В представленной работе разработана методика приготовления процессе электрохимического испытана активность В И катализаторов основе восстановления кислорода на Cu-Au, Cu-Pd, Co-Pt, Ni-Pt, интерметаллидных наносплавов нанесенных на поверхность углеродного носителя.

Для получения наносплавов применялась пропитка углеродного носителя раствором соединений металлов с последующей сушкой и восстановительным термолизом. Данная методика позволяет получить образцы катализаторов, активными компонентами которых являются сплавные упорядоченные и неупорядоченные частицы. В качестве альтернативы катализаторы были также приготовлены использованием single-source предшественника $[Co(H_2O)_6][Pt(NO_2)_4] \cdot 2H_2O$. Показано, что интерметаллидные частицы проявляют повышенную каталитическую активность по сравнению с неупорядоченными твердыми растворами.

УДК 544.6:546.723:546.41:66.087.4

К.А. Иншакова, В.А. Бродский, Г.И. Канделаки РХТУ им. Д.И. Менделеева, Москва

ОЧИСТКА ВЫСОКОКОНЦЕНТРИРОВАННОГО РАСТВОРА ХЛОРИДА КАЛЬЦИЯ ОТ ИОНОВ ЖЕЛЕЗА (III) МЕТОДОМ ЭЛЕКТРОФЛОТАЦИИ

В настоящее время хлорид кальция применяется в самых нефтехимической, химической, разнообразных сегментах строительной и горнорудной отраслях промышленности. Хлорид кальция получают растворением карбонатной породы в соляной кислоте, с последующей нейтрализацией кислого раствора хлористого известковым последующим молоком c осветлением, отстаиванием и фильтрованием шлама хлористого кальция [1]. Растворение карбонатной породы в соляной кислоте относится к экзотермическим реакциям, происходит по следующим реакциям:

Основные:

$$CaCO_3 + 2HCl = CaCl_2 + CO_2 \uparrow + H_2O + Q$$

Побочные:

$$MgCO_3 + 2HCl = MgCl_2 + CO_2 \uparrow + H_2O$$

 $Al_2O_3 + 6HCl = 2AlCl_3 + 3H_2O$

$$Fe_2O_3 + 6HCl = 2FeCl_3 + 3H_2O$$

На стадии нейтрализации кислого раствора хлористого кальция известковым молоком выводятся образовавшиеся ионы магния, алюминия, железа в виде гидроокисей:

```
MgCl_2 + Ca(OH)_2 = Mg(OH)_2 + CaCl_2\downarrow

2FeCl_3 + 3Ca(OH)_2 = 2Fe(OH)_3 + 3CaCl_2\downarrow

2AlCl_3 + 3Ca(OH)_2 = 2Al(OH)_3 + 3CaCl_2\downarrow
```

Далее идет осветление раствора хлористого кальция с добавлением флокулянтов с последующим отстаиванием. Ионы железа (III) являются основным загрязняющим компонентом целевого продукта.

Исследован процесс очистки высококонцентрированного раствора хлорида кальция OT ионов железа (III)методом электрофлотации [2,3].Определяющей стадией процесса электрофлотационного извлечения ионов металлов из водных растворов является формирование дисперсной фазы. Наиболее эффективным способом извлечения ионов металла является выделение их в виде малорастворимых гидроксидов или оксидов. Электрофлотационный процесс характеризуется высокой степенью извлечения ионов металлов и малой продолжительностью процесса при использовании флокулянтов и ПАВ [3,4].

Цель работы заключается в оптимизации условий перевода ионов железа (III) в форму малорастворимых соединений в высококонцентрированном растворе хлорида кальция с их последующим извлечением методами электрофлотации и фильтрации с использованием ПАВ и флокулянтов различной природы.

Степень извлечения (α , %) рассчитывалась как отношение разности исходной и конечной концентрации металла в растворе к исходной концентрации в процентном выражении.

Оптимальное значение pH среды для извлечения гидроксида железа из раствора хлорида кальция не превышает 6,5. В этом случае степень извлечения малорастворимых соединений железа (III) методами электрофлотации с последующей фильтрацией достигает 94%.

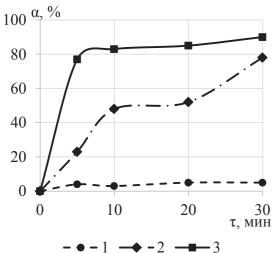
Установлено влияние природы флокулянтов и ПАВ на эффективность электрофлотационного процесса. Результаты эксперимента на примере двух флокулянтов и ПАВ, оказывающих наибольшее положительное влияние на эффективность извлечения для добавок анионного, катионного и неионогенного типов, представлены в таблицах 1 и 2.

Условия эксперимента: $C(Fe^{3+}) = 50$ мг/л; $C(CaCl_2) = 300$ г/л; $i_v = 0.4$ A/л, pH = 6.5, $\tau = 30$ мин.

Таблица 1 — Влияние природы флокулянтов на эффективность электрофлотационного извлечения малорастворимых соединений Fe^{3+}

Добавки		Степень извлечения α, %	
			Электрофлотация
		Электрофлотация	с последующей
			фильтрацией
Без добавки		5	94
Катионные	Zetag 8105	65	98
флокулянты	C 496	84	92
Анионные	Praestol 2530	90	98
флокулянты	M 345	78	95
Неионогенные	Ferrocuyl 8737	81	90
флокулянты	Praestol 2500	78	92

Введение анионного флокулянта (Praestol 2530) в раствор содержащий малорастворимые соединения железа (III) при рН=6,5 (табл. 1), позволяет повысить степень извлечения до 98%, что является наилучшим результатом среди всех исследованных флокулянтов. Аналогичный результат достигается при введении амфотерных ПАВ (Бетапав АП.45, Бетапав А1214.30), степень извлечения так же достигает 98% через 30 минут после начала процесса (табл. 2).


Таблица 2 — Влияние ПАВ различной природы на эффективность электрофлотационного извлечения малорастворимых соединений Fe^{3+}

Добавки		Степень извлечения α, %	
			Электрофлотация
		Электрофлотация	с последующей
			фильтрацией
Без добавки		5	94
Катионные	Септапав	25	91
ПАВ	Катинол	9	81
Анионный	NaDDS	1	90
ПАВ			
	Бетапав	88	98
Амфотерный	A1214.30		
ПАВ	Бетапав	93	98
	АП.45		
Неионогенный	Синтанол	10	89

ПАВ	АЛМ-10		
	ПЭО-1500	79	92

Концентрации вводимых добавок различной природы достигали 5 мг/л. На производстве добавляют флокулянты с концентрацией 0,1-2 г/л [1].

На рисунках 1 и 2 представлены кинетические зависимости степени электрофлотационного извлечения ионов железа (III) из раствора хлорида кальция (300 г/л) в присутствии флокулянтов (рис.1) и ПАВ (рис. 2). На графиках представлены кривые, характеризующие процесс без добавок (крив. 1), в присутствии добавок, показавших лучший результат (кривая 3), а также в добавок с природой, отличной от добавок, показавших лучший результат (кривая 2).

100^α, %
80
60
40
20
0
10
20
τ, мин
---1
---2
---3

Рисунок 1 — Зависимость степени извлечения от продолжительности процесса электрофлотации и содержания флокулянта (5 мг/л): 1 — без добавки, 2 — Praestol 2500, 3 — Praestol 2530

Рисунок 2 – Зависимость степени извлечения от продолжительности процесса электрофлотации и содержания ПАВ (5 мг/л): 1 – без добавки, 2 – ПЭО 1500, 3 – Бетапав А1214.30

Таким образом, показано, что метод электрофлотации с последующей фильтрацией является эффективным для очистки хлорида кальция от ионов железа (III).

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках Соглашения о предоставлении субсидии №14.583.21.0068 от 22 ноября 2017 г., Уникальный идентификатор работ (проекта) RFMEFI58317X0068.

ЛИТЕРАТУРА

- 1. Патент РФ 2601332. Способ производства высокочистого раствора хлористого кальция. С.Г. Меркушов, Н.Ф. Воробьев; Заявл. 20.02.2016 Бюл. №5. Опубл. 10.11.2016 Бюл. №31;
- 2. Лукашевич О.Д., Патрушев Е.И. Очистка воды от соединений железа и марганца: проблемы и перспективы // Химия и химическая технология. 2004. том 47 вып.1 с. 66-70;
- 3. Колесников В.А., Ильин В.И. др. Электрофлотационная технология очистки сточных вод промышленных предприятий. М.: Химия, 2007, 304 с;
- 4. Колесников В.А. Ильин В.И. Экология и ресурсосбережение в электрохимических производствах. Механические и физико-химические методы очистки сточных вод. М.: РХТУ. Издат. Центр, 2004. 220 с.

УДК 621.357, 620.187

А.В. Романовская, магистрант, В.В. Жилинский, доцент, канд. хим. наук, А.А. Черник, доцент, канд. хим. наук БГТУ, Минск

ПОЛУЧЕНИЕ КОМПОЗИЦИОННЫХ ЗАЩИТНЫХ ПОКРЫТИЙ НА ОСНОВЕ МЕДИ

настояшее время ОДНИМ ИЗ наиболее развивающихся направлений в области модификации поверхности конструкционных материалов является нанесение на различные композиционнных электролитических покрытий (КЭП), показывающих высокие физико-механические и электрохимические свойства [1, с. 96]. Композиционные покрытия представляют собой металлическую матрицу, в данном случае, из меди, содержащую дисперсную фазу, в частности, твердые и сверхтвердые частицы. Такие покрытия, как правило, обладают повышенными физикомеханическими характеристиками и износостойкостью. В начале 80-х годов XX столетия была обнаружена возможность введения в состав покрытия ультрадисперсных алмазов (УДА) методом соосаждения УДА с металлами при их химическом или электрохимическом восстановлении из водных растворов. Использование УДА в качестве композиционного материала в электрохимических и химических металл-алмазных покрытиях приводит К повышению