УДК 549.5:54-165:536.21:536.413:537.31/.32

Л. А. Башкиров, доктор химических наук, профессор (БГТУ); А. К. Болвако, ассистент (БГТУ);

Г. П. Дудчик, кандидат химических наук, доцент, заведующая кафедрой (БГТУ); **Л. Я. Крисько**, кандидат химических наук, доцент (БГТУ)

СИНТЕЗ ТВЕРДЫХ РАСТВОРОВ Ві_{1-х}Рг_хFe_{1-х}Co_хO₃ МЕТОДОМ ТВЕРДОФАЗНЫХ РЕАКЦИЙ С ИСПОЛЬЗОВАНИЕМ ПРЕКУРСОРОВ ВіFeO₃ И РгСоО₃

Методом твердофазных реакций были впервые синтезированы твердые растворы системы $BiFeO_3 - PrCoO_3$ с использованием прекурсоров – феррита висмута $BiFeO_3$ и кобальтита празеодима $PrCoO_3$. Установлены температурные и временные режимы синтеза прекурсоров и твердых растворов. Определены параметры кристаллической решетки твердых растворов состава $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$ (x = 0; 0, 2; 0, 5; 1). Предложены возможные механизмы образования твердых растворов из прекурсоров.

Solid solutions of BiFeO₃ – PrCoO₃ system were synthesized by means of the solid-state reactions method using precursors – bismuth ferrite BiFeO₃ and praseodymium cobaltite PrCoO₃. The temperature-time syntheses regimes of the precursors and the solid solutions were selected. The crystal lattices parameters of the solid solutions with compositions $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$ (x = 0; 0.2; 0.5; 1) were found. The possible mechanisms of formation of the solid solutions from the precursors were proposed.

Введение. Как известно, ряд кристаллических диэлектриков обладают самопроизвольной поляризацией (электрическим упорядочением) в небольших объемах вещества, линейные размеры которых не превышают 10^{-6} м. Во внешнем электрическом поле подобные вещества, названные сегнетоэлектриками, или ферроэлектриками (ФЭ), обнаруживают аномально высокую поляризацию, которая в 10^4 – 10^5 раз превышает поляризацию обычных диэлектриков.

Магнитными аналогами ФЭ являются ферромагнетики (ФМ) – материалы со спонтанной намагниченностью (магнитным упорядочением) в тех же по размерам объемах вещества, которые во внешнем магнитном поле намаг-ничиваются в 10¹⁰-10¹¹ раз сильнее диа- и парамагнетиков. Способность ФЭ поляризоваться в электрическом и ФМ намагничиваться в магнитном поле успешно используется в различных технических устройствах (в микроэлектронике, электрооптике, в системах магнитной записи и воспроизведения звука и др.). Однако потребности современной техники в создании устройств на основе материалов нового поколения, которые сочетали бы в себе возможности магнитной записи, хранения и быстродействующей и эффективной обработки информации, явились одной из причин интенсивного исследования веществ, обладающих способностью откликаться одновременно на воздействие электрического и магнитного полей. В таких веществах, названных мультиферроиками, или сегнетомагнетиками (СМ), имеет место магнитоэлектрический эффект (МЭ-эффект) – возникновение намагниченности М под действием электрического поля с напряженностью Е и возникновение электрической поляризации P под действием магнитного поля с напряженностью H [1]: $M = \alpha E$ и $P = \alpha H$. Другими словами, для каждого СМ существует однозначная связь между E и H, которую можно выразить производной dE / dH. Величина этой производной принята в качестве количественной характеристики наблюдаемого МЭ-эффекта. Особого внимания заслуживает тот факт, что данный эффект возникает при воздействии на СМ статического электрического поля с постоянной напряженностью, что исключает тепловые (энергетические) потери, неизбежные при прохождении электрического тока через вещество.

Таким образом, управляя магнитными свойствами вещества с помощью электрического поля (или наоборот, электрическими свойствами – магнитным полем), можно создавать устройства записи или считывания информации путем преобразования магнитного упорядочения или разупорядочения в электрический сигнал.

Наиболее перспективным СМ, способным найти широкое применение в различных электронных устройствах нового поколения, является феррит висмута BiFeO₃. Данное соединение - одно из немногих веществ, которые сочетают электрическое и магнитное упорядочение при рекордно высоких температурах. Для него сегнетоэлектрическая температура Кюри (Т_с) равна 1083 К, температура перехода из антиферромагнитного в парамагнитное состояние (T_N) – 643 К [1]. При комнатных температурах в тонких (50-500 нм) пленках ВіFeO₃ зафиксированы значения МЭ-эффекта dE / dH = 3 B/(см · Э), что на порядки превышает величины, измеренные при комнатных температурах в других СМ [2].

Состав	Температура спекания, °С	Время спекания, ч	а, нм	<i>b</i> , нм	С, НМ	Объем элементарной ячейки V · 10 ³ , нм ³	Угол α, град
$Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$	770	4	0,3974	0,3910	0,4038	62,75	-
x = 0,5	800	2	0,3881	0,3877	0,3798	57,14	
	800	14	0,3869	0,3868	0,3826	57,27	
	830	4	0,3863	0,3866	0,3805	56,83	
	850	14	0,3873	0,3864	0,3879	58,06	
$Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$	770	4	0,3944	_	_	61,34	89,19
x = 0,2	800	2	0,3909	_	_	59,64	88,19
	800	14	0,3902	_	_	59,39	89,39
	830	4	0,3898	_	_	59,23	89,37
PrCoO ₃	1200	1	0,3783	0,3795	0,3779	54,39	_
BiFeO ₃	800	8	0,3963	_	_	62,23	89,23

Температурно-временные режимы спекания образцов и параметры элементарной ячейки твердых растворов и прекурсоров BiFeO₃ и PrCoO₃

Проблема, однако, заключается в том, что у объемных образцов феррита висмута линейный МЭ-эффект практически не наблюдается вследствие наличия пространственно-модулированной спиновой структуры – несоразмерности его антиферромагнитной и кристаллической структур, приводящей к тому, что в среднем по объему МЭ-эффект и спонтанная намагниченность равны нулю [3].

Многочисленные исследования феррита висмута показали, что перспективным путем подавления пространственно-модулированной структуры и улучшения его магнитоэлектрических свойств, помимо приложения сильных магнитных полей и механических напряжений, является направленный синтез твердых растворов на основе BiFeO₃, т. е. частичное замещение ионов висмута ионами других металлов [4]. Твердые растворы на основе феррита висмута можно разбить на две основные группы: с замещением ионов висмута и с замещением ионов железа. Как правило, в первом случае используются ионы редкоземельных элементов [3]. Замещение ионов железа проводят ионами переходных металлов с близкими ионными радиусами (ионы Ti⁴⁺, Ni²⁺). Введение в феррит висмута примесей других элементов, являясь аналогом механического давления на кристаллическую решетку, делает существование пространственно-модулированной структуры энергетически невыгодным и позволяет получить величины МЭ-эффекта, на порядок превосходящие наблюдаемые ранее [4].

На кафедре физической и коллоидной химии эта идея получила дальнейшее развитие – в течение ряда лет проводятся систематические исследования закономерностей влияния одновременного изовалентного замещения ионов Bi^{3+} и Fe^{3+} в BiFeO₃ па́рами ионов: La³⁺ и Co³⁺; Pr³⁺ и Co³⁺; La³⁺ и Ga³⁺ и др. на кристаллическую структуру и электромагнитные свойства образующихся при этом твердых растворов.

Впервые синтезированы различными методами с использованием различных исходных веществ твердые растворы Bi_{1-x}La_xFe_{1-x}Co_xO₃ [5], Bi_{1-x}Pr_xFe_{1-x}Co_xO₃ [6] и ряд других и изучены их свойства. В литературе сведения по данному направлению отсутствуют.

В работе изучались возможности синтеза поликристаллических образцов твердых растворов $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$ керамическим методом с использованием в качестве прекурсоров феррита висмута $BiFeO_3$ и кобальтита празеодима $PrCoO_3$.

Методика эксперимента. Для синтеза поликристаллических образцов прекурсоров феррита висмута BiFeO₃ и кобальтита празеодима PrCoO₃ керамическим методом использовались оксиды висмута Bi₂O₃ (х.ч.), железа Fe_2O_3 (ч.д.а.), празеодима Pr_6O_{11} (х.ч.) и кобальта Со₃О₄ (ч.д.а.). Порошки исходных оксидов, взятые в молярных соотношениях, соответствующих составам BiFeO₃ и PrCoO₃, смешивали с добавлением этанола и мололи в планетарной мельнице Pulverizette 6.0 в течение 30 мин. Полученную шихту с внесенным этанолом прессовали под давлением 50-75 МПа в таблетки диаметром 25 мм и высотой 5-7 мм. Синтез феррита висмута осуществлялся путем изотермического отжига таблеток на воздухе при 800°С на протяжении 8 ч, синтез кобальтита празеодима – при 1200°С в течение 1 ч (таблица). Охлаждение образцов от температуры спекания до комнатной проводилось медленно, со скоростью примерно 2-3 град/мин. Для предотвращения взаимодействия таблеток с материалом подложки (Al_2O_3) на поверхность подложки наносился буферный слой шихты соответствующего состава.

Для синтеза поликристаллических образцов твердых растворов $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$ таблетки прекурсоров дробились, растирались в агатовой ступке и мололись в планетарной мельнице, после чего полученные порошки в нужных молярных соотношениях смешивались, мололись с добавлением этанола и прессовались в таблетки диаметром 8 мм и высотой 4–5 мм. Полученные образцы подвергались спеканию при температуре от 770 до 850°C, время спекания варьировалось от 2 до 14 ч (таблица).

Идентификация образцов прекурсоров и твердых растворов проводилась путем рентгенофазового анализа (РФА). Дифрактограммы получали на рентгеновском дифрактометре D8 Advance Bruker AXS (Германия) в диапазоне углов 2 Θ 20–80° с использованим СиК_{α}-излучения. Определение параметров кристаллической решетки проводилось при помощи рентгеноструктурного табличного процессора RTP и данных картотеки международного центра дифракционных данных (ICDD JCPDS).

Результаты и их обсуждение. Дифрактограммы поликристаллических образцов прекурсоров представлены на рис. 1 и 2.

Рис. 1. Рентгеновские дифрактограммы поликристаллических образцов прекурсоров BiFeO₃ (1), PrCoO₃ (2), твердого раствора Bi_{1-x}Pr_xFe_{1-x}Co_xO₃ (x = 0,2), полученного в работе [6] из оксидов (3) и полученного нами из прекурсоров при $T = 800^{\circ}$ C, 2 ч (4) и $T = 770^{\circ}$ C, 4 ч (5). * - Bi₂₅FeO₃₉; o - Bi₂Fe₄O₉; # - CoFe₂O₄

Анализ дифрактограмм показал, что в пределах погрешности метода РФА полученные образцы $PrCoO_3$ являются однофазными и не содержат примесей не прореагировавших оксидов (рис. 1, дифрактограмма 2).

На дифрактограмме BiFeO₃ (рис. 1, дифрактограмма *I*) наблюдались небольшие рефлексы примесных фаз – парамагнитного силленита Bi₂₅FeO₃₉ и антиферромагнитного муллита

Ві₂Fe₄O₉. Дифрактограммы ВіFeO₃ и PrCoO₃ хорошо согласуются с дифрактограммами, полученными для этих соединений в работе [6] и с литературными данными [7], в соответствии с которыми методом твердофазных реакций однофазные образцы ВіFeO₃ получить практически невозможно.

На рис. 1 представлены также дифрактограммы поликристаллических образцов твердого раствора $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$ (x = 0,2), синтезированного при различных температурах и временах спекания (дифрактограммы 4, 5). На рис. 2 показаны дифрактограммы поликристаллических образцов твердого раствора $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$ (x = 0,5). Для сравнения на рис. 1 и 2 даны также дифрактограммы твердых растворов аналогичных составов, полученных в работе [6] путем спекания соответствующих оксидов (дифрактограммы 3).

Рис. 2. Рентгеновские дифрактограммы поликристаллических образцов прекурсоров BiFeO₃ (1), PrCoO₃ (2), твердого раствора Bi_{1-x}Pr_xFe_{1-x}Co_xO₃ (x = 0,5), полученного в работе [6] из оксидов (3) и полученного нами из прекурсоров при $T = 800^{\circ}$ C, 2 ч (4) и $T = 830^{\circ}$ C, 4 ч (5). $* - Bi_{25}FeO_{39}$; o $- Bi_2Fe_4O_9$

Спекание смеси порошков прекурсоров в молярном соотношении $BiFeO_3$: $PrCoO_3 = 4 : 1$ для получения твердого раствора состава $Bi_{0,8}Pr_{0,2}Fe_{0,8}Co_{0,2}O_3$ (x = 0,2), обогащенного висмутом, проводили при четырех температурно-временных режимах, указанных в таблице. С учетом относительно низкой, по сравнению с $PrCoO_3$, температуры плавления $BiFeO_3$ (1600°C для $PrCoO_3$ и 950°C для $BiFeO_3$ [8]) температура спекания не превышала 830°C.

Анализ дифрактограмм показал, что после спекания шихты при T = 800°C (2 ч) в конечном продукте $\text{Bi}_{1-x}\text{Pr}_x\text{Fe}_{1-x}\text{Co}_x\text{O}_3$ (x = 0,2) присутствует

небольшое количество примесных фаз -Ві₂₅FeO₃₉ и ферромагнетика СоFe₂O₄ (рис. 1, дифрактограмма 4). Увеличение температуры спекания до 830°С (4 ч) и продолжительности термообработки до 14 ч при $T = 800^{\circ}$ С не привело к образованию беспримесного продукта. Таким образом, можно сделать вывод о термической неустойчивости твердого раствора $Bi_{0.8}Pr_{0.2}Fe_{0.8}Co_{0.2}O_3$ и сложном механизме протекания исследуемой твердофазной реакции при $T > 800^{\circ}$ C. Понижение температуры до T == 770°С при времени отжига 4 ч вызвало существенное уменьшение содержания примесей в образце, в особенности примеси ферромагнетика СоFe₂O₄, негативно влияющего на свойства целевого продукта. Из рис. 1 (дифрактограмма 5) видно, что содержание этой примеси пренебрежимо мало.

Спекание смеси порошков прекурсоров в молярном соотношении $BiFeO_3$: $PrCoO_3 = 1 : 1$ для получения твердого раствора состава $Bi_{0.5}Pr_{0.5}Fe_{0.5}Co_{0.5}O_3$ (x = 0,5) проводили при пяти температурно-временных режимах, указанных в таблице. Максимальная температура спекания шихты, с учетом пониженного содержания феррита висмута по сравнению с предыдущим составом, составила 850°С. Образцы, полученные при $T = 770^{\circ}$ С (4 ч) и $T = 800^{\circ}$ С (2 ч), содержали небольшое количество антиферромагнетика Bi₂Fe₄O₉. Повышение температуры отжига до 830°С (4 ч) и 850°С (14 ч) приводит к практическому исчезновению этой примесной фазы, однако на дифрактограмме появляется небольшой рефлекс, соответствующий парамагнетику Bi₂₅FeO₃₉. Следов ферромагнитной фазы CoFe₂O₄ ни в одном из этих образцов не обнаружено (рис. 2). Наиболее оптимальным режимом синтеза твердого раствора состава $Bi_{0.5}Pr_{0.5}Fe_{0.5}Co_{0.5}O_3$ следует, очевидно, выбрать $T = 830^{\circ}C (4 \text{ y}).$

Сопоставление полученных результатов с данными работы [6] показывает (рис. 1 и 2), что синтез твердых растворов $Bi_{1-x}Pr_xFe_{1-x}Co_xO_3$ из прекурсоров $BiFeO_3$ и $PrCoO_3$ является более перспективным методом, поскольку дает возможность получения продукта, содержащего незначительное количество примесных фаз по сравнению с образцами, полученными непосредственно из оксидов металлов. Кроме того, синтез из прекурсоров позволяет снизить температуру спекания с 1000–1200 [6] до 800–850°С и продолжительность термообработки.

Образование твердых растворов протекает, очевидно, путем диффузии ионов на границе раздела фаз BiFeO₃ и PrCoO₃. Можно предположить два возможных механизма диффузии – двухстороннюю (рис. 3) и одностороннюю (рис. 4) диффузию. На примере образования двух формульных единиц твердого раствора состава $Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O_3$ по уравнению

$$BiFeO_3 + PrCoO_3 = 2Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O_3$$
 (1)

схему двухсторонней диффузии можно отобразить следующими уравнениями:

$$2BiFeO_{3} + Pr^{3+} + Co^{3+} - Bi^{3+} - Fe^{3+} =$$

= 2Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O₃, (2)
2PrCoO_{3} + Bi^{3+} + Fe^{3+} - Pr^{3+} - Co^{3+} =
= 2Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O₃. (3)

Сложением уравнений (2) и (3) получаем суммарное уравнение (1). Стрелками показано направление движения ионов из одной кристаллической решетки в другую, пунктирной линией ограничена область зарождения новой фазы – твердого раствора Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O₃ (рис. 3 и 4).

Рис. 3. Схема двухсторонней диффузии ионов Bi³⁺, Fe³⁺, Pr³⁺, Co³⁺ при образовании двух формульных единиц твердого раствора Bi_{0.5}Pr_{0.5}Fe_{0.5}Co_{0.5}O₃ из прекурсоров BiFeO₃ и PrCoO₃

Рис. 4. Схема односторонней диффузии ионов Bi³⁺, Fe³⁺, O²⁻ из кристаллической решетки прекурсора BiFeO₃ в решетку прекурсора PrCoO₃ при образовании двух формульных единиц твердого раствора Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O₃

Поскольку температура плавления BiFeO₃ намного ниже температуры плавления PrCoO₃, можно предположить, что из-за более высокой

подвижности ионов кристаллической решетки феррита висмута по сравнению с подвижностью ионов Pr^{3+} и Co³⁺ возможна односторонняя диффузия Bi³⁺, Fe³⁺ и O²⁻ из кристаллической решетки BiFeO₃ в кристаллическую решетку PrCoO₃ по схеме, отображенной на рис. 4.

Схеме, представленной на рис. 4, соответствует материальный баланс ионов, согласно уравнению

$$PrCoO_{3} + Bi^{3+} + Fe^{3+} + 3O^{2-} = = 2Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O_{3}.$$
 (4)

Феррит висмута BiFeO3 имеет ромбоэдрическую, а кобальтит празеодима - орторомбическую структуру перовскита соответственно [1, 4]. Дифрактограммы образцов твердого раствора состава Bi_{0.8}Pr_{0.2}Fe_{0.8}Co_{0.2}O₃, обогащенного висмутом, показали, что он имеет структуру ромбоэдрически искаженной элементарной перовскитовой ячейки. Рассчитанные нами параметры кристаллической элементарной ячейки прекурсора BiFeO₃ и твердых растворов приведены в таблице. Наблюдается хорошее совпадение значений параметров элементарной ячейки BiFeO₃ с данными работы [5]. Для твердого раствора наиболее предпочтительными значениями параметров а и α являются те, что соответствуют образцу, полученному спеканием при $T = 770^{\circ}$ С в течение 4 ч (таблица). Как уже отмечалось, этот образец практически не содержит примеси ферромагнетика CoFe₂O₄.

Твердые растворы $Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O_3$ с эквимолярным содержанием прекурсоров имели орторомбическую кристаллическую структуру. Наиболее надежными значениями параметров элементарной ячейки мы считаем те, которые соответствуют образцу, полученному спеканием прекурсоров при T = 830°C на протяжении 4 ч (таблица).

Заключение. Методом твердофазных реакций были впервые синтезированы твердые растворы составов $\operatorname{Bi}_{1-x}\operatorname{Pr}_x\operatorname{Fe}_{1-x}\operatorname{Co}_x\operatorname{O}_3$ (x = 0; 0,2;0,5; 1) в двойной системе $\operatorname{Bi}\operatorname{FeO}_3$ – PrCoO_3 с использованием прекурсоров – феррита висмута $\operatorname{Bi}\operatorname{FeO}_3$ и кобальтита празеодима PrCoO_3 . Предварительно прекурсоры получены спеканием соответствующих оксидов. Установлены температурные и временные режимы синтеза прекурсоров и твердых растворов. Определены параметры кристаллической решетки синтезированных твердых растворов.

По сравнению с синтезом твердых растворов состава Bi_{1-x}Pr_xFe_{1-x}Co_xO₃ непосредственно из оксидов металлов метод получения их из прекурсоров BiFeO₃ и PrCoO₃ является более

перспективным, поскольку конечный продукт содержит незначительное количество примесных фаз. Кроме того, синтез из прекурсоров позволяет существенно снизить температуру спекания исходных образцов.

Дальнейшим развитием разрабатываемого направления – получения перспективных сегнетомагнетиков на основе феррита висмута может быть исследование условий синтеза обогащенного висмутом парамагнитного прекурсора Bi₂₅FeO₃₉. Возможно, твердофазное взаимодействие данного прекурсора с оксидом железа по реакции

$$Bi_{25}FeO_{39} + 12Fe_2O_3 = 25BiFeO_3$$

позволит получить феррит висмута с улучшенными сегнетомагнитными характеристиками.

Работа выполнена в рамках комплексного задания 1.02 ГПНИ «Функциональные материалы и технологии, наноматериалы».

Литература

1. Макоед, И. И. Получение и физические свойства мультиферроиков: монография / И. И. Макоед. – Брест: БрГУ, 2009. – 181 с.

2. Epitaxial BiFeO₃ multiferroic thin film heterostructures / J. Wang [et al.] // Science. – 2003. – Vol. 299. – P. 1719–1722.

3. Звездин, А. К. Фазовые переходы и гигантский магнитоэлектрический эффект в мультиферроиках / А. К. Звездин, А. П. Пятаков // Успехи физических наук. – 2004. – Т. 174, № 4. – С. 465–470.

4. Пятаков, А. П. Магнитоэлектрические материалы и мультиферроики / А. П. Пятаков, А. К. Звездин // Успехи физических наук. – 2012. – Т. 182, № 6. – С. 593–620.

5. Физико-химические свойства твердых растворов Ві_{1-х}La_xFe_{1-x}Co_xO₃, синтезированных с использованием различных методов / А. А. Затюпо [и др.] // Труды БГТУ. – 2012. – № 3: Химия и технология неорган. в-в. – С. 37–41.

6. Синтез, структура и физико-химические свойства твердых растворов в квазибинарной системе BiFeO₃ – PrCoO₃ / A. И. Клындюк [и др.] // Вести Нац. акад. наук Беларуси. Сер. хим. наук. – 2012. – № 4. – С. 5–9.

7. Морозов, М. И. Особенности образования ВіFeO₃ в смеси оксидов висмута и железа (III) / М. И. Морозов, Н. А. Ломанова, В. В. Гусаров // Журнал общей химии. – 2003. – Т. 73, вып. 11. – С. 1772–1776.

 Портной, К. И. Кислородные соединения редкоземельных элементов / К. И. Портной, И. И. Тимофеева. – М.: Металлургия, 1986. – 480 с. Поступила 02.03.2013