УДК 544.015.3

ТВЕРДЫЕ РАСТВОРЫ В СИСТЕМЕ Li-Ni-Mn-Co-O

© 2019 г. Г. Д. Нипан^{1, *}, А. И. Клындюк^{2, **}

¹Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Россия, 119991 Москва, Ленинский пр., 31 ²Белорусский государственный технологический университет, Беларусь, 220006 Минск, ул.Свердлова, 13а

*e-mail: nipan@igic.ras.ru **e-mail: klyndyuk@belstu.by Поступила в редакцию 31.05.2018 г.

На основе опубликованных экспериментальных работ оценена концентрационная протяженность твердых растворов LNMCO1, LNMCO2, LNMCO3 и LNMCO4 системы Li–Ni–Mn–Co–O, обладающих структурами галита – Li(Ni,Mn,Co)O, феррита α-NaFeO₂ – Li(Ni,Mn,Co)O₂, манганита – Li₂MnO₃ и шпинели – Li(Ni,Mn,Co)₂O₄. Рассмотрены стабильные многофазные равновесия с их участием в широком диапазоне температур и парциальных давлений кислорода.

Ключевые слова: многокомпонентные оксидные системы, фазовые равновесия **DOI:** 10.1134/S0002337X19020088

Всесторонние исследования твердых растворов (ТР) опираются прежде всего на их кристаллическую структуру. Концентрационный полиморфизм многокомпонентных систем позволяет, с одной стороны, сохранять структуру ТР при варьировании химического состава (XC), а с другой – получать ТР разной структуры при тождественном ХС. Отдельно взятый состав ТР можно представить химической формулой (ХФ), но для описания всей области гомогенности ТР, изменяющейся в зависимости от температуры и давления, ХФ лучше не использовать. Как правило, материаловеды, сторонники стехиометрического формализма, исследуют ТР с одним и тем же целочисленным соотношением химических элементов, что приводит к повторяемости физических измерений для выбранного ХС, но не способствует исследованию изменений физического свойства во всей концентрационной области твердого раствора, включая граничные составы. Более того, при стехиометрическом подходе практически не рассматриваются фазы, находящиеся в равновесии с ТР и, наряду с температурой и давлением, определяющие его граничные ХС.

С этой точки зрения показательны исследования TP системы Li–Ni–Mn–Co–O, обусловленные поиском катодных материалов для повсеместно используемых литий-ионных аккумуляторов (ЛИА). После пионерских работ с образцами брутто-состава LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ [1, 2] материалы с ограниченным набором стехиометрических соотношений Li:Ni:Mn:Со стали центральным объектом изучения, и систематический анализ фазо-

вых состояний системы Li-Ni-Mn-Co-O остался без должного внимания. Проблема стала заметной после неоднократных попыток разработки композиционных катодных материалов для ЛИА, содержащих кристаллиты системы Li-Ni-Mn-Co-O различных структур, в том числе композиционные материалы типа ядро/оболочка [3, 4]. Равновесная концентрация компонентов в сосуществующих кристаллитах, зависящая от фазового состояния, определяет воспроизводимость исходных свойств материалов системы Li-Ni-Mn-Co-Oи, в конечном итоге, возобновляемость ЛИА. Более того, градиент концентраций в рамках однофазной кристаллической структуры [3, 4] ставит под вопрос возможность использования материала во вторичных источниках тока из-за невоспроизводимости электрохимических параметров при перезарядке ЛИА.

Фрагментарные исследования превращений твердых растворов LNMCO1, LNMCO2, LNMCO3 и LNMCO4 системы Li–Ni–Mn–Co–O, обладающих соответственно структурами галита, феррита α-NaFeO₂, манганита Li₂MnO₃ и шпинели, не позволяют получить цельную диаграмму фазовых состояний, показывающую барические, температурные и концентрационные интервалы существования TP, а в идеале представляющую объемы гомогенности TP в координатах давление– температура–состав. Так, например, в работе [5] на трех изоконцентрационных разрезах (Co – 10, 20 и 30 мол. %) тетраэдра Li–Ni–Mn–Co очерчены области гомогенности LNMCO1. LNMCO2 и LNMCO4, однако даже при концентрационном ограничении 0—30 мол. % Со границы гомогенности ТР в выбранных условиях синтеза (800°С, атмосфера кислорода ($p(O_2) = 1$ атм)) не соответствуют границам гомогенности ТР в условиях эксплуатации ЛИА.

В настоящем обзоре на основе опубликованных экспериментальных работ оценена концентрационная протяженность ТР (LNMCO1, LNMCO2, LNMCO3, LNMCO4) системы Li–Ni–Mn–Co–O и рассмотрены стабильные многофазные равновесия с участием ТР в широком диапазоне температур и парциальных давлений кислорода.

Твердый раствор LNMCO1 со структурой галита (Fm3m). Монооксиды NiO, MnO и CoO кристаллизуются в структуре галита (NaCl) и образуют между собой непрерывные ТР [6, 7] в ограниченных интервалах температур Т и парциальных давлений кислорода $p(O_2)$. Наложение ($p(O_2), T$)-областей дивариантных равновесий МО-О2 для бинарных систем Ni-O, Mn-O и Co-O позволяет установить условия существования гомогенного ТР, для которого введение лития ограничивается составами Li_{0.3}(Ni,Mn,Co)_{0.7}О [8-11]. Стабильное существование, при всех соотношениях Ni: Mn: Co, однофазного LNMCO1 определяется давлением кислорода в равновесии MnO-Mn₃O₄-O₂: величины $p(O_2)$ не должны превышать 10^{-5} Па при 800° С и 10⁻² Па при 1000°С [12]. Что касается нижней гранишы $p(O_2)$ связанной с равновесиями $M-MO-O_2$, то иля указанных температур ее сложно корректно оценить. В концентрационном тетраэдре квазичетерной системы Li2O-NiO-MnO-CoO однофазчый LNMCO1 способен заполнить объем от граи NiO-MnO-CoO до параллельного ей сечения при 20 мол. % Li₂O. В общем случае, увеличение содержания лития приводит к появлению ТР на основе полиморфных модификаций LiMO₂ (М – Ni, Mn, Co), в частности LNMCO2 со структурой 2-NaFeO₂, а рост парциального давления кислорода - к образованию LNMCO4 на основе шпинели LiM₂O₄.

Твердый раствор LNMCO2 со структурой α -NaFeO₂ (*R3m*). Сложность использования в IИА кристаллических фаз на основе двойных оксидов LiCoO₂, LiNiO₂ и LiMnO₂ со слоистой структурой α -NaFeO₂ [13], существующих стаильно в разных интервалах давлений кислорода, бъясняет интерес к изоструктурному TP, образующемуся в системе Li-Ni-Mn-Co-O.

Стехиометрические кристаллиты LiCoO₂ сущевуют в двух полиморфных модификациях – высотемпературной ромбоэдрической (тип α-NaFeO₂) низкотемпературной кубической (шпинель). мбоэдрический кобальтат хорошо циклируется ряд–разряд) в диапазоне напряжений 2.5–4.3 В, его обратимая емкость не превышает 150 мА ч/г, к как при разрядке до Li_{0.5}CoO₂ в результате полиморфного превращения структура становится моноклинной, а при большом числе циклов постепенно образуется шпинель, что дополнительно понижает емкость. Кроме того, кобальтат лития характеризуется низкой термической стабильностью и заметной токсичностью.

Стоимость и токсичность LiNiO₂, на основе которого образуется ромбоэдрическая фаза типа α -NaFeO₂, значительно ниже, чем LiCoO₂, а практическая емкость составляет около 200 мА ч/г, однако сложно получить кристаллит заданного состава с воспроизводимыми свойствами. Кроме того, при деинтеркаляции лития в процессе разрядки, как и в случае с LiCoO₂, наблюдается моноклинное искажение структуры, что снижает способность материала к обратимой интеркаляции лития [14, 15].

Отчасти проблему оптимизации электрохимических характеристик решил TP состава $LiNi_xCo_{1-x}O_2$ [16], который, тем не менее, не закрыл тему безопасной эксплуатации ЛИА. Более термически устойчивым оказался LiNi_rMn_{1-r}O₂ [17, 18], обладающий хорошей циклируемостью и емкостью, достигающей 200 мА ч/г в интервале напряжений 2.0-4.5 В, но его получение представляет определенную сложность, так как стабильная модификация LiMnO₂ имеет неизоморфную орторомбическую структуру. В итоге материаловеды обратились к TP типа α-NaFeO₂ (LNMCO2), образующемуся в системе Li-Ni-Mn-Co-O [19-29], позволившему повысить термическую стабильность электродного материала при сохранении высоких электрохимических показателей ЛИА. Были исследованы различные серии составов $LiNi_xMn_yCo_zO_2 (x + y + z = 1)$ [30]. При различных способах синтеза, после отжига на воздухе или в кислороде при температурах 800-1000°С в преобладающем большинстве случаев анализировались образны:

- с эквимолярным отношением Ni : Mn:

- с эквимолярным отношением Mn : Co:

 $\begin{array}{cccccccc} LiNi_{0.85}Mn_{0.075}Co_{0.075}O_2 & (750^{\circ}C) & [21], \\ LiNi_{0.8}Mn_{0.1}Co_{0.1}O_2 & (750-780^{\circ}C) & [21, \ 47-49], \\ LiNi_{0.7}Mn_{0.15}Co_{0.15}O_2 & (780^{\circ}C) & [21, \ 42], \\ LiNi_{0.6}Mn_{0.2}Co_{0.2}O_2 & [21, \ 36, \ 42, \ 49-52]; \end{array}$

- с эквимолярным отношением Ni : Co:

 $Li(Ni_{02}Mn_{06}Co_{02})O_{2}[36];$

- с постоянным содержанием Со или Ni:

LiNi_{0.75 - x}Mn_xCo_{0.25}O₂ (0.1 $\le x \le 0.25$) [53], LiNi_{0.9}Mn_{0.05}Co_{0.05}O₂ [20], LiNi_{0.85}Mn_{0.15 - x}Co_xO₂ (0.1 $\le x \le 0.15$) [54], LiNi_{0.8}Mn_{0.2 - x}Co_xO₂ (0.05 $\le x \le \le 0.15$) [20], LiNi_{0.7}Mn_{0.3 - x}Co_xO₂ (0.05 $\le x \le 0.25$) [20], LiNi_{0.6}Mn_{0.4 - x}Co_xO₂ (0.05 $\le x \le 0.35$) [20], LiNi_{0.6}Mn_xCo_{0.4 - x}O₂ (0.15 $\le x \le 0.25$) [55];

– а также с выборочным соотношением Ni : Mn : Co:

Значительная часть исследований LNMCO2 связана с составом LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂ [21–29, 36, 58–65], для которого характерна разрядная емкость на уровне 150 мА ч/г и высокая безопасность при сравнительно высокой термической устойчивости 300°С [21]. Увеличение содержания никеля в ряду LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂, LiNi_{0.5}Mn_{0.3}Co_{0.2}O₂, LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂, LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂ и LiNi_{0.85}Mn_{0.075}Co_{0.75}O₂ приводит к повышению разрядной емкости до 210 мА ч/г при одновременном снижении термической устойчивости до 220°С [21].

Практический интерес с точки зрения использования в качестве электрода ЛИА представляет возможность интеркаляции и деинтеркаляции лития в LNMCO2 при сохранении однофазности. Возможность делитирования TP на основе Li_xCoO_2 $(1/3 \le x \le 1)$ [66], $\text{Li}_x \text{Ni}_{2-x} \text{O}_2$ ($x \ge 0.69$) [67] и $Li_a Ni_{1-x} Co_x O_2$ ($0 \le x \le 0.3, 0.4 \le a \le 1$) [68] pacipoстраняется на LNMCO2. Электрохимическое делитирование $Li_xNi_{0.33}Mn_{0.33}Co_{0.33}O_2$ в интервале температур 25–100°С до x = 0.25 [61] или до x ~ 0.00 [59, 62] сопровождается полиморфным переходом между гексагональными структурами при x = 0.8[62], в результате дальнейшего уменьшения х образуется моноклинная структура [63]. Отжиг на воздухе при 900°С приводит к тому, что для $x \le 0.89$ выделяется шпинелеподобная фаза, которая с ростом температуры появляется и в ТР идеализированного состава LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂ [29]. Образцы LiNi_{0.8}Mn_{0.1}Co_{0.1}O_{2 $-\delta$} после электрохимического делитирования до $Li_{0.38}Ni_{0.8}Mn_{0.1}Co_{0.1}O_{2-\delta}$ остаются однофазными [69]. Отжиг LiNi_{0.8}Mn_{0.1}Co_{0.1}O_{2-δ} в кислороде и на воздухе при 800-1000°С незначительно изменяет величину индекса кислородной нестехиометрии (δ) образцов, при этом их отжиг в азоте сильно (до 0.23) изменяет величину δ [69]. Эти результаты подтверждаются другими авторами, например, образец LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂, отожженный при 850°C в кислороде и смесях $O_2:N_2$ (50: 50, 21: 79, 5: 95)], при содержании O₂ в газовой фазе 5 об. %, потерял 2.14% от исходной массы [70].

Полученный при 800°С на воздухе LNMCO2 с исходными составами LiNi_{1 – 2y}Mn_yCo_yO₂ (y = 0.1, 0.15, 0.2, 0.25) и LiNi_{0.5 – y}Mn_{2y}Co_{0.5 – y}O₂ (y = 0, 0.05, 0.1, 0.15), делитированный при температурах

150-210°С в атмосфере аргона до Li_{0.5}(Ni, Mn, $Co)O_2$, превращается при отжиге на воздухе в метастабильную шпинель LNMCO4, из которой образуется галит LNMCO1, не функциональный для ЛИА [71]. Li_xNi_{0 33}Mn_{0 33}Co_{0 33}O₂, обогащенный литием до x = 1.12 и отожженный на воздухе при 900°С, остается однофазным [29], а для $Li_{1+v}Ni_{x}Mn_{x}Co_{1-2x}O_{2}$ гомогенность вплоть до y == 0.20 сохраняется при изменении x в интервале [24], 0.33-0.475 как, например, ДЛЯ Li_{1.05}Ni_{0.35}Mn_{0.4}Co_{0.25}O₂ при отжиге до 1000°C [72]. Исследования Li[Li_x(Ni_{1/3}Mn_{1/3}Co_{1/3})_{1-x}]O₂ показали, что гомогенность TP нарушается при x = 0.17 $(Li_{1,41}Ni_{0,33}Mn_{0,33}Co_{0,33}O_2)$ [25].

В ряде случаев фазовый состав обогащенных литием материалов $Li_{1+x}(Ni,Mn,Co)_{1-x}O_2$ однозначно не установлен [73, 74]. При синтезе золь-гель-методом и последующем отжиге при 700-1000°С на воздухе образцов $Li_{1,2}Mn_{0.54}Ni_{0.13}Co_{0.13}O_2$ образуется композит LNMCO2 + LNMCO3 [75, 76]. Анализ системы LiNiO₂-Li₂MnO₃-LiCoO₂ привел к такому же результату, но граничные составы ТР, участвующих в равновесии, не определены [77]. Согласно [78], при совместном высушивании раствора $2LiNO_3 + Mn(NO_3)_2$ с порошком LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ и последующем отжиге на воздухе при 900°С образовывались ТР составов . $0.3Li_2MnO_3$ 0.7LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ 0.7Li₂MnO₃ · 0.3LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ [78].

В соответствии с приведенным анализом концентрационный объем LNMCO2 в условном тетраэдре составов $Li_2O-(Ni_2O_3)-Mn_2O_3-(Co_2O_3)$ способен заполнять пространство между плоскостями $Li_{0.35}(Ni,Mn,Co)O_{2-\delta}$ и $Li_{12}(Ni,Mn,Co)O_{2+\delta}$, не достигая фигуративной точки $LiMnO_2$. В изобарноизотермических условиях концентрационный полиэдр LNMCO2 сжимается и смещается в зависимости от парциального давления кислорода.

Твердый раствор LNMCO3 со структурой Li₂MnO₃ (C2/m). Ряд исследователей рассматривают Li₂MnO₃ как предельный состав в ряду твердых растворов $xLi_2MnO_3 \cdot (1 - x)LiMO_2$ (M – Ni, Mn, Co), однако совместное существование фаз LNMCO2 и LNMCO3 указывает на неправомочность такого подхода. В системе Li–Ni–Mn–Co–O твердый раствор LNMCO3 на основе Li₂MnO₃ наименее изучен. Для Li_{2±x}MnO_{3±y}, в зависимости от парциального давления кислорода, величина x может доходить до 0.2 [11, 79], а дефицит по кислороду при соотношении Li : Mn = 2 : 1 варьироваться в пределах 0 < y < 0.19 [80]. Установлено, что TP состава Li[Li_{0.2}Mn_{0.6}]O₂ сохраняет структуру Li₂MnO₃ [81].

Твердый раствор LNMCO4 со структурой шпинели LiMn₂O₄ (*Fd3m***). Значительный прикладной интерес представляет увеличение содержания в LNMCO2 дешевого и нетоксичного оксида марганца [82, 83], повышающего напряжение разряда и** гермическую стабильность ЛИА. Однако при дотижении некоторой предельной концентрации марганца нарушается гомогенность LNMCO2 и нделяются кристаллиты переменного состава со структурой шпинели LNMCO4. Нестехиометрическая шпинель на основе LiMn₂O₄ также может аспользоваться как катодный материал для ЛИА [84], но наличие сложных фазовых превращений в системе Li-Mn-O [11], протекающих с участисм стабильных и метастабильных твердых растворов, затрудняет ее практическое применение. Подобно слоистому LNMCO2, используемому вместо LiCoO₂, многокомпонентная шпинель LNMCO4 эбладает рядом преимуществ по сравнению с исилной фазой LiMn₂O₄ [85], но за исключением саботы [5], где приведены три разреза ТР (Со – 10. 20 и 30 мол. %) в изобарно-изотермическом тетраэдре Li-Ni-Mn-Co, а также отмечены шпинель образующие соединения $Co_{3}O_{4}$, Со₂MnO₄ и NiMn₂O₄, реальные химические составы LNMCO4, участвующего в многофазных равновесиях, не оценены.

В системе Li-Mn-Co-О концентрационная область шпинели объединяет простые оксиды Mn_3O_4 и Co_3O_4 с двойным оксидом Li Mn_2O_4 . В квазибинарной системе Mn₃O₄-Co₃O₄ сложно получить непрерывный TP со структурой шпинен, так как наложение $(p(O_2), T)$ -областей дивариантных равновесий Mn₃O₄-O₂ и Co₃O₄-O₂ прекращается выше 800°С при *p*(O₂) ~ 10³ Па [12]. Соответственно, на воздухе в кубической шпинеи Co₃O₄ происходит замещение до Co₂MnO₄ (Co_{2.02}Mn_{1.08}O₄ [86] или Co_{1.7}Mn_{1.3}O₄ [87]), затем появляется тетрагональная шпинель вероятного состава CoMn₂O₄ а при дальнейшем увеличении содержания Мп возникает равновесие шпинель тетр.)-биксбиит Mn₂O₃ [87]. При введении Li образуется область гомогенности, которая объглиняет (Co,Mn)₃O₄ с LiMn₂O₄, захватывая составы Li₂CoMn₃O₈ и LiCoMnO₄ [87]. Нелитированная низкотемпературная шпинель LiCo₂O₄ (или $Li_{1-x}CoO_2, 0 \le x \le 0.5$) не принадлежит стабильной области ТР и образуется при использовании специальных методик синтеза [88, 89]. Подобным образом ведет себя шпинель LiNi₂O₄ [89, 90], однако при использовании золь-гель-метода сингеза при 280°С были получены ТР LiNi_xCo_{2-x}O₄ (x = 0.25, 0.5, 0.75 и 1) [91]. В отсутствие лития для получения шпинели NiCo₂O₄ используются гидротермальный синтез, золь-гель-методика и электрохимическое разложение с последующим отжигом при температурах, не превышающих 300°C [92].

В системе Li-Mn-Ni-O без особых проблем образуется смешанная шпинель NiMn₂O₄. Однако дальнейшее замещение Mn на Ni связано со значительными трудностями, так как Ni₃O₄ может стабильно существовать только при избыточном давлении кислорода и LiNi_{0.5}Mn_{1.5}O₄ – гра-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 2 2019

ничный состав LNMCO4, участвующего в трехфазном равновесии с LNMCO1 и LNMCO2 ($800^{\circ}C, p(O_2) = 100 \text{ к}\Pi a$) [18].

Область кубической шпинели в системе Ni-Mn-Co-O при 800°C на воздухе закрывает треугольник Co_3O_4 -Mn₁₂₅Co₁₇₅O₄-NiMn₂O₄ и распространяется от Ni_{0.5}Mn_{1.5}CoO₄ до граничных составов Ni_{0.5}MnCo_{1.5}O₄, Ni_{0.75}Mn_{1.25}CoO₄ и Ni_{0.25}Mn_{1.5}Co_{1.25}O₄ [93].

Таким образом, концентрационное пространство ТР со структурой шпинели в системе значительно изменяется в зависимости от температуры и давления. Особый интерес представляют граничные составы LNMCO4, участвующего в многофазных равновесиях.

ЗАКЛЮЧЕНИЕ

Из громадного количества научных работ по катодным материалам для ЛИА на основе системы Li–Ni–Mn–Co–O рассмотрено около 90 работ, связанных с твердыми растворами LNMCO1, LNMCO2, LNMCO3 и LNMCO4, обладающими соответственно структурами галита – Li(Ni,Mn,Co)O, феррита α-NaFeO₂ – Li(Ni,Mn,Co)O₂, манганита – Li₂MnO₃ и шпинели – Li(Ni,Mn,Co)₂O₄.

Показано, что фазовые равновесия с участием оксидных Mn-содержащих многокомпонентных ТР требуют детального физико-химического изучения в рамках изобарно-изотермических квазичетверных систем [94, 95] для установления оптимальных температур, парциальных давлений кислорода и химических составов с целью получения эффективных катодных материалов ЛИА.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований и при поддержке Министерства образования Республики Беларусь.

СПИСОК ЛИТЕРАТУРЫ

- Ohzuku T., Makimura Y. Layered Lithium Insertion Material of LiCo_{1/3}Ni_{1/3}Mn_{1/3}O₂ for Lithium-Ion Batteries // Chem. Lett. 2001. V. 30. № 7. P. 642–643.
- Lu Z., MacNeil D.D., Dahn J.R. Layered Li[Ni_xCo_{1-2x⁻} Mn_x]O₂ Cathode Materials for Lithium-Ion Batteries // Electrochem. Solid-State Lett. 2001. V. 4. № 12. P. A200-A203.
- 3. Sun Y.K., Myung S.T., Park B.C., Prakash J., Belharouak I., Amine K. High-Energy Cathode Material for Long-Life and Safe Lithium Batteries // Nature Mater. 2009. V. 8. № 4. P. 320–324.
- Xu B., Qian D., Wang Z., Meng Y.S. Recent progress in cathode materials research for advanced lithium ion batteries // Mater. Sci. Eng., R. 2012. V. 73. № 5/6. P. 51–65.
- 5. Brown C.R., McCalla E., Watson C., Dahn J.R. Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudo-

quaternary System for Use on Li–Ion Battery Materials Research // ASC Comb. Sci. 2015. V. 17. P. 381–391.

- Балакирев В.Ф., Бархатов В.П., Голиков Ю.В., Майзель С.Г. Манганиты: равновесные и нестабильные состояния. Екатеринбург: УрО РАН, 2000. С. 397.
- Suzuki R., Matsuua S., Nagase R., Suzuki T. Densification and Mechanical Property of NiO–CoO and NiO– CoO–MgO System Ceramics // J. Ceram. Soc. Jpn. 2000. V. 108. № 4. P. 412–415.
- Wu Y., Pasero D., McCabe E.E., Matsushima Y., West A.R. Formation of Disordered and Partially Ordered Li_xCo_{1-x}O // J. Mater. Chem. 2009. V. 19. № 10. P. 1443–1448.
- Antolini E. Li_xNi_{1-x}O (0 < x ≤ 0.3) solid solutions: formation, structure and transport properties // Mater. Chem. Phys. 2003. V. 82. № 3. P. 937–948.
- Sugiyama J., Noritake T., Hioki T., Itoh T., Hosomi T., Yamauchi H. A New Variety of LiMnO₂: High-Pressure Synthesis and Magnetic Properties of Tetragonal and Cubic Phases of Li_xMn_{1-x}O (x ~ 0.5) // Mater. Sci. Eng., B. 2001. V. 84. № 3. P. 224–232.
- 11. Бузанов Г.А., Нипан Г.Д., Жижин К.Ю., Кузнецов Н.Т. Фазовые равновесия с участием твердых растворов в системе Li-Mn-O // ЖНХ. 2017. Т. 62. № 5. С. 551-558.
- 12. Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М.: URSS, 2015. 480 с.
- Julien C.M., Mauger A., Zaghib K., Groult H. Comparative Issues of Cathode Materials for Li-Ion Batteries // Inorganics. 2014. V. 2. № 1. P. 132–154.
- Kim T., Park J., Change S.K., Choi S., Ryu J.H., Song H. The Current Move of Lithium Ion Batteries towards the Next Phase // Adv. Energy Mater. 2012. V. 2. № 7. P. 860-872.
- Blomgren G.E. The Development and Future of Lithium Ion Batteries // J. Electrochem. Soc. 2017. V. 164. № 1. P. A5019–A5025.
- Itou Y., Ukyo Y. Performance of LiNiCoO₂ Materials for Advanced Lithium-Ion Batteries // J. Power Sources. 2005. V. 146. P. 39–44.
- Deng H., Belharouak I., Cook R.E., Wu H., Sun Y.K., Amine K. Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries // J. Electrochem. Soc. 2010. V. 157. № 4. P. A447–A452.
- McCalla E., Rowe A.W., Shunmugasundaram R., Dahn J.R. Structural Study of the Li-Mn-Ni Oxide Pseudoternary System of Interest for Positive Electrodes of Li-Ion Batteries // Chem. Mater. 2013. V. 25. P. 989–999.
- Zhang X., Jiang W.J., Mauger A., Qi L., Gendron F., Julien C.M. Minimization of the Cation Mixing in Li_{1+x}-(NMC)_{1-x}O₂ as Cathode Material // J. Power Sources. 2010. V. 195. № 5. P. 1292–1301.
- Wang L., Li J., He X., Pu W., Wan C., Jiang C. Recent Advances in Layered LiNi_xCo_yMn_{1-x-0} Cathode Materiales for Lithium Ion Batteries // J. Solid State Electrochem. 2009. V. 13. № 8. P. 1157–1164.
- Noh H.J., Youn S., Yoon C.S., Sun Y.K. Comparison of the Structural and Electrochemical Properties of Layered Li[Ni_xCo_yMn_z]O₂ (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries // J. Power Sources. 2013. Vol. 233, P. 121–130.
- Wu K., Wang F, Gao L., Li M.-R., Xiao L., Zhao L., Hu S., Wang X., Xu F., Wu Q. Effect of Precursor and Synthesis Temperature on the Structural and Electrochemical Properties of Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O₂ // Electrochim. Acta. 2012. V. 75. P. 393–398.

- Cho T.-H., Shiosaki Y., Noguchi H. Preparation and Characterization of Layered LiMn_{1/3}Ni_{1/3}Co_{1/3}O₂ as a Cathode Material by an Oxalate Co-Precipitation Method // J. Power Sources. 2006. V. 159. № 2. P. 1322–1327.
- Shizuka K., Kobayashi T., Okahara K., Okamoto K., Kanzaki S., Kanno R. Characterization of Li₁₊, Ni_xCo_{1-2x}Mn_xO₂ Positive Active Materials for Lithium Ion Batteries // J. Power Sources. 2005. V. 146. № 1–2. P. 589–593.
- Kim J.-M., Kumagai N., Kadoma Y., Yashiro H. Synthesis and Electrochemical Properties of Lithium Non-Stoichiometric Li_{1+x}(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂₊₈ Prepared by a Spray Drying Method // J. Power Sources. 2007. V. 174. № 2. P. 473–479.
- 26. *He P., Wang H., Qi L., Osaka T.* Electrochemical Characteristics of Layered LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ and with Different Synthesis Conditions // J. Power Sources. 2006. V. 160. № 1. P. 627–632.
- 27. Cho T.H., Park S.M., Yoshio M., Hirai T., Hideshima Y. Effect of Synthesis Condition on the Structural and Electrochemical Properties of Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O₂ Prepared by Carbonate Co-Precipitation Method // J. Power Sources. 2005. V. 142. № 1–2. P. 306–312.
- Santhanam R., Rambabu B. Improved High Rate Cycling of Li-rich Li_{1.10}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂ Cathode for Lithium Batteries // Int. J. Electrochem. Sci. 2009. V. 4. № 12. P. 1770–1778.
- Fujii Y., Miura H., Suzuki N., Shoji T., Nakayama N. Structural and Electrochemical Properties of Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O₂: Calcination Temperature Dependence // J. Power Sources. 2007. V. 171. № 2. P. 894– 903.
- Wei Y., Zheng J., Cui S., Song X., Su Y., Deng W., Wu Z., Wang X., Wang W., Rao M., Lin Y., Wang C., Amine K., Pan F. Kinetics Tuning of Li-Ion Diffusion in Layered Li(Ni_xMn_yCo₂)O₂ // J. Am. Chem. Soc. 2015. V. 137. № 26. P. 8364–8367.
- Jouanneau S., MacNell D.D., Lu Z., Beattle S.D., Murhpy G., Dahn J.R. Morphology and Safety of Li[Ni_xCo_{1-2x}Mn_x)O₂ (0 ≤ x ≤ 1/2) // J. Electrochem. Soc. 2003. V. 150. № 10. P. A1299–A1304.
- Jouanneau S., Eberman K.W., Krause L.J., Dahn J.R. Synthesis, Characterization, and Electrochemical Behavior of Improved Li[Ni_xCo_{1-2x}Mn_x)O₂ (0.1 ≤ x ≤ 0.5) // J. Electrochem. Soc. 2003. V. 150. № 12. P. A1637–A1642.
- 33. *Chen C.-H., Wang C.-J., Hwang B.-J.* Electrochemical Performance of Layered Li[Ni_xCo_{1 - 2x}Mn_x)O₂ Cathode Materials Synthesized by a Sol-Gel Method // J. Power Sources. 2005. V. 146. P. 626–629.
- 34. Saadoune I., Labrini M., Almaggoussi A., Ehrenberg H. LiNi_{0,1}Mn_{0,1}Co_{0,8}O₂ Electrode Material: Structural Changes upon Lithium Electrochemical Extraction // Electrochim. Acta. 2010. V. 55. № 18. P. 5180–5185.
- Bentaleb Y., Saadoune I., Maher K., Saadi L., Fujimoto K., Ito S. On LiNi_{0.2}Mn_{0.2}Co_{0.6}O₂ Positive Electrode Material // J. Power Sources. 2010. V. 195. P. 1510–1515.
- 36. *Pişkin B., Aydinol M. K.* Development and Characterization of Layered Li(Ni_xMn_yCo_{1-x-y})O₂ Cathode Materials for Lithium Ion Batteries // Int. J. Hydrogen Energy. 2016. V. 41. № 23. P. 9852–9859.
- Lu Z., MacNeil D.D., Dahn J.R. Layered Li[Ni_xCo_{1-2x}-Mn_x]O₂ Cathode Materials for Lithium-Ion Batteries // Electrochem. Solid-State Lett. 2001. V. 4. № 12. P. A200-A203.
- 38. Ngala J.K., Chernova N.A., Ma M., Mamak M., Zavalij P.Y., Whittingham M.S. The Synthesis. Characterization and Electrochemical Behavior of the Layered Li-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 2 2019

 $Ni_{0.4}Mn_{0.4}Co_{0.2}O_2$ Compound // J. Mater. Chem. 2004. V. 14. Nº 2. P. 214–220.

- 39. Oh S.W., Park S.-H., Amine K., Sun Y.-K. Synthesis and Characterization of Spherical Morphology [Ni_{0.4}Co_{0.2}Mn_{0.4}]₃O₄ Materials for Lithium Secondary Batteries // J. Power Sources. 2006. V. 160. № 1. P. 558– 562.
- 40. Куриленко К.А., Брылев О.А., Филиппова Т.В., Баранчиков А.Е., Шляхтин О.А. Криохимический синтез катодных материалов на основе Li-Ni_{0.4}Mn_{0.4}Co_{0.2}O₂ для ионных аккумуляторов // Наносистемы: Физика, химия, математика. 2013. Т. 4. № 1. С. 105–112.
- Makhonina E.V., Medvedeva A.E., Dubasova V.S., Volkov V.V., Politov Yu.A., Eremenko I.L. A New Coating for Improving the Electrochemical Perfprmance of Cathode Materials // Int. J. Hydrogen Energy. 2016. V. 41. № 23. P. 9901–9907.
- 42. Zheng J., Liu T., Hu Z., Wie Y., Song X., Ren Y., Wang W., Rao M., Lin Y., Chen Z., Lu J., Wang C., Amine K., Pan F. Tuning of Thermal Stability in Layered Li(Ni_x-Mn_yCo₂)O₂ // J. Am. Chem. Soc. 2016. V. 138. № 40. P. 13326–13334.
- 43. Li D.-C., Noguchi H., Yoshio M. Electrochemical Characteristics of LiNi_{0.5-x}Mn_{0.5-x}Co_{2x}O₂ (0 < x ≤ 0.1) Prepared by Spray Dry Method // Electrochim. Acta. 2004. V. 50. № 2/3. P. 427–430.
- 44. Kang S.-H., Kim J., Stoll M.E., Abraham D., Sun Y.K., Amine K. Layered Li(Ni_{0.5-x}Mn_{0.5-x}M_{2x})O₂ (M' = Co, Al, Ti; x = 0, 0.025) Cathode Materials for Li-ion Rechargeable Batteries // J. Power Sourcos. 2002. V. 112. P. 41–48.
- 45. Choi J., Mathiram A. Structural and Electrochemical Characterization of the Layered LiNi_{0.5-y}Cn_{0.5-y}Co_{2y}O₂ (0 ≤ 2y ≤ 1) Cathodes // Solid State Ionics. 2005. V. 176. № 29/30. P. 2251–2256.
- 46. Oh S.W., Park S.H., Park C.-W., Sun Y.-K. Structural and Electrochemical Properties of Layered Li[Ni_{0.5}Mn_{0.5}]_{1-x}Co_xO₂ Positive Materials Synthesized by Ultrasonic Spray Pyrolysis Method // Solid State Ionics. 2004. V. 171. № 3/4. P. 167–172.
- 47. Lee K.-S., Myung S.-T., Amine K., Yashiro H., Sun Y.-K. Structural and Electrochemical Properties of Layered Li[Ni_{1-2x}Co_xMn_x]O₂ (x = 0.1-0.3) Positive Electrode Materials for Li-Ion Batteries // J. Electrochem. Soc. 2007. V. 154. № 10. P. A971–A977.
- 48. Kim M.-H., Shin H.-S., Shin D., Sun Y.-K. Synthesis and Electrochemical Properties of Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O₂ and Li[Ni_{0.8}Co_{0.2}]O₂ via Co-Precipitation // J. Power Sources. 2006. V. 159. № 2. P. 1328–1333.
- 49. Pan C.-C., Zhu Y.-R., Yang Y.-C., Hou H.-S., Jing M.-J., Song W.-X., Yang X.-M., Ji X.B. Influences of Transition Metal on Structural and Electrochemical Properties of Li[Ni_xCo_yMn_z]O₂ (0.6 ≤ x ≤ 0.8) Cathode Materials for Lithium-Ion Batteries // Trans. Nonferrous Met. Soc. China. 2016. V. 26. № 5. P. 1396–1402.
- Lee S.-W., Kim H., Kim M.-S., Youn H.-C., Kang K., Cho B.-W., Roh K.-C., Kim K.-B. Improved Electrochemical Performance of LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ Cathode Material Synthesized by Citric Acid Assisted Sol-Gel Method for Lithium Ion Batteries // J. Power Sources. 2016. V. 315. P. 261–268.
- Wang L., Wu B., Mu D., Liu X., Peng Y., Xu H., Liu Q., Cai L., Wu F. Single-Crystal LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ as High Performance Cathode Materials for Li-Ion Batteries // J. Alloys Compd. 2016. V. 674. P. 360–367.

- 52. Cao H., Zhang Y., Zhang J., Xia B. Synthesis and Electrochemical Characteristics of Layered LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ Cathode Material for Lithium Ion Batteries // Solid State Ionics. 2005. V. 176. № 13/14. P. 1207–1211.
- 53. *Liao P.Y., Duh J.G., Sheen S.R.* Effect of Mn Content on the Microstructure and Electrochemical Performance of LiNi_{0.75-x}Co_{0.25}Mn_xO₂ Cathode Materials // J. Electrochem. Soc. 2005. V. 152. № 9. P. A1695–A1700.
- 54. Sun H.-H., Choi W., Lee J.K., Oh I.-H., Jing H.-G. Control of Electrochemical Properties of Nickel-Rich Layered Cathode Materials for Lithium Ion Batteries by Variation of the Manganese to Cobalt Ratio // J. Power Sources. 2015. V. 275. P. 877–883.
- Liao P.Y., Duh J.G., Sheen S.R. Microstructure and Electrochemical Performance of LiNi_{0.6}Co_{0.4-x}Mn_xO₂ Cathode Materials // J. Power Sources. 2005. V. 143. P. 212–218.
- Wang G.X., Bewlay S., Yao J., Chen Y., Guo Z.P., Liu H.K., Dou S.X. Multiple-Ion-Doped Lithium Nickel Oxides as Cathode Materials for Lithium-Ion Batteries // J. Power Sources. 2003. V. 119–121. P. 189–194.
- 57. Chen Y., Wang G.X., Konstantinov K., Liu H.K., Dou S.X. Synthesis and Characterization of LiCo_xMn_yNi_{1-x-y}O₂ as a Cathode Material for Secondary Lithium Batteries // J. Power Sources. 2003. V. 119–121. P. 184–188.
- 58. Xu Z., Xiao L., Wang F., Wu K., Zhao L., Li M.-R., Zhang H.-L., Wu Q., Wang J. Effects of Precursor, Synthesis Time and Synthesis Temperature on the Physical and Electrochemical Properties of Li(Ni_{1-x-y}Co_xMn_y)O₂ Cathode Materials // J. Power Sources. 2014. V. 248. P. 180–189.
- 59. Gotsu P., Pflhelm W., Smyrek P., Seifert H.J. Thermal Behaviour of Li_xMeO₂ (Me = Co or Ni + Mn + Co) Cathode Materials // Phys. Chem. Chem. Phys. 2017. V. 19. № 19. P. 11920–11930.
- Cheng E.J., Hong K., Taylor N.J., Choe H., Wolfestine J., Sakamoto J. Mechanical and Physical Properties of Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O₂ (NMC) // J. Eur. Ceram. Soc. 2017. V. 37. № 9. P. 3213–3217.
- Amin R., Chiang Y.-M. Characterization of Electronic and Ionic Transport in Li_{1-x}Ni_{0.33}Mn_{0.33}Co_{0.33}O₂ (NMC₃₃₃) and Li_{1-x}Ni_{0.50}Mn_{0.20}Co_{0.30}O₂ (NMC₅₂₃) as a Function of Li Content // J. Electrochem. Soc. 2016. V. 163. № 8. P. A1512–A1517.
- 62. Yoon W.-S., Chung K.Y., McBreen J., Yang X.-Q. A Comparative Study on Structural Changes of Li-Co_{1/3}Ni_{1/3}Mn_{1/3}O₂ and LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ during First Charge Using in situ XRD // Electrochem. Commun. 2006. V. 8. № 8. P. 1257–1262.
- Belharouak I., Sun Y.-K., Liu J., Amine K. Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂ as a Suitable Cathode for High Power Applications // J. Power Sources. 2003. V. 123. P. 247–252.
- 64. Ryu W.-H., Lim S.-J., Kim W.-K., Kwon H.S. 3-D Dumbbell-Like LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ Cathode Materials Assembled with Nano-Building Blocks for Lithium-Ion Batteries // J. Power Sources. 2014. V. 257. P. 186–191.
- 65. Воронов В.А., Швецов А.О., Губин С.П., Чеглаков А.В., Корнилов Д.Ю., Карасева А.С., Краснова Е.С., Ткачев С.В. Влияние метода получения катодного материала состава LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ на электрохимические характеристики литий-ионного аккумулятора // ЖНХ. 2016. Т. 61. № 9. С. 1211–1217.
- 66. Basch A., De Campo L., Albering J.H., White J.W. Chemical Delithiation and Exfoliation of Li_xCoO₂ // J. Solid State Chem. 2014. V. 220. P. 102–110.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 2 2019

- 67. Barton P.T., Premchand Y.D., Chater P.A., Seshadri R., Rosseinsky M.J. Chemical Inhomogeneity, Short-Range Order, and Magnetism in the LiNiO₂-NiO Solid Solution // Chem. Eur. J. 2013. V. 19. № 43. P. 14521-14531.
- Cho J., Jung H.S., Park Y.C., Kim G.B., Lim H.S. Electrochemical Properties and Thermal Stability of Li_aNi_{1-x}Co_xO₂ Cathode Materials // J. Electrochem. Soc. 2000. V. 147. № 1. P. 15–20.
- Idris M.S., West A.R. The Effect on Cathode Performance of Oxygen Non-Stoichiometry and Interlayer Mixing in Layered Rock Salt LiNi_{0.8}Co_{0.1}Mn_{0.1}O_{2-δ}// J. Electrochem. Soc. 2012. V. 159. № 4. P. A396–A401.
- Bi Y., Yang W., Du R., Zhou J., Liu M., Liu Y., Wang D. Correlation of Oxygen Non-Stoichiometry to the Instabilities and Electrochemical Performance of LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ Utilized in Lithium Ion Battery // J. Power Sources. 2015. V. 283. P. 211–218.
- Kan W.H., Huq A., Manthiram A. Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li-Ni-Mn-Co-O System // Chem. Mater. 2016. V. 28. № 6. P. 1832–1837.
- Son J.T., Cairns E.J. Characterization of LiCoO₂ Coated Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂ Cathode Material for Lithium Secondary Cells // J. Power Sources. 2007. V. 166. P. 343–347.
- 73. Li J., Shunmugasundaram R., Doig R., Dahn J.R. In-situ X-ray Diffraction Study of Layered Li-Ni-Mn-Co Oxides: Effect of Particle Size and Structural Stability of Core-Shell Materials // Chem. Mater. 2016. V. 28. № 1. P. 162–171.
- 74. Thackeray M.M., Kang S.-H., Johnson C.S., Vaughey J.T., Hackney S.A. Comments on the Structural Complexity of Lithium-Rich Li_{1+x}M_{1-x}O₂ Electrodes (M = Mn, Ni, Co) for Lithium Batteries // Electrochem. Commun. 2006. V. 8. № 9. P. 1531–1538.
- Lobo L.S., Kumar A.R. Synthesis, Structural and Electrical Properties of Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O₂ Synthesised by Sol–Gel Method // Mater. Res. Innovations. 2017. V. 21. № 4. P. 249–256.
- 76. Ma X., He H., Sun Y., Zhang Y. Synthesis of Li_{1.2}Mn_{0.54}Ni_{0.13}Co_{0.13}O₂ by Sol-Gel Method and Its Electrochemical Properties as Cathode Materials for Lithium-Ion Batteries // J. Mater Sci: Mater Electron. 2017. V. 28. № 2. P. 16665-16671.
- 77. Madhu C., Garrett J., Manivannan V. Synthesis and Characterization of Oxide Cathode Materials of the System (1 – x – y)LiNiO₂ · xLi₂MnO₃ · yLiCoO₂ // Ionics. 2010. V. 16. № 7. P. 591–602.
- Li J., Xua Y., Li X., Zhang Z. Li₂MnO₃ Stabilized Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O₂ Cathode with Improved Performance for Lithium Ion Batteries // Appl. Surf. Sci. 2013. V. 285. Part B. P. 235–240.
- 79. Jacob C., Jian J., Su Q., Verkhoturov S., Guillemette R., Wang H. Electrochemical and Structural Effects of In Situ Li₂O Extraction from Li₂MnO₃ for Li-Ion Batteries // ACS Appl. Mater. Interfaces. 2015. V. 7. № 4. P. 2433–2438.
- Kubota K., Kaneko T., Hirayama M., Yonemura M., Imanari Y., Nakane K., Kanno R. Direct Synthesis of Oxygen-Deficient Li₂MnO_{3-x} for High Capacity Lithium Battery Electrodes // J. Power Sources. 2012. V. 216. P. 249-255.
- 81. Jarvis K.A., Deng Z., Allard L.F., Manthiram A., Ferreira P.J. Atomic Structure of a Lithium-Rich Layered Oxide Material or Lithium-Ion Batteries: Evidence of a

Solid Solution // Chem. Mater. 2011. V. 23. № 16. P. 3614–3621.

- Wu C., Fang X., Guo X., Mao Y., Maa J., Zhao C., Wang Z., Chen L. Surface Modification of Li_{1.2}Mn_{0.54}Co_{0.13}Ni_{0.13}O₁ with Conducting Polypyrrole // J. Power Sources. 2013. V. 231. P. 44–49.
- Wang Z., Liu E., He C., Shi C., Li J., Zhao N. Effect of Amorphous FePO₄ Coating on Structure and Electrochemical Performance of Li₁₂Ni_{0.13}Co_{0.13}Mn_{0.54}O₂ as Cathode Material for Li-Ion Batteries // J. Power Sources. 2013. V. 236. P. 25–32.
- Lee E., Persson K.A. Solid-Solution Li Intercalation as a Function of Cation Order/Disorder in the High-Voltage Li_xNi_{0.5}Mn_{1.5}O₄ Spinel // Chem. Mater. 2013. V. 25. № 14. P. 2885–2889.
- 85. Arunkumar T.A., Manthiram A. Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5 V Spinel LiMn_{1.5}-_yNi_{0.5}-_zM_{y+2}O₄ (M = Li, Mg, Fe, Co, and Zn) // Electrochem. Solid-State Lett. 2005. V. 8. № 8. P. A403–A405.
- Brown C.R., McCalla E.M., Dahn J.R. Analysis of the Spinel region of the Li–Co–Mn Oxide Pseudo-Ternary System // Sold State Ionics. 2013. V. 353. P. 234–238.
- Reeves-McLaren N., Sharp J., Beltran-Mir N., Rainforth W.M., West A.R. Spinel-Rock Salt Thansformation in LiCoMnO_{4-δ}// Proc. R. Soc. A. 2016. V. 472: 20140991. P. 1–20.
- Maiyalagan T., Jarvis K.A., Therese S., Ferreira P.J., Manthiram A. Spinel-Type Lithium Cobalt Oxide as a Bifunctional Electrocatalyst for the Oxygen Evolution and Oxygen Reduction Reactions // Nature Commun. 2014. V. 5. 3949. P. 1–8.
- Wang L., Maxisch T., Ceder G. A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials // Chem. Mater. 2007. V. 19. № 2. P. 543–552.
- 90. Das H., Urban A., Huang W., Ceder G. First-Principles Simulation of the (Li-Ni-Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials // Chem. Mater. 2017. V. 29. № 18. P. 7840-7851.
- 91. Meza E., Ortiz J., Ruíz-León D., Marco J.F., Gauter J.L. Lithium-Nickel Cobalt Oxides with Spinel Structure Prepared at Low Temperature. XRD, XPS, and EIS Measurements // Mater. Lett. 2012. V. 70. P. 189–192.
- Wang C., Zhou E., He W., Deng X., Huang J., Ding M., Wei X., Liu X., Xu X. NiCo₂O₄-Based Supercapacitor Nanomaterials // Nanomaterials. 2017. V. 7. № 2. P. 41.
- 93. Yokoyama T., Meguro T., Shimada Y., Tatami J., Komeya K., Abe Y. Preparation and Electrical Properties of Sintered Oxides Composed of Mn_{1.5}Co_(0.25 + X)Ni_(1.25 - X)O₄ (0 ≤ X ≤ 0.75) with a Cubic Spinel Structure // J. Mater. Sci. 2007. V. 42. № 14. P. 5860-5966.
- 94. Клындюк А.И., Чижова Е.А. Структура и электрические свойства твердых растворов мультиферроиков Ві_{1-x}Ho_xFe_{1-x}Mn_xO₃ (x = 0.03, 0.06, 0.09) // ЖНХ. 2016. Т. 61. № 7. С. 907–911.
- 95. *Нипан Г.Д.* Фазовый состав композитов Li/W/Mn/SiO₂ при каталитической окислительной конденсации метана // Неорган. материалы. 2015. Т. 51. № 4. С. 442–448.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 2 2019