ТЕРМОРАСПАД ДИЭТИЛЦИНКА

А. Е. Соколовский, А. К. Баев

В работе изучены кинетические характеристики термического разложения диэтилцинка, установлен состав газообразных продуктов термораспада диэтилцинка и его смеси с пропаном и бутаном, этиленом и пропиленом. Процесс разложения ZnEt₂ и его смеси с пропаном и бутаном протекает по одному и тому же механизму. Установлена температурная зависимость констант скорости процесса разложения ZnEt₂.

Д *n* · 10⁻³ Па

Цинкоорганические соединения находят все более широкое практическое применение. Наибольший интерес в этом плане представляет диэтилцинк [1,2], что связано с простотой его синтеза и очистки в сравнении с другими цинкдиалкиламинами. Важное значение имеют данные по термораспаду диэтилцинка. Состав продуктов фото- и термораспада диэтилцинка в газовой и жидкой фазе изучен в работах [3, 4]. Установлено, что распад идет по радикальному механизму, включающему стадии (1а, б, 2, 3).

 $Z_n(C_2H_5)_2 \longrightarrow Z_nC_2H_5 + C_2H_5$ (1a)

 $'Z_nC_2H_5 \longrightarrow Z_n + 'C_2H_5$ (16)

 $C_{2H_5} + C_{2H_5} \longrightarrow C_{2H_6} + C_{2H_4}$ (2)

 $C_2H_5 + C_2H_5 \longrightarrow C_4H_{10}$ (3)

Состав продуктов фотораспада подтверждает этот механизм: образуются приблизительно равные количества этана, этилена и бутан. Особенностью термораспада является существенно более низкий выход этилена по сравнению с этаном. Одновременно наблюдается повышенный выход углеводородов [4]. Попытки объяснить это явление взаимодействием этильных радикалов с диэтилцинком к успеху не привели.

Кинетика термораспада в присутствии толуола изучена в работе [5]. Предложено уравнение (4) для расчета констант скорости реакции (1а). Показано, что в отсутствие окиси цинка термораспад является гомогенным процессом.

$$lgk(c^{-1}) = 14.3 - 20500/19.51T$$
(4)

Целью настоящей работы было кинетическое

Рис. 1. Влияние исходной концентрации на термораспад диэтилцинка при температуре 443 К и концентрациях, моль π^{-1} : 1 - 0.0057, 2 - 0.01, 3 - 0.0153.

изучение термического разложения диэтилцинка и уточнение механизма этого процесса. Термическое разложение диэтилцинка проводили в интервале температур 447-502 К и концентраций 0.0057-0.0153 моль $\cdot \pi^{-1}$. Кинетические кривые разложения, отвечающие температуре 473 К и различным концентрациям, приведены на рис. 1. Зависимости до степеней разложения 60-70% описываются уравнением (5).

 $\Delta p_x = a p_0 \left(1 - e^{kt} \right) \tag{5}$

Параметр α может быть вычислен как отношение общего прироста давления к начальному давлению, k соответствует константе скорости

Белорусский государственный технологический университет, Минск Поступило в Редакцию 20 апреля 1994 г.

УЛК 547.254.7:541.127.3

Рис. 2. Кинетические кривые термораспада диэтилцинка при концентрации 0.0153 моль π^{-1} и температуре, К: 1 – 447.2, 2 – 446.2, 3 – 473.2, 4 – 482.7, 5 – 495.7, 6 – 502.2.

реакции первого порядка. При более высоких степенях разложения скорость реакции заметно снижается. Математическая обработка полученных кривых показала, что константы скорости термораспада диэтилцинка при различных концентрациях совпадают в пределах ошибки опыта. Это позволяет считать, что термическое разложение является реакцией первого порядка.

Зависимость скорости термораспада от температуры была изучена для концентрации 0.0153моль $\cdot \pi^{-1}$. Обработка полученных результатов (рис. 2) методом наименьших квадратов дала следующие значения констант скорости.

T, K447.2466.6473.2483.7495.7502.2
$$k \cdot 10^4$$
, c^{-1} 0.120.380.621.041.421.78

Температурная зависимость констант скорости описывается уравнением (6).

$$lgk = 5.8 \pm 0.2 - 91750/2.3RT$$
(6)

Полученное значение эффективной энергии активации приблизительно в 2 раза ниже, чем в работе [3]. Это указывает на существенные отличия механизма термораспада цинка в замкнутом объеме от термораспада в присутствии толуола.

В результате разложения на стенках мембранной камеры происходило образование серого Таблица 1

Состав газообразных продуктов термораспада диэтилцинка, мас%

Компонент	Температура, К					
	447.2	466.6	473.2	483.7	495.7	502.2
C ₂ H ₆	76.8	75.5	74.2	70.9	68.0	62.4
C ₂ H ₄	0.5	0.6	0.95	0.95	0.8	1.4
C ₄ H ₁₀	18.5	19.0	19.5	23.55	24.4	28.8
1-Вутен	1.8	2.1	2.4	1.8	3.5	3.8
транс-2-Бутен	0.8	1.1	1.3	0.8	1.2	1.5
цис-2-Бутен	0.1	0.1	0.1	0.05	0.1	0.1
ΣC ₆	1.5	1.5	1.7	1.9	2.0	2.0

осадка, состоящего из отдельных кристаллов цинка, по данным химического анализа. В температурном интервале 450—470 К кристаллы имели нитевидную форму и при температуре 466.8 К заполняли практически весь объем мембранной камеры.

Изучение состава газообразных продуктов разложения диэтилцинка (табл. 1) показало, что образуются углеводороды с четным числом атомов углерода. Основными продуктами реакции являются этан и бутан. При этом соотношение этан—бутан с увеличением температуры уменьшается. Выход непредельных углеводородов незначителен и увеличивается с ростом температуры.

Образование этана и бутана можно объяснить реакциями диспропорционирования и рекомбинации этильных радикалов. Однако из литературных данных известно, что величина $\Delta = k_{\rm g}/k_{\rm pek}$ для этих реакций составляет 0.135 [6]. Поэтому выход этана явно значительно завышен. Это дает основание считать, что часть этана образуется в результате реакции H-перехода с последующим распадом радикала по реакциям (7—9).

$$C_2H_5 + C_nH_{2n+2} \longrightarrow C_2H_6 + C_nH_{2n+1}$$
 (7)

$$C_2H_5 + Zn(C_2H_5)_2 \longrightarrow C_2H_6 + C_2H_4ZnC_2H_5$$
(8)

$$C_2H_4-Z_n-C_2H_5 \longrightarrow C_2H_4 + C_2H_5 + Z_n$$
(9)

Реакции (8) и (9) хорошо объясняют полученную величину эффективной энергии активации протеканием радикального цепного процесса. Такой механизм обсуждается в работе [4]. Основная сложность при обосновании заключается в том, что при реакциях (2) и (9) должно образовывать-

Рис. 3. Кинетические кривые термораспада диэтилцинка в присутствии бутана (1, 2) и пропана (3, 4) при температуре, К: 473 (1, 3) и 443 (2, 4).

ся большое количество этилена, выход которого, однако, незначителен.

Поэтому с целью уточнения механизма термораспада нами были поставлены опыты по разложению диэтилцинка в присутствии пропана. бутана, этилена и пропилена. Полученные зависимости p от τ приведены на рис. 3, 4, состав продуктов термораспада — в табл. 2, 3. Концентрации диэтилцинка во всех опытах 0.0153 моль $\cdot n^{-1}$, газов — 0.04 моль $\cdot n^{-1}$.

Таблица 2

Состав газообразных продуктов термораспада дизтилцинка в присутствии пропана и бутана, мол%

Компонент	C ₃ I	H8	C4H10		
	443 K	473 K	443 K	473 K	
C ₂ H ₆	46.59	40.91	45.7	40.4	
C ₃ H ₈	2.15	2.46	2.4	2.6	
C ₃ H ₆	35.38	36.15	-	-	
C ₄ H ₁₀		0.24			
1-Бутен	8.16	11.74	45.9	48.4	
транс-2-Бутен	3.23	3.83	2.2	3.2	
цис-2-Бутен	1.42	1.67	1.3	1.9	
u30-C5H12	0.4	0.7	0.5	0.8	
н-C5H12	9.02	0.02			
ΣC ₅ H ₁₀	0.1	0.1			
ΣC6	2.5	2.09	2.0	2.7	

Эксперименты показали, что в присутствии предельных углеводородов разложение идет по тому же механизму, как и при их отсутствии. Из данных по составу продуктов термораспада диэтилцинка в присутствии пропана видно, что выход веществ, которые являются продуктами превращения пропильных радикалов (пропилена, пентанов), незначителен. Это говорит о том, что реакция (7) не имеет существенного значения и может быть исключена из рассмотрения при объяснении механизма термораспада.

Рис. 4. Зависимости p = f(T) при термораспаде дизтилцинка в присутствии этилена (a) и пропилена (б) при температурах, К: 1 - 473.0, 2 - 458.0, 3 - 443.0.

Таблица 3

Состав газообразных продуктов термораспада диэтилцинка в присутствии этилена и пропилена, мол%

Компонент	Этилен			Пропилен		
-	444 K	458 K	473 K	444 K	458 K	473 K
C ₂ H ₆	58.6	57.0	51.8	69.75	63.7	58.52
C ₂ H ₄	1.9	4.1	9.4	1.75	3.32	4.71
C3H8				0.06	0.3	0.13
C ₃ H ₆				1.75	3.13	4.41
C4H10	18.0	18.75	16.5	9.74	11.73	12.9
1-Вутен	4.4	4.13	4.6	1.17	1.48	2.34
транс-2-Вутен	7.5	6.97	8.5	1.46	2.14	2.01
цис-2-Вутен	4.4	4.44	5.3	1.62	1.42	2.00
изо-C ₅ H ₁₂				0.31	0.65	0.25
н-C5H12				9.41	8.64	7.02
ΣC ₅ H ₁₀			-	0.96	1.27	1.67
ΣC6	5.2	4.23	3.9	1.01	1.1	1.53
ΣC7				1.01	1.35	2.5

В присутствии этилена и пропилена термораспад сопровождается уменьшением давления, хотя зависимости *p* от *t* имеют различный вид в обоих случаях. Содержание этилена и пропилена соответственно при этом значительно снижается (табл. 3). Это несомненно доказывает, что непредельные углеводороды полимеризуются, чем и объясняется их низкий выход. Можно предположить два механизма полимеризации непредельных углеводородов: радикальный (10) и каталитический, аналогичный реакциям алюмоорганических соединений и ди-*трет*-бутилцинка [7] с последующим термораспадом (11а, б).

 $C_2H_5 + CH_2 = CH - CH_3 \rightarrow H_3C - CH - CH_2 - CH_2 - CH_3$ (10)

 $C_2H_5ZnC_2H_5 + H_2C = CH - CH_3 \longrightarrow$

CH3	
\longrightarrow C ₂ H ₅ Zn-CH ₂ -CH-CH ₂ -CH ₃	(11a
CH ₃	

 $C_2H_5Zn-CH_2-CH-CH_2-CH_3 \longrightarrow C_2H_5Zn' +$

CH3

$$-CH_2-CH_2-CH_3$$
 (116)

Очевидно, что образующиеся при этом радикалы будут вступать в реакции рекомбинации и дис-

пропорционирования. В случае этилена должны образовываться бутильные радикалы, которые при диспропорционировании будут давать в основном бутан (бутилены реагируют так же, как пропилен). Все это создает трудности при рассмотрении механизма реакции. Пропилен по реакции (10) дает вторичные амильные, а по реакции (116) — изоамильные радикалы. В первом случае в продуктах должен присутствовать пентан, во втором — изопентан, однако из полученных результатов видно, что образуется в основном пентан (табл. 3). Это указывает на радикальный механизм полимеризации.

Необходимо отметить, что реакция (10) приводит к замене активных этильных радикалов на менее активные. Это неминуемо должно приводить к снижению реакции (8) при высоких степенях разложения. По-видимому, именно этим объясняется снижение скорости процесса при разложении 60—70% диэтилцинка.

Экспериментальная часть

Диэтилцинк синтезировали по способу [8] и очищали многократной перегонкой в атмосфере азота. Его чистота, по данным хроматографического анализа [9], составляла 99.9 мас%.

Исследования проводили статическим методом с мембранным нуль-манометром. Диэтилцинк, предварительно дегазированный вымораживанием в вакууме, разгоняли в ампулы переконденсацией жидким азотом на специальной гребенке со шлифами. Концентрация в мембранной камере поддерживалась за счет подбора навесок к объемам мембранных камер. Заполнение нуль-манометров проводили в цельнопаяной системе в вакууме 0.13 Па переконденсацией жидким азотом.

Состав газообразных продуктов разложения изучали на хроматографе ЛХМ-72, детектор пламенно-ионизационный, колонки длиной 5 м с 18% динонилфталата, нанесенного на Chromaton-N, и 2 м с 20% раствора AgNO₃ в этиленгликоле, 1:3, нанесенного на Chromaton-N-AB. Обработку результатов проводили с помощью интегратора И-02.

Исследования финансировались Фондом фундаментальных исследований Республики Беларусь.

Список литературы

 [1] Shealy J.R., Baliga B.J., Fielg K.J. # J. Electrochem. Soc. 1981. Vol. 128. N 3. P. 558-561.

- [2] Rath A.P., Williams P.F. / J. Appl. Phys. 1981. Vol.
 52. N 11. P. 6685-6692.
- [3] Hoore W.J., Tailor H.S. // J. Chem. Phys. 1940. N 5.
 P. 396-403.
- [4] Разуваев Г.А., Галиулина Р.Ф., Петухов Г.Г. // ЖОХ.
 1968. Т. 38. Вып. 1. С. 3-7.
- [5] Koski A.A., Prise S.J.W., Truclell B.C. // Canad. J. Chem. 1976. Vol. 54. N 3. P. 482-487.
- [6] Стухович А.Д., Улицкий В.А. Кинетика и термоди-

намика радикальных реакций крекинга. М.: Химия, 1975. С. 77.

- [7] Boersma J. // J. Organometal. Chem. 1977. Vol. 190.
 N 2. P. 157-172.
- [8] Шевардина Н.И., Кочетков К.А. Методы элементоорганической химии. Цинк, кадмий. М.: Наука, 1964. С. 14.
- [9] Longi P., Marzocchi R. // Chem. Ind. (Milan). 1966. Vol. 48. N 7. P. 718-720.