Учреждение образования

«Белорусский государственный технологический университет»

УТВЕРЖДАЮ Проректор по учебной работе С.А.Касперович 21. /2 2014г. Регустрационный № УД-14191/р.

КОМПЬЮТЕРНЫЕ МЕТОДЫ КОНСТРУИРОВАНИЯ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности

1-48 01 02 «Химическая технология органических веществ, материалов и изделий» специализации 1-48 01 02 08 «Конструирование изделий и полимерных материалов и формующих инструментов»

Факультет	Технологии органич	еских веществ				
Кафедра <u>Техн</u> материал		ского синтеза и перерабо	тки полимерных			
Курс _ Семестр _	3,4 6,7					
Лекции	52 часа	Экзамен	7 семестр			
Лабораторны занятия	е 72 часа	Зачет	6 семестр			
Аудиторных часов по учеб	о́ной дисциплине	124				
Всего часов По учебной д	исциплине	•	Форма получения высшего образования <u>дневная</u>			
Составитель: А.В. Спиглаз	ов, доцент, к.т.н.					

Программа составлена на основе базовой учебной программы «Компьютерные методы конструирования» для высших учебных заведений по специальности 1-48 01 02 «Химическая технология органических веществ, материалов и изделий», утвержденной «06»10.2010 г., регистрационный № УД-200/баз.

Рассмотрена и рекомендована к утверждению на заседании кафедры технологии нефтехимического синтеза и переработки полимерных материалов учреждения образования «Белорусский государственный технологический университет» (протокол № ≠ от « / 1 ≥ 2014 г.)

Заведующий кафедрой ТНС и ППМ Н.Р. Прокопчук

Одобрена и рекомендована к утверждению Методической комиссией факультета ТОВ (протокол № _5_ от « Д » _/2 __ 2014 г.)

Председатель методической комиссии М.А. Кушнер

Пояснительная записка

Дисциплина «Компьютерные методы конструирования» относится к числу общепрофессиональных и специальных дисциплин, предназначена для студентов специальности 1-48 01 02 «Химическая технология органических веществ, материалов и изделий» специализации 1-48 01 02 08 «Конструирование изделий и полимерных материалов и формующих инструментов».

Дисциплина базируется на знаниях, полученных студентами при изучении общетехнических и общеинженерных дисциплин, таких как: прикладная механика (разделы теоретической механики, механики материалов и конструкций, деталей машин), моделирование и оптимизация химико-технологических процессов. Знания, полученные студентами при изучении курса «Компьютерные методы конструирования», являются основой для изучения специальных курсов «Расчет и конструирование резиновых изделий и форм» «Технология производства шин и резинотехнических изделий», «Оборудование и основы проектирования заводов резиновой промышленности», выполнения курсовых проектов, учебной исследовательской работы студентов (УИРС) и дипломных проектов.

Основной целью дисциплины является научить будущего инженера применять программные средства ЭВМ для реализации проектной деятельности, использовать современные системы САПР для автоматизации процессов проектирования изделий и элементов технологического оборудования, осуществлять вспомогательные расчеты на прочность и жесткость, моделировать основные технологические процессы производства и обработки резинотехнических изделий.

Главной задачей изучения дисциплины является изложение студентам основных возможности современных систем САПР, дать студентам сведения о структуре построения компьютерных моделей для проведения численного анализа, проведения уточненных расчетов с учетом особенностей используемых материалов и компонентов, предоставить студентам основные подходы оптимизации по результатам моделирования резинотехнических изделий.

При изучении дисциплины основное внимание уделяется наиболее современному компьютерному пакету для осуществления моделирования поведения изделий на всех стадиях производства и эксплуатации ANSYS, а также его адаптации к другим пакетам для осуществления проектной деятельности и САПР.

Программа дисциплины разработана с учетом передовых достижений в применении ЭВМ для проведения общеинженерных и технологических расчетов.

После изучения дисциплины студент должен знать:

- методологию и общие направления использования компьютерного моделирования;
- основные направления и методологию использования метода конечных элементов при решении инженерных задач;
- основы моделирования изделий и элементов оборудования с учетом технологии формообразования и последующей обработки;
 - методику оптимизации результатов моделирования по полученным данным; Студенты должны **уметь:**

- определять исходные данные для процесса компьютерного моделирования;
- оптимизировать структуру модели;
- проводить расчеты на прочность, жесткость, устойчивость для твердотельных моделей;

Студенты должны владеть:

- основными навыками моделирования резинотехнических изделий по эксплуатационным требованиям и технологическим особенностям производства;
 - анализировать полученные данные и проводить оптимизацию.

Лабораторные занятия служат развитию навыков определения исходных данных и оценке степени их достоверности, более глубокому усвоению методов моделирования твердотельных объектов, а также методов проведения высокоточных расчетов при решении инженерных задач с помощью программных средств на ЭВМ.

Подготовка специалиста должна обеспечивать формирование следующих групп компетенций:

- академических, включающих теоретические знания и практические навыки по дисциплине «Компьютерные методы конструирования», уметь пользоваться современной компьютерной техникой и программным обеспечением.
- профессиональных, включающих знания и умения формулировать проблемы, решать задачи, разрабатывать планы и обеспечивать их выполнение в области проектирования резинотехнических изделий, материалов и технологий производства.

Выпускник должен обладать следующими профессиональными компетенциями по видам деятельности, быть способным:

в производственно-технологической:

- использовать современные информационные и компьютерные технологии при конструировании резинотехнических изделий, и технологической оснастки для их производства, моделировании и оптимизации химикотехнологических процессов;
- внедрять современные САПР при переработке резинотехнических изделий, а также технологической оснастки;

в проектно-конструкторской:

выполнять проверку резинотехнических изделий по функциональным и производственным критериям;

в инновационной:

- осуществлять поиск, систематизацию и анализ информации по перспективам развития инновационных технологий;
- совершенствовать существующие и разрабатывать новые технологические процессы на основе математического моделирования и оптимизации.

Учебный план предусматривает для изучения дисциплины: всего -250 часов, из них лекции -52 часа, лабораторные занятия -72 часа, самостоятельная работа -126 часов.

Содержание учебного материала

Раздел 1. Введение в теорию метода конечных элементов

- 1.1. Конечные элементы и аппроксимации. Метод конечных элементов в технике.
- 1.2. Основы расчета по методу конечных элементов, использование для решения инженерных задач. Допущения и упрощения. Точность расчетных данных. Направления использования МКЭ. Типы решаемых задач. Системы единиц измерения величин.

Раздел 2. Требования к геометрии модели

- 2.1. Общие требования к геометрии модели. Основные упрощения. Использование геометрической симметрии.
- 2.2. Создание геометрической модели. Использование средств построения программного приложения ANSYS. Особенности использование внешней геометрии при импорте из CAD систем. Проверка геометрии модели на наличие ошибок.
- 2.3. Подготовка геометрии модели с учетом особенностей задания граничных условий, внешних факторов воздействия и описания структуры и свойств материалов. Использование геометрической параметризации модели
- 2.4. Вспомогательные элементы построения и операции моделирования, классификация и назначение. Назначение и использование координатных систем. Булевы операции.
- 2.5. Особенности работы с многотельной геометрией при подготовке модели для анализа (анализ сборочных единиц). Специфика описания контактного взаимодействия между отдельными телами модели.

Раздел 3. Описание структуры и свойств материалов

- 3.1. Возможные способы описания структуры и свойств материалов, использование графиков и температурных зависимостей.
- 3.2. Классификация показателей свойств материала по назначению. Использование стандартных и создание пользовательских библиотек материалов.
- 3.3. Особенности моделирования поведения эластомеров. Использование встроенных математических зависимостей. Моделирование свойств резинокордных систем. Методы определения необходимых показателей свойств.
- 3.4. Изотропные и анизотропные материалы. Особенности описания показателей свойств отдельным элементам или телам геометрической модели.

Раздел 4. Разбиения моделей на конечные элементы

- 4.1. Принципы разбиения моделей на конечные элементы. Классификация конечных элементов по назначению, основные типы.
- 4.2. Выбор типа и формы конечных элементов в зависимости от вида решаемой задачи и исходной геометрии модели. Управление количеством и размерами конечных элементов. Локальное изменение сетки конечных элементов.

Раздел 5. Описание внешнего воздействия

- 5.1. Понятие граничных условий их назначение, классификация и способы описания. Возможности моделирования взаимодействия между телами модели, решение контактных задач.
- 5.2. Моделирование внешних воздействий по типам задач. Использование аналитических зависимостей.
- 5.3. Совмещенный (междисциплиный) анализ. Особенности обмена данными между различными типами анализов.
- 5.4. Язык программирования APDL ANSYS. Назначения принципы использования в среде ANSYS Workbench.

Раздел 6. Настройки решателя и запуск модели на расчет

- 6.1. Статические и динамические процессы, отличительные особенности. Классификация динамических задач, описание параметров.
- 6.2. Моделирование нелинейных процессов, понятие нелинейного анализа, настройки, сходимость расчета.

Раздел 7. Анализ результатов расчета

- 7.1. Выбор критериев для анализа с учетом поставленной задачи. Настройка по принадлежности к отдельным элементам модели с учетом возможной анизотропии свойств.
- 7.2. Виды представления и способы обработки результатов расчета. Критерии значимости. Анализ. Подготовка отчетов по результатам анализа.
- 7.3. Выполнение оптимизации геометрии модели путем ее адаптации под требуемый результат. Запуск анализа на перерасчет.

Раздел 8. Расчет конструкций по условиям производства и эксплуатации методом конечных элементов

- 8.1. Расчеты на прочность и жесткость, структура решения задач. Исходные данные, требования к геометрии, описание свойств материалов, граничных условий, внешних силовых факторов, настройки параметров анализа. Критерии разрушения конструкций. Результаты расчета и их анализ.
- 8.2. Решение задач теплообмена, структура решения задач. Учет усадки и термического расширения. Исходные данные, требования к геометрии, описание свойств материалов, граничных условий, внешних факторов, настройки параметров анализа. Критерии остановки анализа. Результаты расчета и обработка.
- 8.3. Расчет на устойчивость, структура решения задач. Исходные данные, требования к геометрии, описание свойств материалов, граничных условий, внешних силовых факторов, настройки параметров анализа. Критерии потери устойчивости конструкций. Результаты расчета и их анализ.
- 8.4. Совмещение разнородных задач. Понятие совмещенного анализа, классификация, основные направления использования. Принципы построения моделей, требования к геометрии и сетке конечных элементов. Последовательность выполнения анализа. Особенности описания граничных условий и обмен ими. Результаты расчета и их анализ.

Раздел 9. Моделирование технологических процессов методом конечных элементов

- 9.1. Процессы термоформования. Моделирование технологического процесса термоформования изделий. Описание свойств материала. Исходные данные, требования к геометрии, граничные условия, внешние факторы, настройки параметров анализа. Критерии остановки анализа. Результаты расчета и обработка.
- 9.2. Процесс прессования. Моделирование процесса глубокого деформирования тела постоянного объема между элементами неизменной геометрии. Описание свойств материала. Исходные данные, требования к геометрии, граничных условий, внешних факторов, настройки параметров анализа. Критерии остановки анализа. Результаты расчета и обработка.
- 9.3. Процесс экструдирования. Моделирование технологического процесса формообразования детали экструдированием. Описание свойств материала. Исходные данные, требования к геометрии, граничные условия, внешние факторы, настройки параметров анализа. Критерии остановки анализа. Результаты расчета и обработка.
- 9.4. Процесс литья под давлением. Моделирование технологического процесса формообразования детали литьем под давлением. Описание свойств материала. Исходные данные, требования к геометрии, граничные условия, внешние факторы, настройки параметров анализа. Критерии остановки анализа. Результаты расчета и обработка.

Информационно-методическая часть

Примерная тематика лабораторных занятий

- 1. Создание геометрической модели в системе ANSYS. Базовые принципы. (ANSYS Workbench) (2 часа).
- 2. Подготовка сложной геометрии для анализа на примере колеса автомобиля. Описание контактного взаимодействия между ее элементами. (ANSYS Workbench) (4 часа)
- 3. Изучения инструментов описания свойств материалов. Изотропные и анизотропные материалы. Использование библиотек материалов. (ANSYS Workbench) (4 часа).
- 4. Описание свойств эластомеров. Использование графиков. Температурные зависимости. (ANSYS Workbench) (4 часа)
- 5. Разбиения моделей на конечные элементы (КЭ). Управление сеткой КЭ на примере колеса автомобиля. (ANSYS Workbench) (4 часа)
- 6. Описание внешних и внутренних граничных условий на примере колеса автомобиля. Описание контакта с дорожным полотном и посадки колеса на обод (ANSYS Workbench) (4 часа)
- 7. Использование языка программирования при описании исходных данных модели. (ANSYS Workbench) (2 часа)
- 8. Расчета на жесткость и прочность колеса автомобиля при статическом нагружении. (ANSYS Workbench Static Structural) (4 часа)
- 9. Расчета на жесткость и прочность колеса автомобиля при динамическом нагружении. (ANSYS Workbench Explicit Dynamics) (4 часа)
- 10. Выполнение оптимизации геометрии модели путем ее адаптации под требуемый результат. (ANSYS Workbench) (4 часа)
- 11. Расчет пневматической шины радиальной конструкции в программном комплексе АПР+ (4 часа)
- 12. Решение статических и нестационарных задач теплообмена на примере колеса автомобиля (ANSYS Workbench Transient Thermal) (4 часа)
- 13. Совмещение задач теплообмена с расчетами на жесткость и прочность на примере колеса автомобиля. (ANSYS Workbench) (4 часа)
- 14. Изучение особенностей анализа результатов расчета. Подготовка отчетов. (ANSYS Workbench) (4 часа)
- 15. Моделирование процесса термоформования изделий на примере протектора колеса автомобиля (ANSYS Workbench Polyflow) (6 часов)
- 16. Моделирование процесса прессования изделий на примере протектора колеса автомобиля (ANSYS Workbench Polyflow) (6 часов)
- 17. Моделирование процесса экструзии изделий (ANSYS Workbench Polyflow) (4 часа)
- 18. Моделирование процесса литья под давлением изделий (Autodesk MoldFlew) (4 часа)

Требования к организации самостоятельной работы студентов

Самостоятельная работа студентов (СРС) заключается в подготовке к лекциям и лабораторным занятиям, подготовка к защите лабораторных работ, зачету, экзамену. Данная работа осуществляется путем изучения рекомендуемой литературы, как основной, так и дополнительной.

Для оценки качества самостоятельной работы студентов осуществляется контроль за ее выполнением. Формами контроля самостоятельной работы студентов являются: контрольные работы, тестирование, письменный экзамен с выполнением практического задания.

Диагностика компетенций студентов

В качестве формы итогового контроля по дисциплине «Компьютерные методы конструирования» предусмотрен экзамен.

Для текущего контроля и самоконтроля знаний, умений и навыков студентов по дисциплине можно использовать следующий диагностический инструментарий:

- тестирование по темам и разделам дисциплины, в том числе с использованием компьютерных технологий;
 - письменная контрольная работа;
 - устный и письменный опросы;
 - выступление на семинарах.

Рекомендуемые методы обучения

Основными методами (технологиями) обучения, адекватно отвечающими целям изучения дисциплины «Компьютерные методы конструирования», являются:

- технологии проблемно-модульного обучения;
- технология учебно-исследовательской деятельности;
- проектные технологии.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА

_~ ~~~	учевно-методическая карта									
		Ко.	личест		ауди сов	то	рных	ж (и- др.)		
Номер раздела,		лекции	практические (семинарские)	занятия	лабораторные занятия		управляемая самостоятельная	раоота студента на материальное обеспечение занятия (наглядные, методические пособия и др.)	Лигература	Формы контроля знаний
1	2	3	4		5		6	7	8	9
6 cen	иестр:							· ₁		
	Раздел 1. Введение в теорию метода конечных элементов - Конечные элементы и аппроксимации. Метод конечных элементов в технике. - Основы расчета по методу конечных элементов, использование для решения инженерных задач. Допущения и упрощения. Точность расчетных данных. Направления использования МКЭ. Типы решаемых задач. Системы единиц измерения величин.	2			_		2	Блок-конспект. Компьютерная презентация.	[1-6]	Контрольная работа. Защита лабораторной работы.
1.	Раздел 1. Требования к геометрии модели Компьютерный пакет ANSYS Workbench: — Общие требования к геометрии модели. Основные упрощения. Использование геометрической симметрии. — Создание геометрической модели. Использование средств построения программного приложения ANSYS.	1	_		2		4	Блок-конспект. Компьютерная презентация.	[1-6]	Контрольная работа. Защита лабораторной работы.

1	2	3	4	5	6	7	8	9
	— Особенности использование внешней геометрии при импорте из CAD систем. Проверка геометрии модели на наличие ошибок.							
2	Компьютерный пакет ANSYS Workbench: — Подготовка геометрии модели с учетом особенностей задания граничных условий, внешних факторов воздействия и описания структуры и свойств материалов. Использование геометрической параметризации модели. — Вспомогательные элементы построения и операции моделирования, классификация и назначение. Назначение и использование координатных систем. Булевы операции. — Особенности работы с многотельной геометрией при подготовке модели для анализа (анализ сборочных единиц). Специфика описания контактного взаимодействия между отдельными телами модели	1		4	4	Блок-конспект. Компьютерная презентация.	[1-6]	Контрольная работа. Защита лабораторной работы.
3	Раздел 2. Описание структуры и свойств материалов Компьютерный пакет ANSYS Workbench: — Возможные способы описания структуры и свойств материалов, использование графиков и температурных зависимостей. — Классификация показателей свойств материала по назначению. Использование стандартных и создание пользовательских библиотек материалов.			4	4	Блок-конспект. Компьютерная презентация.	[1-6]	Контрольная работа. Защита лабораторной работы.
4	Компьютерный пакет ANSYS Workbench:	2		4	4	Блок-конспект.	[1]	Контрольная

.

1	2	3	4	5	6	7	8	9
	 Особенности моделирования поведения эластомеров. Использование встроенных математических зависимостей. Моделирование свойств резино-кордных систем. Методы определения необходимых показателей свойств. Изотропные и анизотропные материалы. Особенности описания показателей свойств отдельным элементам или телам геометрической модели. 					Компьютерная презентация.		работа. Защита лабораторной работы.
5	Раздел 3. Разбиения моделей на конечные элементы Компьютерный пакет ANSYS Workbench: — Принципы разбиения моделей на конечные элементы. Классификация конечных элементов по назначению, основные типы. — Выбор типа и формы конечных элементов в зависимости от вида решаемой задачи и исходной геометрии модели. Управление количеством и размерами конечных элементов. Локальное изменение сетки конечных элементов.	1		4	6	Блок-конспект. Компьютерная презентация.	[1]	Контрольная работа. Защита лабораторной работы.
6	Раздел 4. Описание внешнего воздействия Компьютерный пакет ANSYS Workbench: — Понятие граничных условий их назначение, классификация и способы описания. Возможности моделирования взаимодействия между телами модели, решение контактных задач.	1		1	2	Блок-конслект. Компьютерная презентация.	[1]	Контрольная работа. Защита лабораторной работы.
7	Компьютерный пакет ANSYS Workbench:	1		1	2	Блок-конспект.	[1]	Контрольная

1	2	3	4	5	6	7	8	9
	 Моделирование внешних воздействий по типам задач. Использование аналитических зависимостей. 					Компьютерная презентация.		работа. Защита лабораторной работы.
8	Компьютерный пакет ANSYS Workbench: - Совмещенный (междисциплиный) анализ. Особенности обмена данными между различными типами анализов.	1		_	2	Блок-конспект. Компьютерная презентация.	[1]	Контрольная работа.
9	Компьютерный пакет ANSYS Workbench: – Язык программирования APDL ANSYS. Назначения принципы использования в среде ANSYS Workbench.	1		2	4	Блок-конспект. Компьютерная презентация.		Контрольная работа. Защита лабораторной работы.
10	Раздел 5. Настройки решателя и запуск модели на расчет Компьютерный пакет ANSYS Workbench: — Статические и динамические процессы, отличительные особенности. Классификация динамических задач, описание параметров. — Моделирование нелинейных процессов, понятие нелинейного анализа, настройки, сходимость расчета.	2		2	4	Блок-конспект. Компьютерная презентация.	[1]	Контрольная работа. Защита лабораторной работы.
11	Раздел 6. Анализ результатов расчета Компьютерный пакет ANSYS Workbench: — Выбор критериев для анализа с учетом поставленной задачи. Настройка по принадлежности к отдельным элементам модели с учетом возможной анизотропии свойств. — Виды представления и способы обработки результатов расчета. Критерии значимости. Анализ. Подготовка отчетов по результатам	1		2	4	Блок-конспект. Компьютерная презентация.	[1]	Контрольная работа. Защита лабораторной работы.

1	2	3	4	5	6	7	8	9
	анализа.							
12	Компьютерный пакет ANSYS Workbench: — Выполнение оптимизации геометрии модели путем ее адаптации под требуемый результат. Запуск анализа на перерасчет.	1		2	4	Блок-конспект. Компьютерная презентация.	[1]	Контрольная работа. Защита лабораторной работы.
13	Раздел 7. Расчет конструкций по условиям производства и эксплуатации методом конечных элементов Компьютерный пакет ANSYS Workbench: — Расчеты на прочность и жесткость, структура решения задач. — Исходные данные, требования к геометрии, описание свойств материалов, граничных условий, внешних силовых факторов, настройки параметров анализа. — Критерии разрушения конструкций. Результаты расчета и их анализ.	2		8	10	Блок-конспект. Компьютерная презентация.	[1]	Контрольная работа. Защита лабораторной работы.
[Всего за семестр:	18		36	58			Зачет
7 cer	местр:							
14	Компьютерный пакет ANSYS Workbench: — Решение задач теплообмена, структура решения задач. Учет усадки и термического расширения. — Исходные данные, требования к геометрии, описание свойств материалов, граничных условий, внешних факторов, настройки параметров анализа. — Критерии остановки анализа. Результаты	6	_	6	10	Блок-конспект. Компьютерная презентация.	[1-6]	Контрольная работа. Защита лабораторной работы.

1	2	3	4	5	6	7	8	9
	расчета и обработка.						1	
15	Компьютерный пакет ANSYS Workbench: — Расчет на устойчивость, структура решения задач. — Исходные данные, требования к геометрии, описание свойств материалов, граничных условий, внешних силовых факторов, настройки параметров анализа. — Критерии потери устойчивости конструкций. Результаты расчета и их анализ.	4	-	2	8	Блок-конспект. Компьютерная презентация.	[1- 6]	Контрольная работа.
16	Компьютерный пакет ANSYS Workbench: - Совмещение разнородных задач. Понятие совмещенного анализа, классификация, основные направления использования. - Принципы построения моделей, требования к геометрии и сетке конечных элементов. Последовательность выполнения анализа. - Особенности описания граничных условий и обмен ими. Результаты расчета и их анализ.	6	-	6	10	Блок-конспект. Компьютерная презентация.	[1-6]	Контрольная работа. Защита лабораторной работы.
17	Раздел 8. Моделирование технологических процессов методом конечных элементов Компьютерный пакет ANSYS Workbench: — Процессы термоформования. Моделирование технологического процесса термоформования изделий. — Описание свойств материала. Исходные данные, требования к геометрии, граничные условия, внешние факторы, настройки параметров анализа.	4	_	6	10	Блок-конспект. Компьютерная презентация.	[1-6]	Контрольная работа. Защита лабораторной работы.

-

1	2	3	4	5	6	7	8	9
	 Критерии остановки анализа. Результаты расчета и обработка. 							
18	Компьютерный пакет ANSYS Workbench: — Процесс прессования. Моделирование процесса глубокого деформирования тела постоянного объема между элементами неизменной геометрии. — Описание свойств материала. Исходные данные, требования к геометрии, граничных условий, внешних факторов, настройки параметров анализа. — Критерии остановки анализа. Результаты расчета и обработка.	6	-	6	10	Блок-конспект. Компьютерная презентация.	6]	Контрольная работа. Защита лабораторной работы.
19	Компьютерный пакет ANSYS Workbench: — Процесс экструдирования. Моделирование технологического процесса формообразования детали экструдированием. — Описание свойств материала. Исходные данные, требования к геометрии, граничные условия, внешние факторы, настройки параметров анализа. — Критерии остановки анализа. Результаты расчета и обработка.	4		6	10	Блок-конспект. Компьютерная презентация.	6]	Контрольная работа. Защита лабораторной работы.
20	Компьютерный пакет Autodesk MoldFlow: — Процесс литья под давлением. Моделирование технологического процесса формообразования детали литьем под давлением. — Описание свойств материала. Исходные данные, требования к геометрии, граничные усло-	4	-	4	10	Блок-конспект. Компьютерная презентация.		Контрольная работа. Защита лабораторной работы.

2	3	4	5	6	7	8	9
вия, внешние факторы, настройки параметров анализа. - Критерии остановки анализа. Результаты расчета и обработка.							
 Всего за семестр:	34	-	36	68			экзамен
 Итого:	52		72	126			

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ «КОМПЬЮТЕРНЫЕ МЕТОДЫ КОНСТРУИРОВАНИЯ» на 2015/2016 учебный год

№	Дополнения и изменения	Основание
1	Без изменений	
		*/

Учебная программа пересмотрена и одобрена на заседании кафедры (протокол № 11 от 18.05.2015 г.)

Заведующий кафедрой кандидат технических наук, доцент

А.В. Спиглазов

УТВЕРЖДАЮ

Декан факультета ТОВ, кандидат технических паук, доцент

Just -

Ю.С. Радченко

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ «КОМПЬЮТЕРНЫЕ МЕТОДЫ КОНСТРУИРОВАНИЯ» на 2016/2017 учебный год

№ п/п	Дополнения и изменения	Основание
1	Дополнений нет	

Учебная программа пересмотрена и одобрена на заседании кафедры (протокол № 9 от 27.05.2016 г.)

Заведующий кафедрой ММиК, кандидат технических наук, доцент

А.В. Спиглазов

УТВЕРЖДАЮ

Декан факультета ТОВ, кандидат технических наук, доцент

Ю.С. Радченко

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ «КОМПЬЮТЕРНЫЕ МЕТОДЫ КОНСТРУИРОВАНИЯ» на 2017/2018 учебный год

Nº n/n	Дополнения и изменения	Основание
1	Дополнений пет	
		 -

Учебная программа пересмотрена и одобрена на заседании кафедры (протокол № 11 от 15.06.2017 г.)

Заведующий кафедрой ММиК, кандидат технических наук, доцент

А.В. Спиглазов

УТВЕРЖДАЮ

Декан факультета ТОВ,

кандидат гехнических наук. доцент

T

Ю.С. Радченко

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ «КОМПЬЮТЕРНЫЕ МЕТОДЫ КОНСТРУИРОВАНИЯ»

на 2018/2019 учебный год

№ Дополнения и изменения	Основание
Дополнить информационно-методическую часть: форма контроля знаний при проведении межсессионной аттестации — защита лабораторных работ. Весовые коэффициенты: $K_{\text{межс1}} = 0,2$; $K_{\text{мсжс2}} = 0,3$; $K_{\text{тек}} = 0,5$	Положение о межсессионной аттестации студентов БГТУ, утвержденное 16.03.2018г. №121

Учебная программа пересмотрена и одобрена на заседании кафедры (протокол № 12 от 21.06.2018 г.)

Заведующий кафедрой МиК, кандидат технических наук, доцент

А. В. Спиглазов

УТВЕРЖДАЮ

Декан факультета ТОВ, кандидат технических наук, доцент

Ю. С. Радчен: