ЛИТЕРАТУРА

1. A. N. Murashkevich, O. A. Alisienok, I. M. Zharskiy, M. S. Novitskaya, O. V. Fedorova, A. I. Maximovskikh Titania sols as precursors in sol-gel technologies of composite materials for photocatalysis, electrorheology, sorption // Journal of Sol-Gel Science and Technology DOI10.1007/s10971-019-04981-w

2. А. Н. Мурашкевич, О. А. Алисиенок, А. И. Максимовских, О. В. Федорова Синтез и термоаналитическое исследование композитов на основе SiO₂-TiO₂, модифицированных макроциклическими эндорецепторами// Неорган. матер., 2016, том 52, № 3, С. 1–8

УДК 549.5:54-165:536.21:536.413:537.31/.32

Л. А. Башкиров, И. А. Великанова, Г. П. Дудчик, А. А. Глинская Белорусский государственный технологический университет

СИНТЕЗ, МИКРОСТРУКТУРА И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СЕГНЕТОМАГНЕТИКОВ НА ОСНОВЕ ФЕРРИТА ВИСМУТА

В данной работе представлены результаты исследований условий синтеза твердых растворов сегнетомагнетиков (СМ), или, что то же самое, мультиферроиков (М Φ) на основе феррита висмута BiFeO₃ и изучения их свойств, которые проведены на кафедре физической и коллоидной химии (в настоящее время – кафедра физической, коллоидной и аналитической химии) Белорусского государственного технологического университета. Работа выполнялась в рамках научного направления кафедры по изучению физических свойств магнитных, сегнетомагнитных полупроводниковых И наноструктурных пленочных материалов и разработке на их основе перспективных устройств для электронной и микроэлектронной техники.

Феррит висмута BiFeO₃, принадлежащий к группе сложных оксидных однофазных систем со структурой типа перовскита, считается наиболее перспективным МФ, поскольку это одно из немногих соединений, в которых сочетание электрического и магнитного упорядочения наблюдается при рекордно высоких температурах [1]. При комнатных температурах в тонких (толщиной от десятков до сотен нм) пленках феррита висмута зафиксированы значения магнитоэлектрического эффекта, которые на порядки превышают величины, измеренные при комнатных температурах в

других МФ [2]. Однако исследование феррита висмута с целью установления оптимальных условий его синтеза и разработки на его основе материалов с требуемыми электромагнитными характеристиками оказалось связанным с целым рядом проблем, которые до настоящего времени не получили своего полного разрешения.

Одна из основных проблем связана с очень узким температурным существования интервалом BiFeO₃ И его термодинамической неустойчивостью. Твердофазный синтез этого соединения из оксидов висмута и железа сопровождается образованием двух сопутствующих фаз – антиферромагнитного муллита Bi₂Fe₄O₉ и парамагнитного силленита Bi₂₅FeO₃₉. Эти соединения также плавятся с разложением, но, в отличие от самого феррита висмута с узким интервалом его существования, концентрационные интервалы их кристаллизации весьма широки, что препятствует синтезу целевого продукта, свободного от примесей. Другая проблема заключается в том, что МЭ-эффект наблюдается только у пленочных образцов BiFeO₃. По причинам, которые обусловлены пространственно-структурными особенностями кристаллической решетки BiFeO₃ и подробно обсуждены в работе [3], до сих пор не удалось наблюдать МЭ-эффект у объемных образцов BiFeO₃

Многочисленные исследования феррита висмута показали, что перспективным способом решения перечисленных выше проблем является получение твердых растворов на основе феррита висмута путем изовалентного замещения части катионов Bi³⁺ в феррите висмута BiFeO₃ катионами редкоземельных элементов.

В нашей работе исследовалась возможность синтеза новых МФ на основе феррита висмута $BiFeO_3$ именно в этом направлении – изучались условия получения твердых растворов состава $Bi_{1-x}Ln_xFeO_3$, где Ln – атом редкоземельного элемента (La и Pr), а также твердых растворов, в которых одновременно часть ионов железа замещалась на атомы других металлов, например, на атомы кобальта. Идея стабилизации феррита висмута в условиях его синтеза путем частичного замещения ионов Bi^{3+} ионами редкоземельных элементов и ионов Fe^{3+} ионами кобальта реализовывалась различными способами.

Исследованы возможности твердофазного синтеза твердого раствора $Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O_3$ непосредственно из оксидов соответствующих металлов по реакции (1)

$$\frac{1}{4Bi_{2}O_{3} + 1}{4Fe_{2}O_{3} + 1}{6Co_{3}O_{4} + 1}{12Pr_{6}O_{11}} = Bi_{0,5}Pr_{0,5}Fe_{0,5}Co_{0,5}O_{3} + 1}{24O_{2}}$$
(1)

и из феррита висмута и кобальтита празеодима по реакции (2)

$$BiFeO_3 + PrCoO_3 = 2Bi_{0.5}Pr_{0.5}Fe_{0.5}Co_{0.5}O_3.$$
 (2)

Методом рентгенофазового анализа было установлено [4], что получаемый при этом твердый раствор феррита загрязнен примесными фазами (3–5%).

При синтезе незамещенного BiFeO₃ из прекурсора Bi₂₅FeO₃₉ (силленита, в котором имеется 25-кратный избыток висмута по сравнению с железом), и оксида железа по реакции (3)

$$Bi_{25}FeO_{39} + 12Fe_2O_3 = 25BiFeO_3$$
 (3)

удалось снизить температуру отжига с 850°С до 800°С и уменьшить содержание примесей до 3% по сравнению с синтезом из оксидов [4].

Наиболее оптимальным оказался разработанный нами метод синтеза замещенного феррита висмута [5] путем твердофазного взаимодействия твердых растворов на основе муллита Bi₂Fe₄O₉ состава

 $Bi_{2-x}Ln_xFe_4O_9$ (Ln = La, Pr; x = 0,2; 0,4) и оксида висмута Bi_2O_3 по реакции (4):

$$Bi_{2-x}Ln_xFe_4O_9 + Bi_2O_3 = 4Bi_{1-x}Ln_xFeO_3.$$
 (4)

Соответствующие прекурсоры на муллита основе синтезировались предварительно из оксидов висмута Bi₂O₃, лантана La₂O₃, празеодима Pr₆O₁₁ и железа Fe₂O₃ высокой степени чистоты (квалификация «х.ч.») по методике, описанной в [5]. Идентификация предварительно синтезированных образцов прекурсоров и твердых растворов на основе феррита висмута BiFeO₃ проводилась путем рентгенофазового ана-лиза. Установлены оптимальные температурные и временные режимы обжига, при которых синтезированные образцы были однофазными и не содержали примесных фаз – антиферромагнитной Bi₂Fe₄O₉ и парамагнитной Ві₂₅FeO₃₉. Поликристаллические образцы замещенных фер-ритов висмута составов Bi_{0.95}La_{0.05}FeO₃, Bi_{0.9}La_{0.1}FeO₃ и Bi_{0.95}Pr_{0.05}FeO₃ имели кристаллическую структуру ромбоэдрически искаженного перовскита.

Таблица 1 – Параметры *a*, α и объем *V* элементарной ячейки для замещенных ферритов Bi_{0,9}La_{0,1}FeO₃, Bi_{0,95}La_{0,05}FeO₃, Bi_{0,95}Pr_{0,05}FeO₃ и незамещенного феррита BiFeO₃ [6]

Темпера- турно- временной режим обжига образцов	<i>a</i> , Å	α, град	<i>V</i> , Å ³	Темпера- турно- временно й режим обжига образцов	<i>a</i> , Å	α, град	<i>V</i> , Å ³
$Bi_{0,9}La_{0,1}FeO_3$				Bi _{0,95} Pr _{0,05} FeO ₃			
<i>T</i> = 830°С, 30 мин	3,969(6)	89,442	62,545	<i>T</i> = 30°С, 30 мин	3,952(8)	89,42	61,75
<i>T</i> = 900°С, 30 мин	3,967(0)	89,523	62,425	<i>T</i> = 830°С, 4 ч	3,951(4)	89,41	61,68
$T = 900^{\circ} \text{C},$ 4 ч	3,960(5)	89,607	62,12	<i>T</i> = 900°С, 4 ч	3,949(5)	89,45	61,60
Bi _{0,95} La _{0,05} FeO ₃				BiFeO ₃			
$T = 900^{\circ}C,$ 4 ч	3,965(8)	89,520	62,364	BiFeO ₃ [7]	3,962(2)	89,43	62,19

Параметры элементарных ячеек синтезированных твердых растворов представлены в таблице, они оказались близки по величине к параметрам элементарной ячейки базового феррита висмута BiFeO₃ [6].

Проведены электронно-микроскопические исследования синтезированных твердых растворов $Bi_{0,9}La_{0,1}FeO_3$, $Bi_{0,95}La_{0,05}FeO_3$ и $Bi_{0,95}Pr_{0,05}FeO_3$. Исследованы ИК-спектры поглощения в зависимости от температуры и продолжительности обжига образцов. Измерена их электропроводность при температурах от 470 до 1090 К, установлено, что ее величина при увеличении температуры от 300 до 1100 К возрастает примерно на три порядка. Увеличение электропроводности с ростом температуры свидетельствует о том, что исследуемые твердые растворы являются полупроводниками *p*-типа.

В диапазонах температур, которые соответствуют линейным участкам зависимости $ln\sigma$ от 1/T, определена энергия активации электропроводности. Для твердых растворов $Bi_{0.95}Pr_{0.05}FeO_3$ величина энергия активации электропроводности составила 0.92-1.1 эВ в интервале температур 700–1000 К и 0.15-0.33 эВ для интервала

температур 360–520 К, а для $Bi_{0,9}La_{0,1}FeO_3$ и $Bi_{0,95}La_{0,05}FeO_3$ соответственно 0,99–1,0 эВ (700–1000 К) и 0,09–0,13 эВ (360–520 К).

ЛИТЕРАТУРА

1. Макоед И. И. Получение и физические свойства мультиферроиков / Брест: БрГУ, 2009. 181 с.

2. Wang J. Epitaxial BiFeO₃ multiferroic thin film heterostructures /

J. Wang , J. B. Neaton, H. Zhen // Science. 2003. Vol. 299. P. 1719– 1722.

3. Звездин А.К. Фазовые переходы и гигантский магнитоэлектрический эффект в мультиферроиках / А. К. Звездин, А.П. Пятаков // Успехи физических наук. 2004. Т. 174, № 4. С. 465–470.

4.Затюпо А.А. Синтез сегнетомагнетика BiFeO₃ из прекурсора Bi₂₅FeO₃₉ и оксида железа Fe₂O₃ / А. А. Затюпо, Л.А. Башкиров, Т.А. Шичкова, Г.Г. Эмелло // Труды БГТУ. 2014. № 3: Химия и технология неорган. в-в. С. 44–46.

5.Башкиров Л.А. Синтез и структура твердых растворов Ві_{0,95}La_{0,05}FeO₃ и Ві_{0,9}La_{0,1}FeO₃, полученных из прекурсоров Ві_{1,8}La_{0,2}Fe₄O₉, Ві_{1,6}La_{0,4}Fe₄O₉ и оксида Ві₂O₃ / Л. А. Башкиров, Г.П. Дудчик, А.А. Глинская, И.А. Великанова // Труды БГТУ. 2016. № 3 (185): Химия и технология неорган. в-в. С. 93–99.

6. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card N 00-025-0090.

УДК 665.654+549.5+537.31/.32

Е.А. Чижова¹, доц., канд. хим. наук, А.И. Клындюк¹, доц., канд. хим. наук, С.В. Шевченко¹, ассист., канд. хим. наук, А.В. Крищук¹, студ., И.В. Мацукевич², зав. лаб., канд. хим. наук ¹БГТУ, Минск ²ИОНХ НАН Беларуси, Минск

ТЕРМОЭЛЕКТРИЧЕСКАЯ КЕРАМИКА С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ НА ОСНОВЕ НАНОСТРУКТУРИРОВАННОГО КОБАЛЬТИТА КАЛЬЦИЯ

Выделяющаяся в окружающую среду при работе промышленных предприятий и автотранспорта теплота может быть преобразована в электрическую энергию в термоэлектрических