5. Solvothermal synthesis and magneto-optical properties of Zn1-xNixO hierarchical microspheres / Z. Liu et al. // J. Magn. Magn. Mater. -2011. - Vol. 323, No 7. - P. 1022-1026.

6. Metal nanotubes prepared by a sol-gel method followed by a hydrogen reduction procedure / Z. Hua et al. // Nanotechnology. -2006. - Vol. 17, No 20. - P. 5106–5110.

7. Magnetic interaction in FeCo alloy nanotube array / D. Zhou et al. // J. Magn. -2011. - Vol. 16, N 4. - P. 413–416.

8. Magnetic properties of Co nanopillar arrays prepared from alumina templates. / L. G. Vivas et al. // Nanotechnology. -2013. - Vol. 24, No 10. - P. 105703.

9. Nanomaterials: A membrane-based synthetic approach / C. R. Martin // Science (80-.). – 1994. – Vol. 266, № December. – P. 1961–1966.

10. Characterization of Pet Track Membrane Parameters, in *NANO* 2016: Nanophysics, Nanomaterials, Interface Studies, and Applications, P. 79–91.

11. Evolution of the polyethylene terephthalate track membranes parameters at the etching process / E. Y. Kaniukov et al. // J. Contemp. Phys. (Armenian Acad. Sci. – 2017. – Vol. 52, N_{2} 2. – P. 155–160.

УДК 546.282.3:546.824-31:547.89

А. Н. Мурашкевич¹, Е. К. Юхно¹, О. А. Алисиенок¹, О. В. Федорова² ¹БГТУ, Минск, ¹Институт органического синтеза УрО РАН, Екатеринбург

СИНТЕЗ И ТЕРМОАНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ КОМПОЗИТОВНА ОСНОВЕ SiO₂-TiO₂, МОДИФИЦИРОВАННЫХ ФУНКЦИОНАЛИЗИРОВАННЫМИМАКРОЦИКЛИЧЕСКИМИ ЭНДОРЕЦЕПТОРАМИ

Ранее нами показана возможность увеличения сорбционной емкости и селективности краун-эфиров (КЭ) при сорбции катионов кислых растворов путем иммобилизации КЭ в металлов из композитSiO₂-TiO₂в процессе золь-гель синтеза[1]. Установлена также эффективность формирования отпечатка катиона стронция В адсорбенте использовании на этапе золь-гель-синтеза при функционализированного КЭ, позволяющаяувеличить адсорбцию

соответствующего катионана 20% [2].

Целью настоящей работы является синтез и термоаналитическое исследование органо-минеральных композитов, где носителем макроциклического эндорецептора являлся композит SiO₂–TiO₂(HH)с развитой удельной поверхностью (463 м²/г) и значительной пористостью (0,36 см³/г).Использовали комплексы краун-эфира с хлоридами РЗЭ (Eu, Sm, La) или аминокислотами (L-пролином и L-фенилаланином).

№ п/п	КЭ	Шифр	SiO ₂ /TiO ₂	НН : КЭ	Промывк
		КЭ			а
1	* LaCl,	Res-459	1:1	1:0,33	нет
2		Res-459	1:1	1:0,33	да
3		Res-467	1:1	1:0,33	нет
4	€ Contraction of the EuCla	Res-467	1:1	1:0,33	да
5		Res-468	1:1	1:0,33	нет
6	SmCl ₃	Res-468	1:1	1:0,33	да
7		Res-471	1:1	9:1	нет
8		Res-472	1:1	9:1	нет
9		Res-471	9:1	1:0,4	да
10		Res-471	9:1	1:0,4	нет
11		Res-472	9:1	1:0,4	да
12		Res-472	9:1	1:0,4	нет

Таблица 1- Органо-минеральные композиты

Рисунок 1 – Дериватограммыоргано-минеральных композитов, номера образцов в таблице 1

Композит SiO₂-TiO₂ /КЭ получали смешением золей оксидов кремния и титана и раствора КЭ в диметилформамиде (ДМФА) с последующей сушкой при температурах 110–150°С. Часть образца после смешения компонентов промывали водой для удаленияхлоридов РЗЭ или аминокислот.

Предполагалось, РЗЭ ЧТО хлориды И аминокислоты, образующие комплекс с КЭ, будут удаляться частично или полностью процессе промывки, создавая отпечаток на поверхности В макроциклического эндорецептора, подготовленный таким образом к участию в процессе сорбции соответствующего катиона металла или аминокислоты.

Образец			SiO ₂ -TiO ₂	SiO ₂ -TiO ₂	SiO ₂ -TiO ₂
			+RES 459 (без	+RES 459	+RES471
			отмывки)	(отмытый)	(безотмывки)
Рисунок			1	2	7
Удаляемое	ΦΑΒ	∆t, °C	27,6–119,7	27,9–169,7	27,58 -
ИЗ					128,36
композита		$\Delta m, \%$	5,32	6,65	3,908
вещество	ДМФА+H ₂ O	Δt, °C	119,7–249,9	169,7–326,0	128,36 -
					275,27
		$\Delta m, \%$	20,79	8,49	23,892
	КЭ	Δt, °C	249,9–530,4	326,0-549,7	275,27 -
					530,47
		$\Delta m, \%$	13,27	11,639	8,961
	XCB	Δt, °C	530,4–999,1	549,7–999,2	530,47 -
					999,10
		$\Delta m, \%$	1,36	1,11	1,148
$\Sigma\Delta m, \%$			40,74	27,90	37,911
Образец			SiO ₂ -TiO ₂	SiO ₂ -TiO ₂	SiO ₂ -TiO ₂
			+RES	+RES 471	+RES 471
			472(безотмывки)	(отмытый)	(безотмывки)
Рисунок			8	9	10
Удаляемое	ФАВ	Δt, °C	27,78 - 125,03	27,75-	28,14–128,4
ИЗ	ДМФА+H ₂ O			123,30	0.45
композита		$\Delta m, \%$	3,43	2,19	2,45
вещество		Δt , °C	125,03 - 275,14	123,30– 290,33	128,4–302,82
		$\Delta m, \%$	25,232	7,42	10,43
	КЭ	Δt , °C	275,14 - 530,40	290,33-	302,82-
				388,04	455,69
		$\Delta m, \%$	8,287	6,89	12,92
		Δt , °C		388,04-	455,69–
				650,35	643,48
		$\Delta m, \%$		8,74	5,82
	XCB	$\Delta t, ^{\circ}C$	530,40 - 989,80	650,35-	643,48-
				998,23	998,46
		$\Delta m, \%$	1,133	1,18	1,27
$\Sigma\Delta m, \%$			38,100	27,0	32,90

Таблица 2 – Результаты обработки ТА-кривых композитов SiO₂–TiO₂, содержащих функционализированныекраун-эфиры

Характер дериватограмм образцов 1-6 оказался похожим, поэтому на рисунке 1 приведеныдериватограммытолько образцов 1-2. Как видно в таблице 2, весь диапазон фазовых превращений

образцов 1,2, сопровождаемых потерей масс, можно разделить на 4 периода: удаление физически сорбированной воды в интервале температур 27–169°С, при этом потери масс составили 5,32–6,65 %. Экзотермический эффект с максимумом при 235°С соответствует разрушению комплекса ДМФА–вода–КЭ и последующей термической деструкции ДМФА. Удалениеводы и ДМФА из комплекса происходит одновременно с его разложением, что может свидетельствовать о расположении воды и ДМФА внутри молекулярной полости КЭ.

Экзотермическийэффект максимумом 335–339°C С обусловленпроцессом термической деструкции КЭ. После промывки, сопровождаемой разрушением комплекса КЭ с хлоридом РЗЭ, наблюдаются два типа связанных оксидом SiO₂-TiO₂молекул ДБ-18-К-6, прочность удерживания которых В композите различна: слабосвязанные молекулы удаляются при 312–314°C. а прочносвязанные – при 341-344°С. Дегидратация оставшегося неорганического носителя сопровождается небольшой потерей массы образцов 1,1-1,4 %.

Для образцов 7 и 8, в которых КЭ функционализирован аминокислотами, в области 220–230°С наблюдаются два экзотермических эффекта, связанных с процессами превращения ДМФА и, возможно, аминокслот.Удаление КЭ в данном случае происходит в более широком температурном интервале 275–530°С, потери масс, связанные с удалением химически связанной воды, также не велики.

При более содержании диоксида кремния высоком В неорганическом носителе И более высоком содержании аминокислотой функционализированного КЭ (образцы 9,10) последовательность термических превращений аналогична предыдущим образцам 7,8. Однако после промывки в высушенном образце 10 наблюдаются два эндотермических эффекта с максимами 539°С и 616°С, менее четко выраженные надериватограмме отмытого образца. Характер процессов, обуславливающих эти эффекты, пока не совсем понятен. Следует отметить, что в образце 9 после промывки органо-минерального композита водой также прослеживается присутствие молекул КЭ, различающихся прочностью связи с неорганическим носителем, что обуславливает разные температуры деструкции КЭ с максимумами при 363 и 429°С.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (Грант № 18-53-00026-Бел_а), Белорусского фонда фундаментальных исследований (Грант № Х18Р-032).

ЛИТЕРАТУРА

1. A. N. Murashkevich, O. A. Alisienok, I. M. Zharskiy, M. S. Novitskaya, O. V. Fedorova, A. I. Maximovskikh Titania sols as precursors in sol-gel technologies of composite materials for photocatalysis, electrorheology, sorption // Journal of Sol-Gel Science and Technology DOI10.1007/s10971-019-04981-w

2. А. Н. Мурашкевич, О. А. Алисиенок, А. И. Максимовских, О. В. Федорова Синтез и термоаналитическое исследование композитов на основе SiO₂-TiO₂, модифицированных макроциклическими эндорецепторами// Неорган. матер., 2016, том 52, № 3, С. 1–8

УДК 549.5:54-165:536.21:536.413:537.31/.32

Л. А. Башкиров, И. А. Великанова, Г. П. Дудчик, А. А. Глинская Белорусский государственный технологический университет

СИНТЕЗ, МИКРОСТРУКТУРА И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СЕГНЕТОМАГНЕТИКОВ НА ОСНОВЕ ФЕРРИТА ВИСМУТА

В данной работе представлены результаты исследований условий синтеза твердых растворов сегнетомагнетиков (СМ), или, что то же самое, мультиферроиков (М Φ) на основе феррита висмута BiFeO₃ и изучения их свойств, которые проведены на кафедре физической и коллоидной химии (в настоящее время – кафедра физической, коллоидной и аналитической химии) Белорусского государственного технологического университета. Работа выполнялась в рамках научного направления кафедры по изучению физических свойств магнитных, сегнетомагнитных полупроводниковых И наноструктурных пленочных материалов и разработке на их основе перспективных устройств для электронной и микроэлектронной техники.

Феррит висмута BiFeO₃, принадлежащий к группе сложных оксидных однофазных систем со структурой типа перовскита, считается наиболее перспективным МФ, поскольку это одно из немногих соединений, в которых сочетание электрического и магнитного упорядочения наблюдается при рекордно высоких температурах [1]. При комнатных температурах в тонких (толщиной от десятков до сотен нм) пленках феррита висмута зафиксированы значения магнитоэлектрического эффекта, которые на порядки превышают величины, измеренные при комнатных температурах в