
Pavel Urbanovich

INFORMATION PROTECTION

Belarusian State Technological University

Department of Information Systems and Technology

Part 9: DATA COMPRESSION

pav.urb@yandex.by, p.urbanovich@belstu.by

2

Definition and Main Goals

•Data compression has a history that predates physical computing.

• Data compression can be considered as one of the classes of

information encryption methods.

•Morse code, for example, compresses information by assigning

shorter codes to characters that are statistically common in the

English language (such as the letters “e” and “t”).

Data compression is a reduction in the number of bits (characters)

needed to represent data.

Def. Data compression is the process of modifying, encoding or

converting the bits structure of data in such a way that it consumes

less space on disk.

•It enables reducing the storage size of one or more data instances

or elements.

Data compression is also known as source coding or bit-rate

reduction.

BSTU Information Protection, part 9 P. Urbanovich

3

•Data compression enables sending a data object or file quickly over a

network or the Internet and in optimizing physical storage resources.

•Data compression has wide implementation in computing services and

solutions, specifically data (information) communications.

•Data compression has important application in the areas of data

(information) transmission and data (information) storage.

Compressing data can be a lossless or lossy process.

Lossless compression enables the restoration of a file to its original

state, without the loss of a single bit of data, when the file is

uncompressed.

Lossless compression is the typical approach with executables, as well

as text and spreadsheet files, where the loss of words or numbers

would change the information.

Lossy compression permanently eliminates bits of data that are

redundant, unimportant or imperceptible.

Lossy compression is useful with graphics, audio, video and images,

where the removal of some data bits has little or no discernible effect

on the representation of the content.

BSTU Information Protection, part 9 P. Urbanovich

4

Fundamental Concepts

•A simple characterization of data compression is that it involves

transforming a string of characters in some representation

(such as ASCII) into a new string (of bits, for example) which

contains the same information but whose length is as small as

possible.

Example 1. The following string of characters is used to illustrate

the concepts defined:

aa bbb cccc ddddd eeeeee fffffffgggggggg.

•A code is a mapping of source messages (words from the source

alphabet alpha) into codewords (words of the code alphabet beta).

• The source messages are the basic units into which the string to

be represented is partitioned.

•These basic units may be single symbols from the source

alphabet, or they may be strings of symbols.

BSTU Information Protection, part 9 P. Urbanovich

5

Example 2. For string, alpha = { a, b, c, d, e, f, g, space}. For

purposes of explanation, beta will be taken to be { 0, 1 }.

Fig.1 Fig.2

If the string EXAMPLE 1 were coded using the Figure 1 code, the

length of the coded message would be 120; using Figure 2 the

length would be 30.

•The oldest and most widely used codes, ASCII, is example of

codes, mapping an alphabet of 64 (or 256) single characters onto

6-bit (or 8-bit) codewords. It do not provide compression.

BSTU Information Protection, part 9 P. Urbanovich

6

•When source messages of variable length are allowed, the question

of how a message ensemble (sequence of messages) is parsed into

individual messages arises.

•Many of the algorithms described here are defined-word schemes.

•A distinct code is uniquely decodable if every codeword is

identifiable in a sequence of codewords.

•The codes of Figure 1 and Figure 2 are both distinct, but the code of

Figure 2 is not uniquely decodable.

For example, the coded message 11 could be decoded as either

ddddd or bbbbbb.

•A uniquely decodable code is a prefix code (or prefix-free code) if it

has the prefix property, which requires that no codeword is a proper

prefix of any other codeword.

BSTU Information Protection, part 9 P. Urbanovich

7

Methods Classification

I. a) without loss of information – Lossless (text documents, program

codes, databases),

b) with loss of information (graphic, sound, audio - multimedia files),

II. a) block or block-sorting or character-based methods (examples:

Run-length encoding, RLE; Burrows–Wheeler transform, BWT),

b) probabilistic methods (examples: Huffman m., Shannon-Fano m.),

c) dictionary methods (examples: LZxx m.),

d) arithmetic methods,

e) combined methods.

BSTU Information Protection, part 9 P. Urbanovich

8

R1 = Vac/Vbc;

R2 = (Vbc- Vac)/Vbc = 1 - R1

Vbc - the file size before compression,

Vac - the file size after compression;

ratio R1 shows what volume part of the file before the

compression takes the file after compression;

factor R2 shows the degree of file compression, i.e. the

ratio of the "exhausted" volume of the source file to this

source file (before compression).

Efficiency Evaluation

BSTU Information Protection, part 9 P. Urbanovich

9

Run-length encoding (RLE) is a very simple form of lossless data

compression

Idea: when you compress, a string of identical characters

constituting a series is replaced by a string that contains the

repeating character itself and the number of its repetitions.

Example. Black text (black pixel - B) on a white background

(white pixel - W).

Input:

WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWW

WWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW →

(67)

Output:

12W1B12W3B24W1B14W → (18)

RLE Method

BSTU Information Protection, part 9 P. Urbanovich

10

BWT Method

M. Burrows and D. Wheeler proposed (1994) a new lossless compression

algorithm.

It is based on a permutation of the input sequence - the Burrows-Wheeler

Transformation (BWT), also called Block Sorting -, which groups symbols

with a similar context close together.

In the original version, this permutation was followed by a move to front

(MTF) transformation and a final entropy coding (EC) stage.

Later versions used different algorithms which come after the Burrows-

Wheeler transform, since the stages after the Burrows-Wheeler transform

have a significant influence on the compression rate too.

The most effective application of BWT-archivers for texts and any data with

stable contexts.

BSTU Information Protection, part 9 P. Urbanovich

KUL Data Protection, part 9 P.Urbanovich 11

•The heart of the algorithm is a reversible block sort which

increases the compressibility of the input data.

•The Burrows Wheeler Transform is an algorithm that takes a block

of data and rearranges it using a sorting algorithm. The resulting

output block is extremely well-suited for compression.

•The resulting output block contains exactly the same data

elements as the input block, differing only in their ordering.

•The transformation is reversible, meaning the original ordering of

the data elements can be restored with no loss

of fidelity.

12

BWT: Direct Transformation (compression)

The transformation is performed in three steps:

1. A table (w1: (n x n) of all cyclic shifts of the input

string (sn) of n symbols is compiled.

2. The lexicographic (in alphabetical order) sorting

of the table rows is performed: w1 → w2.

3. As the output string (BWT(sn)), the last column (n)

of the conversion table (w2) and the line number (#)

that is the same as the original are selected.

BSTU Information Protection, part 9 P. Urbanovich

13

Example. Let sn ="ABACABA“, n = 7.

sn w1 w2 BWT(sn), #

ABACABA

ABACABA

BACABAA

ACABAAB

CABAABA

ABAABAC

BAABACA

AABACAB

AABACAB

ABAABAC

ABACABA

ACABAAB

BAABACA

BACABAA

CABAABA

BCABAAA, 3

#

BSTU Information Protection, part 9 P. Urbanovich

14

BWT: Inverse transformation

Input: BWT(sn),#

The transformation is performed in two steps for two operations

in each for the construction of the matrix w2:

•inscribing BWT(sn) into the free right-most column of the created

matrix,

•sorting the resulting fragment of the created matrix:

BSTU Information Protection, part 9 P. Urbanovich

15

= 3

BSTU Information Protection, part 9 P. Urbanovich

16

•The time complexity of this algorithm is O(n3 log n).

•The spatial complexity is O(n2).

•The sorting operations needed at the front end of the

BWT will usually have O(n log n).

•The BWT is apparently not covered by any software

patents.

• It is used in the bzip2 archiver.

•It is typically used in conjunction with other archiver

(eg. RLE).

•The main problem in implementing BWT is the choice

of a fast data sort algorithm with a long n.

Task: Input: 101010 Output: ?

BSTU Information Protection, part 9 P. Urbanovich

17

Probabilistic Methods (Shannof-Fano, Huffman)

•Idea: In comparison with ASCII codes, having the same length,

the binary codes in the S-F and H have different lengths:

alphabet symbols with a higher probability of appearing in the

texts correspond to codes of smaller length and vice versa.

•It is the idea of constructing a "tree", the position of the

symbol on the "branches" of which is determined by the

frequency of its appearance. Each character is assigned a code

whose length is inversely proportional to the frequency of the

occurrence of this symbol.

•The Shannon-Fano and Huffman algorithm yields a prefix

code.

BSTU Information Protection, part 9 P. Urbanovich

18

There are two types of probabilistic methods that

distinguish by the way of determining the probability of

occurrence of each symbol:

➢ static methods using a fixed symbol frequency table,

calculated before the beginning of the compression process;

static methods are characterized by good speed and do not

require significant memory resources; they have found wide

application in numerous archiver programs, for example

ARC, PKZIP,

➢dynamic or adaptive methods, in which the frequency of

the appearance of symbols is constantly changing and as the

new data block is read, the initial values of the frequencies

are recalculated.

BSTU Information Protection, part 9 P. Urbanovich

19

Shannon-Fano Method

Shannon–Fano method (coding), named after Claude Shannon and

Robert Fano.

In Shannon–Fano coding, the symbols are arranged in order from

most probable to least probable, and then divided into two sets

whose total probabilities are as close as possible to being equal.

All symbols then have the first digits of their codes assigned; symbols

in the first set receive "0" and symbols in the second set receive "1".

As long as any sets with more than one member remain, the same

process is repeated on those sets, to determine successive digits of

their codes.

When a set has been reduced to one symbol this means the symbol's

code is complete and will not form the prefix of any other symbol's

code.

BSTU Information Protection, part 9 P. Urbanovich

KUL Data Protection, part 9 P.Urbanovich 20

In this way:

the code with Shannon-Fano method is constructed as follows:

•the source messages or symbols a(i) and their probabilities

p(a(i)) are listed in order of no increasing probability,

•this list is then divided in such a way as to form two groups of

as nearly equal total probabilities as possible,

• each symbol in the first group receives 0 as the first digit of its

codeword; the symbols in the second half have code words

beginning with 1,

• each of these groups is then divided according to the same

criterion and additional code digits are appended,

• the process is continued until each subset contains only one

message.

21

Example. Let we have the probability distribution:
p(a) =1/2, p(b)= 1/4, p(c)= 1/8, p(d)= 1/16, p(e)= 1/32, p(f)= 1/32

Σpi (‘) = 1

Using the algorithm described above, we obtain a code table:

a 1/2 0

b 1/4 10

c 1/8 110

d 1/16 1110

e 1/32 11110

f 1/32 11111

When compressed, each document symbol should be

replaced by the corresponding binary code, and vice versa.

BSTU Information Protection, part 9 P. Urbanovich

22

Example. Let the probability distribution is formed on

the basis of the following message (see slide 3):

aa bbb cccc ddddd eeeeee fffffffgggggggg

A Shannon-Fano Codes: g 8/40 00

f 7/40 010

e 6/40 011

d 5/40 100

space 5/40 101

c 4/40 110

b 3/40 1110

a 2/40 1111

It is clear, that the compression of the message consists

in replacing the letters with the corresponding codes.

The length of the compressed message is 117 bit.

BSTU Information Protection, part 9 P. Urbanovich

23

Huffman Method

•Huffman coding came about as the result of a class project

at MIT by its student, David Huffman.

•In 1951, D.Huffman was taking a class under Robert Fano,

(who invented an efficiency scheme known as Shannon-Fano

coding).

•When Fano gave his class the opportunity to either write

a term paper or take a final exam, Huffman chose the term

paper, which sought to find an efficient binary coding

method.

•This resulted in Huffman coding, which by the 1970s had

become a prominent digital encoding algorithm.

•Huffman coding is a lossless data encoding algorithm.

BSTU Information Protection, part 9 P. Urbanovich

24

Algorithm of a Binary Tree Creation

•The process behind its scheme includes sorting numerical

values from a set in order of their frequency.

•The least frequent numbers are gradually eliminated via

the Huffman tree, which adds the two lowest frequencies

from the sorted list in every new “branch”.

•The sum is then positioned above the two eliminated lower

frequency values, and replaces them in the new sorted list.

•Each time a new branch is created, it moves the general

direction of the tree either to the right (for higher values)

or the left (for lower values).

•When the sorted list is exhausted and the tree is complete,

the final value is zero if the tree ended on a left number, or

it is one if it ended on the right.

BSTU Information Protection, part 9 P. Urbanovich

25

Example. Let we have the probability distribution:
ai 1 2 3 4 5 6 7

P(ai) 0,4 0,2 0,1 0,1 0,1 0,05 0,05

The input data is written in a column, the last two (least)

probabilities are added together,

and the resulting sum becomes a new element of the table

that occupies the corresponding place in the list of

decreasing probabilities.

This procedure continues until there are only two elements

left in the column.

BSTU Information Protection, part 9 P. Urbanovich

26

The second step is coding, "passing" the table (tree)

from right (root) to left:

As you can see, the minimum code length (Lmin) is 1 bit.

BSTU Information Protection, part 9 P. Urbanovich

27

The construction of the code tree begins from the root.

•Two outgoing edges are assigned as weights the probabilities 0.6

and 0.4 in the last column. The code symbols 0 and 1 are

assigned to the tree vertices thus formed.

•Then we "go" along the table from right to left. Since the

probability of 0.6 is the result of the addition of two probabilities

of 0.4 and 0.2, two edges with weights of 0.4 and 0.2,

respectively, emanate from vertex 0, which leads to the

formation of two new vertices with code symbols 00 and 01.

•The procedure continues as long as there are probabilities in the

table that result from the summation.

•The construction of the code tree ends with the formation of

seven leaves corresponding to these symbols with the codes

assigned to them.

• The tree obtained as a result of Huffman coding has the

following form (see next slide).

BSTU Information Protection, part 9 P. Urbanovich

28

Codes Symbols

Table of codes

symbol 1 2 3 4 5 6 7

code 1 01 0010 0011 0000 00010 00011

It is understood that all code combinations must not contain prefixes.

BSTU Information Protection, part 9 P.
Urbanovich

29

If the table contains character codes of some alphabet, then

formally the procedure of message compression based on the

symbols of this alphabet consists in replacing each message

symbol with the appropriate code.

•As you can see, both in the S-F method and in the H method can

be implemented different code tables for the same probability

distribution.

•The smallest length of the compressed message is provided by the

table that is characterized by the smallest coefficient:

Ci= Σp(ai) Li,

Li - code length in bits;

The encoding price (the average length of the code word) C is the

criterion for the degree of coding optimality.

C corresponds to the average number of bits per alphabet character

(message).

Let us calculate it in our case:

C = 1 * 0.4 + 2 * 0.2 + 4 * (0.1 * 0.3) + 5 * (0.05 * 2) = 2.5 bits

BSTU Information Protection, part 9 P. Urbanovich

30

Huffman’s binary tree for the English alphabet

BSTU Information Protection, part 9 P. Urbanovich

31

Code table based on Huffman’s binary tree for the English alphabet
(Source: L.J. Hoffman, Modern methods for computer security and privacy, Prentice-Hall, 1977)

As you can see, the minimum code length (Lmin) is 3 bit.

BSTU Information Protection, part 9 P. Urbanovich

32

Inverse transformation (decompression)

Both for the S-F method and for the H method the inverse

transformation is carried out according to the identical

algorithm:

1. The initial Lmin bits of the sequence are initiated for

analysis: L:=Lmin .

2. The analysis by comparing them with the codes in the

table is performed.

If a accordance is found, the corresponding symbol (ai)

of the alphabet is formed on the output of the

decompressor and the move to the analysis of the next

Lmin bits is carried out. If there is no - move to step 3.

3. L :=L+1. Move to step 2.

BSTU Information Protection, part 9 P. Urbanovich

33

References:

1. M. Burrows and D.J. Wheeler. A Block-sorting Lossless Data Compression Algorithm, Digital Systems

Research Center Research Report 124, 1994,

URL:http://gatekeeper.dec.com/pub/DEC/SRC/researchreports/abstracts/src-rr-124.html

2. Data compression, [Electronic Resource], URL: https://searchstorage.techtarget.com/

definition/compression

3. Source Coding for Compression, [Electronic Resource], URL: https://ocw.mit.edu/courses/electrical-

engineering-and-computer-science/6-661-receivers-antennas-and-signals-spring-2003/lecture-

notes/lecture16.pdf

4. Huffman D. A Method for the Construction of Minimum-Redundancy Codes, Proceedings of the IRE,

(1952),no. 40 (9),p. 1098–1101

5. Коды Фано и Хаффмана, [Electronic Resource], URL: http://cito-web.yspu.org/link1/metod/theory/

node36.html

6. Урбанович,П.П. Лабораторный практикум по дисциплинам «Защита информации и надежность

информационных систем» и «Криптографические методы защиты информации». Ч.1: Кодирование

информации: учебно-метод.пос./П.П. Урбанович, Д.В.Шиман, Н.П. Шутько. – Минск: БГТУ,2019. –

95 с.

7. Урбанович, П. П. Защита информации и надежность информационных систем : пос. для студ.

вузов спец. 1-40 05 01-03 «Информационные системы и технологии (издательско-полиграфический

комплекс)» / П. П. Урбанович, Д. В. Шиман.- Минск : БГТУ, 2014. - 91 с.

(URL: https://elib.belstu.by/handle/123456789/23761)

8. Сжатие и архивирование данных : учебно-методическое пособие для аспирантов / [сост.: Н. В.

Пацей, П. П. Урбанович]. - Минск : БГТУ, 2004. - 32 с.

(URL: https://elib.belstu.by/handle/123456789/25876)

BSTU Information Protection, part 9 P. Urbanovich

https://en.wikipedia.org/wiki/David_A._Huffman
https://en.wikipedia.org/wiki/Proceedings_of_the_IRE

