (почему?). Указанная зависимость тока стока изображена на рис.10.10 и называется переходной, или передаточной характеристикой МОП-транзистора.

Если же п-канал в р-кремнии мы создадим не электрическим полем, а непосредственно легированием донорными примесями при изготовлении прибора, то получим МОП-транзистор со встроенным каналом. Работать он будет чисто на явлении обеднения. При увеличении отрицательного потенциала на затворе относительно истока концентрация электронов в п-канале уменьшается и, соответственно,

Рис.10.11. Переходная характеристика МОП-транзистора со встроенным каналом п-типа.

уменьшается ток стока. Наконец, Lпри некотором напряжении U_{отс}, которое называется напряжением отсечки (знакомый термин, не правда ли?), обедненная область захватит весь n-канал, и транзистор закроется, т.е. ток стока практически исчезнет. Переходная характе-МОП-транзистора ристика co встроенным каналом изображена на рис.10.11 и, я думаю, Вы уже заметили, что она полностью аналогична переходной характеристи-

ке полевого транзистора с управляющим p-n-переходом.

Канал в МОП-транзисторе отделен от затвора слоем диэлектрика (часто вместо "МОП-транзистор" говорят "транзистор с изолированным затвором"), поэтому такой транзистор обладает очень большим входным сопротивлением. Это обстоятельство вместе с большей технологической простотой дает МОП-транзисторам преимущество по сравнению с биполярными транзисторами, которые, в свою очередь, имеют преимущество в быстродействии. Чем закончится эта "битва богов и титанов", пока не совсем ясно, однако есть такая "вариация на тему МОП-транзисторов", которая поистине достойна удивления и восхищения. Речь идет о так называемой КМОП-логике комплементарной МОП-логике. Слово "complement" по-английски означает "дополнение" и не имеет никакого отношения к прекрасному слову "compliment".

Так называемый КМОП-инвертор схематически изображен на рис.10.12 и работает следующим образом. Когда входное напряжение

Рис.10.12. КМОП-инвертор на базе транзисторов с индуцированным каналом.

 $U_{\rm BX} = 0$ (на входе логический ноль), транзистор Т2 закрыт, и его сопротивление очень велико. Транзистор Т1 же при этом имеет отрицательный потенциал на затворе относительно истока, в нем индуцируется р-канал, транзистор ЭТОТ OTкрыт и имеет очень маленькое сопротивление. Значит, все напряжение U₀ будет падать на транзисторе T2, и $U_{BMX} = U_0 = +5 B$ (на выходе логическая единица). Подадим

теперь на вход $U_{Bx} = +5$ В (логическую единицу). На транзисторе T1 станет $U_{3\mu} = 0$, и он закроется. Транзистор T2, напротив, откроется, т.к. для него $U_{3\mu} = +5$ В. Теперь все напряжение U_0 падает на транзисторе T1, и $U_{Bbix} = 0$ (на выходе логический ноль). Ну что ж, инвертор как инвертор. Но! Всегда, когда один из транзисторов открыт, другой - закрыт, и суммарный ток стока этой комплементарной "сладкой парочки" равен току закрытого транзистора, т.е. обратному току p-n-перехода, что составляет около 50 нА. Токи же затворов в МОП-транзисторе вообще мизерны. Тогда при стандартном напряжении питания $U_0 = 5$ В, рассеиваемая КМОП-инвертором мощность составит 0,25 мкВт, что на несколько порядков меньше, чем у любых других аналогичных устройств. Именно крайне малая потребляемая мощность и сделала КМОП-логику такой знаменитой. Поэтому, когда

Вы смотрите на электронные часы, работающие годы от крохотной батарейки, знайте - если бы не КМОП-логика, таких часов не существовало бы!

10.4. Приборы с зарядовой связью

Приборы с зарядовой связью, которые обычно называют просто ПЗС, имеют в своей основе МОП-структуру, работающую в режиме глубокого обеднения. Внешнее сходство с МОП-транзисторами является большим достоинством ПЗС, потому что их производство не требует смены технологии и, следовательно, существенных капиталовложений.

Глубокое обеднение подразумевает, что устройство должно работать в динамическом (импульсном) режиме, характерные времена которого мы рассматривали раньше.

Единичным элементом ПЗС служит трехэлектродная ячейка

Рис.10.13. Принципиальное устройство и режимы работы ПЗС.

(рис.10.13), имеющая три электрода, отделенных слоем оксида от полупроводника - в данном случае для определенности выбран nкремний. В момент времени t₁ на электрод 1 подается отрицательный потенциал, создающий обедненную область в приповерхностном слое кремния. Как показывает распределение поверхностного потенциала В кремнии у границы с диэлектриком (рис.10.13), под электродом 1 в кремнии создается потенциальная яма. Для того чтобы ПЗС приносил пользу, эту яму надо заполнить дырками путем какого-то внешнего воздействия. Например, эти дырки

можно инжектировать через смещенный в прямом направлении p-nпереход или создать путем освещения, в общем, они откуда-то должны появиться.

После того как потенциальная яма под электродом 1 заполнена дырками, надо подать такой же отрицательный потенциал на электрод 2 (рис. 22.1, момент времени t_2). Потенциальная яма станет в два раза шире, и дырки начнут всю ее заполнять за счет диффузии. Если теперь не слишком быстро выключать напряжение U₁, то к моменту времени t_3 , когда $U_1 = 0$, все дырки вытолкнутся в потенциальную яму под электродом 2.

Можно ли снова накапливать дырки под электродом 1? Пока еще нет, надо убрать сначала дырки из-под электрода 2, для чего проделаем прежний фокус - подадим напряжение U_3 (момент t_4), а затем выключим U₂ (момент t₅). Теперь мы переместили пакет заряда от электрода 1 к электроду 3 и можем под электродом 1 накапливать следующий пакет.

Рис.10.14. Решетка электродов в ПЗС.

которой каждый третий электрод соединен с остальными (рис. 10.14), то получим устройство, хранящее и перемещающее пакеты зарядов. Если решетка имеет, например, 3000 электродов, то в ней можно одновременно накапливать 1000 пакетов заряда. Некоторые применения таких устройств очевидны, например, за-

поминающие устройства для стековой памяти или линии задержки. Другие применения ПЗС не столь очевидны. К примеру, ПЗС можно использовать для обработки видеосигнала. Для этого надо изготовить плоскую решетку с прозрачными электродами и сфокусировать на эту поверхность изображение. Падающий свет будет генерировать в кремнии электрон-дырочные пары с концентрацией, пропорциональной интенсивности падающего света. В течение некоторого времени, называемого периодом интегрирования, на решетку подается только напряжение U₁, в соответствующих ячейках накапливаются дырки (или электроны, если Вы используете р-кремний и положительные потенциалы на электродах), т.е. происходит запись изображения в виде пакетов заряда. Затем следует период считывания, в течение которого с решетки ПЗС происходит съем информации путем переключения напряжений U₁, U₂, U₃. Таким образом, мы фактически имеем видикон, т.е. передающую "трубку", преобразующую оптическое изображение в электрический сигнал.

Огромное достоинство ПЗС - исключительная дешевизна, основной недостаток при использовании в качестве запоминающих устройств - потеря информации при отключении источника питания (так называемые ПЗУ - постоянные запоминающие устройства из них не сделаешь).

Обдумав физические принципы работы ПЗС, попробуйте сформулировать сами, какие и почему существуют ограничения в этих приборах на скорость передачи заряда, на величину накапливаемого заряда, а также на размер ячейки (т.е. фактически на габариты устройств).

11. СВЧ- ПРИБОРЫ

11.1. Туннельный диод

Теперь мы рассмотрим пару приборов ,относящихся к приборам СВЧ (сверхвысоких частот). Одним из таких устройств является туннельный диод - диод, в котором и р-область, и п-область являются сильно легированными.

Рис.11.1. Энергетическая диаграмма туннельного диода в тепловом равновесии. Заштрихованы занятые электронами состояния.

Рис.11.2. Характеристика обычного выпрямленного тока в туннельном диоде.

До сих пор мы рассматривали только слабо легированные полупроводники, уровень Ферми в которых располагается в запрещенной зоне. Увеличение концентрации примеси приведет к уширению примесной зоны (вспомните кривую Вильсона!) и, в конце концов край примесной зоны пересечет край ближайшей к ней разрешенной зоны. Уровень Ферми Е_F в полупроводнике р-типа окажется в валентной зоне (см. рис.11.1), а в полупроводнике n-типа в зоне проводимости. Такой полупроводник называется вырожденным и по своим электронным свойствам становится похожим на металл. Реально это происходит при концентрации примеси около 10²⁴ м⁻³ (около 0 ,01%). Если привести такие полупроводники в контакт, то в получившемся р-п-переходе в состоянии теплового равновесия, т.е. в отсутствии внешнего напряжения потенциальный барьер, отделяющий p- и n-области, будет весьма большим - больше, чем ширина запрещенной зоны. Следовательно, фигурирующий в уравнении выпрямителя обратный ток диода I_0 будет малым, и характеристика выпрямления (рис.11.2) будет сильно растянута вдоль оси напряжений. Однако, посмотрев внимательно на рис.11.3 (для простоты здесь разности энергий между уровнем Ферми и краями зон в p- и n-области выбраны одинаковыми), Вы убедитесь, что

Рис.11.3. Энергетическая диаграмма туннельного диода при прямом напряжении, соответствующем максимальному туннельному току. при прямом напряжении в таком p-nпереходе электроны из n-области могут перейти в p-область, не забираясь на потенциальный барьер, а напрямую - за счет туннельного эффекта. Барьер, конечно, высоковат, но ведь полупроводники сильно легированы, а значит, обедненная область (ширина барьера) очень мала, и это с лихвой компенсирует высоту барьера.

Зависимость туннельного тока от напряжения приведена на рис.11.4. Почему она имеет такой интересный вид? Давайте разберемся. Когда U = 0, туннельного тока

нет - электроны из n-области (см. рис. 11.1) не могут туннелировать в p-область, так как в ней все доступные по энергиям состояния уже заняты своими электронами. Туннельный ток будет протекать в том случае, когда для занятых в n-области электронных состояний будут существовать совпадающие с ними по энергии пустые электронные состояния в p-области. Туннельный ток будет расти с увеличением прямого напряжения и достигнет максимума, когда все электроны в nобласти смогут участвовать в туннелировании - именно такая ситуа-

Рис.11.4. Зависимость туннельного тока от напряжения.

ция изображена на рис.11.3. При дальнейшем росте напряжения туннельный ток начнет уменьшаться, так как часть электронов в п-области будет иметь энергии большие, чем потолок валентной зоны робласти, и выйдут из игры - туннелировать им некуда - перед ними запрещенная зона р-области. В конце концов, дно зоны проводимости п-области при некотором напряжении (см. рис.11.5) совпадет с потолком валентной зоны р-области, и туннельный ток исчезнет.

Рис.11.5. Энергетическая диаграмма туннельного диода при прямом напряжении, соответствующем исчезновению туннельного тока. Для того чтобы получить вольтамперную характеристику туннельного диода (рис.11.6), нам осталось сложить обычный инжекционный ток (рис.11.2) и туннельный ток (рис.11.4). В итоге мы получим экзотическую кривую (рис. 11.6), самое необычное в которой - участок AB.

Давайте вспомним, как можно определить сопротивление элемента цепи. Если этот элемент линейный, т.е. подчиняется закону Ома, то сопротивление R будет просто отношением напряжения U на этом элементе к силе тока I через элемент: R=U/I. Если эле-

мент нелинейный, то мы должны ввести дифференциальное сопро-

Рис.11.6. Вольтамперная характеристика туннельного диода.

тивление R = dU/dI. У туннельного диода на участке вольтамперной характеристики AB сопротивление отрицательно! Это звучит несколько дико, но тем не менее так оно и есть (кстати, не нарушает ли это закон сохранения энергии?). Вопрос в том, можно ли извлечь из этого какую-то пользу?

Допустим, у нас есть колебательный контур, содержащий конденсатор с емкостью С, катушку с индуктивностью L и резистор с сопротив-

лением R. Свободные колебания в таком контуре будут затухать, так как резистор, когда по нему течет ток, нагревается и отдает наружу энергию контура. Амплитуда колебаний в контуре будет экспоненциально уменьшаться со временем t по закону

 $\exp(-Rt/2L)$.

Если мы теперь последовательно с резистором R включим элемент с таким же по величине, но *отрицательным* сопротивлением, колебания в контуре станут незатухающими. А если абсолютное значение отрицательного сопротивления больше сопротивления потерь R, то начальный сигнал вообще будет нарастать со временем (опять тот же вопрос - а как же закон сохранения энергии?). Значит, имея в своем распоряжении элемент с отрицательным сопротивлением, мы можем создавать на его основе генераторы и усилители. Если Вы хотите использовать для этой цели туннельный диод, надо только добиться, чтобы на нем было напряжение, смещающее его в область отрицательных сопротивлений, например, U_c (рис.11.6). Схемы при этом будут очень простыми. Например, на рис.11.7 приведена схема автогенератора. Здесь нет даже конденсатора и внешнего резистора и х роль выполняют емкость p-n-перехода и сопротивления проволоки катушки и материала диода. Конечно (см. рис.11.6), выходное напря-

Рис.11.7. Схема генератора на туннельном диоде.

тельной техники.

жение такого генератора (и усилителя) не может быть больше, чем $U_B - U_A$, что составляет реально около 0,2 В. Поэтому на основе туннельных диодов можно создавать только маломощные устройства. Основное же достоинство туннельных диодов - в их очень высоком быстродействии, что связано с малой толщиной области p-n-перехода. Устройства на туннельных диодах могут работать на частотах до 100 ГГц! Такие частотные характеристики сразу открывают для туннельных диодов еще одно применение - в высокоскоростных переключающих устройствах, особенно для вычисли-

11.2. Диод Ганна

Итак, мы выяснили, что прибор с отрицательным сопротивлением - исключительно полезное устройство. Так вот, оказывается, что подобную штуку можно сделать без всяких p-n-переходов, а просто на основе однородного полупроводника, вот только не любого.

Давайте вспомним, как выглядит дисперсионная кривая арсенида галлия, не поленившись нарисовать ее снова (рис.11.8). Этот материал имеет две долины, в одной из которых (около центра зоны Бриллюэна) "живут" легкие электроны, а в другой (на краю первой зоны Бриллюэна) - тяжелые. Если внешнего поля нет, все электроны зоны проводимости находятся в нижней долине и при слабом электрическом поле ситуация сохраняется, поэтому при малых полях ток в образце арсениде галлия линейно растет с напряжением по прямой ОА (рис.11.9). При высоких же полях все электроны соберутся в верхней долине, получив необходимые для этого энергию и импульс от электри-

Рис.11.8. Зонная структура арсенида происходить постепенный пегаллия. реход электронов из нижней

Рис.11.9. Вольтамперная характеристика диода Ганна.

ческого поля. Поскольку у электронов в верхней долине эффективная масса больше, току, обусловленному такими электробудет соответствовать нами, линия ОВ на вольтамперной характеристике (рис.11.9). Здесь есть маленький пробел в рассуждениях, который, я думаю, Вы заполните сами. Поскольку по мере роста напряжения будет реход электронов из нижней долины в верхнюю, на вольтамперной характеристике и образуется участок с отрицательным дифференциальным сопротивлением, соответствующий переходу с ветви ОА на ветвь ОВ вольтамперной характеристики арсенида галлия.

Вот, вроде бы, и все - мы получили прибор с отрицательным сопротивлением, который и называется *диодом Ганна*. Однако не так все просто, потому что отрицательное объемное сопротивление полупроводника неустойчиво. Для того чтобы

немножко разобраться в этом, обратимся к истории вопроса.

В 1963 г. американский физик Дж.Ганн обнаружил явление, которое и получило название эффекта Ганна. Явление заключается в следующем: если к короткому образцу арсенида галлия или фосфида индия n-типа приложить постоянное электрическое поле, превышающее некоторое пороговое значение (несколько киловольт на 1 см), то в цепи возникали СВЧ-колебания (это при постоянном-то напряжении источника!). Частота колебаний оказалась обратной времени пролета носителей через образец. Совместные усилия физиков разных стран показали, что причиной ганновской генерации является эффект междолинного перехода электронов. В чем же тут дело?

А дело во флуктуациях. Допустим, в каком-то маленьком объемчике полупроводника за счет флуктуаций концентрация электронов чуть превысила равновесную. Тогда возрастет и электрическое поле в этом объемчике, соответственно увеличится скорость электронов, электроны быстро покинут область флуктуации - и флуктуация рассосется. Так обстояло бы дело в "нормальном" полупроводнике, но у нас-то ситуация не совсем нормальна. Если к образцу арсенида галлия приложить напряжение U₀ (рис.11.9), в образце возникнет электрическое поле с напряженностью $\&_0 = U_0/d$ (рис.11.10), где d - длина об-

Рис.11.10. Зависимость дрейфовой скорости электронов в GaAs от напряженности электрического поля.

разца. Поскольку напряжение U₀ соответствует области отрицательного сопротивления, в этой дрейфовая скорость области электронов уменьшается с ростом напряженности поля (рис. 11.10). Значит. попавшие В область флуктуации электроны не ускоряются, а наоборот, замедляются. Следующие электроны, попавшие в область флуктуации, еще больше увеличат поле - и еще больше замедлятся, и так далее. Флуктуация будет не рассасываться, а расти, и в итоге образуется пакет электронов - электрический до-

мен, который за счет внешнего электрического поля будет перемещаться внутри образца от катода к аноду со скоростью, равной дрейфовой скорости электронов внутри домена. Реальный размер такого домена составляет около 1 мкм, а напряженность поля в нем ограничена значением $\&_B$ на рис.11.10 (догадываетесь, почему?). Напряженность поля за пределами домена становится, соответственно, меньше первоначальной, и это препятствует зарождению второго домена, пока первый не достигнет анода. Как только первый домен достигнет анода и покинет образец, у катода начинает формироваться второй домен и так до бесконечности - в цепи мы получим импульсы тока, генерирующиеся через промежутки времени t $\approx d/v$, или, иначе говоря, с частотой $v \approx v/d$. Реальная скорость домена в арсениде галлия составляет около 10⁵ м/с, поэтому диод Ганна толщиной 10 мкм гене-

рирует в таком режиме, который называется *пролетным режимом*, колебания с частотой 10 ГГц - как раз то, что требуется для работы, например, радара.

А теперь вернемся к фразе из начала курса: принцип работы диода Ганна основан на эффекте междолинного перехода электронов. Понятно, о чем идет речь? Если понятно, значит, все в порядке...

12. ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

Вообще говоря, интегральной микросхемой называется такое микроэлектронное изделие, которое по своим технологическим и эксплуатационным характеристикам рассматривается как единое целое. Для нас особый интерес представляют *полупроводниковые интегральные микросхемы*, все элементы и соединения между элементами которых выполняются в объеме и на поверхности полупроводникового *кристалла*. Здесь "кристалл"- это термин, означающий маленькую пластину полупроводника и представляющий собой не слишком удачный перевод английского слова chip - кусок, осколок.

Вопросы технологии производства полупроводниковых приборов не входят в наш курс, поэтому остановимся только на некоторых наиболее существенных моментах. Создание микросхем оказалось возможным после разработки *планарно-эпитаксиальной* технологии, а разработка эта началась в 60-х годах (пионером была фирма Fairchild Company в США), и к настоящему времени такая технология позволяет создавать непосредственно в полупроводнике как активные элементы (диоды, биполярные и полевые транзисторы), так и пассивные (резисторы и конденсаторы).

Процесс эпитаксии заключается в осаждении на монокристалле полупроводника, например кремния, слоя того же полупроводника, повторяющего кристаллическую структуру подложки. Это можно сделать, например, поместив монокристаллический кремний в печь, нагретую до температуры около 1250⁰ С. Если через эту печь продуть смесь водорода и тетрахлорида кремния, то в результате химической реакции образуется кремний, осаждающийся на кремниевой же подложке в виде очень чистого монокристаллического слоя. Однако еще более важно то, что в процессе осаждения эпитаксиального слоя его можно легировать. Для этого достаточно водород предварительно продуть через слабый раствор, например, трихлорида фосфора или трихлорида бора. Тогда в итоге можно получить слои, соответственно, п-кремния или р-кремния толщиной от 2 до 20 мкм с заранее заданными размерами и электрическими свойствами.

Следующим важным для планарно-эпитаксиальной технологии моментом является возможность создавать на поверхности кремния оксидный слой, нагревая кремний до температуры 1200° С в атмосфере кислорода. При этом слой диоксида кремния растет со скоростью около 1 мкм/ч, что позволяет легко контролировать его толщину. Если на оксидный слой нанести фоторезист - органическое вещество, растворимость которого зависит от экспозиции в ультрафиолетовых лучах, наложить сверху маску с отверстиями в нужных местах, осветить ультрафиолетовым излучением, удалить освещенные места фоторезиста проявителем, а затем протравить поверхность плавиковой кислотой, которая реагирует с SiO₂, но не фоторезистом, то мы получим окна в слое оксида, открывающие доступ к поверхности кремния. Через эти окна можно провести легирование нужных участков кремния путем диффузии из газовой фазы, а затем удалить оксидный слой. Повторяя нужное количество раз перечисленные выше операции, можно создать любой полупроводниковый прибор.

Рис.12.1. Упрощенная структура n-p-n-транзистора, изготовленного по планарно-эпитаксиальной технологии.

На рис.12.1 приведена упрощенная структура n-p-n-транзистора, изготовленного на кристалле p-кремния 1 с эпитаксиальным слоем nкремния 2 по планарно-эпитаксиальной технологии. В качестве несложного упражнения придумайте сами последовательность изготовления этого транзистора с помощью все тех же этапов: окисления, нанесения фоторезиста, маскирования, экспонирования ультрафиолетовым излучением, проявления фоторезиста, вскрытия окон в оксидном слое, легирования и, наконец, удаления оксидного слоя. Металлические контакты 4 (как правило, из напыленного алюминия), изолированные слоем оксида 3, подведены к областям эмитера Э, базы Б и коллектора К.

Выполнив это упражнение, Вы убедитесь, что технология изготовления транзистора довольно трудоемка. Однако рассмотренный метод хорош тем, что позволяет *одновременно* изготавливать много транзисторов. Насколько много? Площадь изображенного на рис. 12.1 транзистора около 350 мкм². Значит, на стандартной кремниевой пластине диаметром 125 мм удается разместить 35 миллионов таких транзисторов! Это, конечно, не только окупает все затраты, но и приводит к снижению стоимости электронных изделий по мере совершенствования технологии даже в условиях всемирной инфляции.

Естественно, по такой технологии можно создавать не только отдельные элементы, но и целые электронные схемы - это и будут интегральные микросхемы, отличающиеся не только дешевизной, но и миниатюрностью, а также, что, пожалуй, наиболее важно, крайне высокой надежностью из-за отсутствия внутрисхемных соединений.

Дальнейшее совершенствование технологии требует дальнейшей миниатюризации микроэлектронных устройств. Для этого можно легирование проводить не путем диффузии, а ионной имплантацией, фоторезист экспонировать не электромагнитным излучением, а электронным пучком и т.д. Однако есть ли предел совершенству?

В рамках той физики, которая лежит в основе работы полупроводниковых приборов, безусловно, пределы есть. Допустим, Вы сделали прибор объемом 1 мкм³ из кремния с концентрацией легирующей примеси 10²² м⁻³. Даже если все примесные атомы ионизованы, на весь Ваш прибор придется не больше десяти тысяч электронов проводимости, и прибор станет крайне ненадежным из-за флуктуаций. К тому же законы статистической физики, определяющие поведение электронов в твердых телах, просто уже не работают для таких малых количеств электронов - это, кстати, одна из самых актуальных проблем современной физики.

Есть, конечно, и другие принципиальные ограничения миниатюризации полупроводниковых приборов, причем о некоторых из них Вы можете догадаться самостоятельно.

Конечно, ситуация вовсе не безнадежна. Просто приборы таких, как говорят, нанометровых размеров, должны работать на иных принципах, которые сейчас активно разрабатываются наукой под названием *наноэлектроника*. Когда будут созданы практические приложения этой науки? Пока неизвестно - такие вещи, как правило, плохо прогнозируются. О достижениях же в этой области мы с Вами постараемся поговорить в этом курсе, чтобы Вас не пугали выражения "одноэлектронный транзистор " или "ячейка памяти молекулярного размера ". Однако это, как говорится, совсем другая история...

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

1. Фистуль В.И. Введение в физику полупроводников. - М.: Высшая школа, 1984.

2. Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. - М.: Радио и связь, 1990.

3. Солимар Л., Уолш Д. Лекции по электрическим свойствам материалов. - М.: Мир, 1991.

Дополнительная

1. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. - М.: Наука, 1977.

2. Зеегер К. Физика полупроводников. - М.: Мир, 1977.

3. Зи С. Физика полупроводниковых приборов. - М.: Мир, 1984.

4. Киреев П.С. Физика полупроводников. - М.: Высшая школа, 1975.

5. Павлов Л.П. Методы измерения параметров полупроводниковых материалов. - М.: Высшая школа, 1987.

6. Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. - М.: Высшая школа, 1987.

7. Росадо Л. Физическая электроника и микроэлектроника. - М.: Высшая школа, 1991.

8. Смит Р. Полупроводники. - М.: Мир, 1982.

9. Электроника. Энциклопедический словарь. - М.: Советская энциклопедия, 1991.

10. Киттель Ч. Введение в физику твердого тела. - М.: Наука, 1978.

11. Блейкмор Дж. Физика твердого тела. - М.: Мир, 1988.

12. Ридли Б. Квантовые процессы в полупроводниках. - М.: Мир, 1986.

13. Стильбанс Л.С. Физика полупроводников. - М.: Советское радио, 1967.

ОГЛАВЛЕНИЕ

1. Классическая электронная теория 2
2. Электронные энергетические зоны 10
2.1. Квантовое описание электронов в кристалле 10
2.2. Электронные состояния 15
2.3. Туннелирование электронов в решетке 22
2.4. Динамика электронов
2.5. Зонная структура реальных полупроводников 31
3. Равновесные носители заряда 34
3.1. Статистика свободных электронов 34
3.2. Собственные полупроводники
3.3. Примесные полупроводники 44
4. Рассеяние носителей заряда 50
5. Рекомбинация 52
6. Неравновесные носители заряда 54
7. Диффузионный и дрейфовый ток 55
8. Экспериментальные методы исследования полупроводни-
ков
9. Контакт полупроводников 64
9.1. Р-п-переход 64
9.2. Полупроводниковый диод 67
9.3. Барьерная емкость 71
9.4. Пробой р-п-перехода и стабилитрон 73
9.5. Биполярный транзистор75
9.6. Тиристор 80
10. Униполярные приборы 82
10.1. Полевой транзистор с управляющим p-n-переходом 82
10.2. МДП-структуры 84
10.3. МОП-транзистор 87
10.4. Приборы с зарядовой связью 90
11. СВЧ - приборы 92
11.1. Туннельный диод 92
11.2. Диод Ганна 95
12. Интегральные микросхемы
Рекомендуемая литература 102