

Figure 1 – CVA curves of ORR on tTiO₂ (a) and nTiO₂ (b) before and after modification by 5 nm-Au NPs (1 – bare TiO₂; 2 – TiO₂-0.75 μg/cm²Au; 3 – TiO₂-1.5 μg/cm²Au; 4 – TiO₂ - 3 μg/cm²Au)

REFERENCES

1. Chen W., Chen S. Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects // Angew. Chemie - Int. Ed. – 2009. Vol. 48. – P. 4386–4389.

2. Adžić R.R., Marković N.M., Vešović V.B. Structural effect in electrocatalysis: oxygen reduction on the Au(100) single crystal electrode // J. Electroanal. Chem. – 1984. Vol.165. – P. 105–120.

3. Maltanava H., Poznyak S., Starykevich M., Ivanovskaya M. Electrocatalytic activity of Au nanoparticles onto TiO_2 nanotubular layers in oxygen electroreduction reaction: size and support effects // Electrochim. Acta. – 2016. Vol. 222. – P. 1013–1020.

А.Л. Козловский ^{1,2}, Е.Е. Шумская ³, Е.Ю. Канюков ⁴ ¹ Казахско-Российский международный университет, Актобе, ² Иңститут ядерной физики МЭ РК, Алматы, ³ ГО НПЦ по материаловедению, Минск, ⁴ ГНУ Институт химии новых материалов НАН Беларуси, Минск

ИЗМЕНЕНИЕ МАГНИТНЫХ ПАРАМЕТРОВ НАНОТРУБОК ПЕРМАЛЛОЯ В ЗАВИСИМОСТИ ОТ ИХ ДЛИНЫ

Существует ряд методов синтеза металлических нанотрубок (НТ), включая электрохимическое осаждение [1], электронно-лучевую литографию [2], химическое осаждение из паровой фазы [3], импульсное лазерное осаждение [4] и некоторые другие методы [5-7]. Метод электрохимического осаждения подходит ДЛЯ синтеза металлических наноструктур, позволяет поскольку OH физическими манипулировать свойствами И химическими

наноструктур с высокой степенью контроля процесса [1, 8, 9] путем изменения состава электролита, потенциала и времени осаждения, а также параметров шаблона. Выбор этого метода дает возможность получать НТ с заданной длиной и предсказуемой структурой. Следовательно, такой способ обеспечивает хорошую степень контроля магнитных свойств наноструктур. Проведено большое количество исследований, демонстрирующих способность адаптировать форму и структуру наноматериалов путем выбора параметров матриц и условий осаждения, однако нет данных о том, как микроструктура и магнитные свойства зависят от длины нанотрубок. Чтобы устранить этот пробел, в работе проводится комплексное исследование корреляции между структурными и магнитными свойствами HT FeNi различной длины, сформированных в порах ПЭТ-мембран методом матричного синтеза.

В качестве шаблонов для FeNi NT использовались ионнотрековые мембраны ПЭТФ с диаметром пор 380 ± 10 нм и поверхностной плотностью $4 \cdot 10^7$ пор/ см². Формирования пор и оценка их параметров описаны в другом месте [10, 11]. Электрохимическое осаждение внутри пор матрицы проводилось в потенциостатическом режиме при напряжении 1,75 В от электролита: FeSO₄ × 7H₂O (10 г / л), NiSO₄ × 7H₂O (110 г / л), H₃BO₃ (45 г / л) и C₆H₈O₆ (1,5 г / л). Процесс электроосаждения контролировали хроноамперометрическим методом с помощью Agilent 34410.

Структурные характеристики были выполнены с помощью сканирующей электронной микроскопии (СЭМ, Hitachi TM3030), энергодисперсионного анализа (ЭДА, Bruker XFlash MIN SVE) при ускоряющем напряжении 15 кВ. Толщину стенки НТ определяли методами газопроницаемости (Sartocheck® 3 Plus 16290). Рентгеноструктурный анализ (РЭМ, D8 ADVANCE ECO) проводили с использованием Cu Ka (λ = 1,54060 Å). Для идентификации кристаллических фаз и изучения кристаллической структуры, используется программное обеспечение Bruker AXSDIFFRAC.EVAv. 4.2 и международная база данных ICDD PDF-2. Петли магнитного гистерезиса HT FeNi измеряли при комнатной температуре (T = 300 К) с помощью магнитометра с вибрирующим образцом (ВМ, «Cryogenic LTD») в магнитных полях ± 20 кЭ с направлением параллельно и перпендикулярно относительно оси НЦ.

НТ FeNi, состоящие из 20% железа и 80% никеля диаметром 380 нм, толщиной стенки 110 нм, длиной 3 мкм, 6 мкм, 9 мкм, 12 мкм и с «крышечками» в верхней части НТ, были получены методом шаблонного синтеза в порах ПЭТФ мембраны (рисунок).

Рисунок 1 – СЭМ-изображения массивов нанотрубок FeNi после растворения ПЭТФ-мембран, соответствующих разным длинам: 3 мкм (а), 6 мкм (б), 9 мкм (в), 12 мкм (г), а также после шапки формация (д)

Показано, что при увеличение длины НТ приводит увеличение степени кристалличности, а также к уменьшению параметра решетки и микродеформации структуры. Произошёл переход от зернистой структуры с большим количеством дефектов в коротких коротких НТ к поликристаллической малодефектной структуре в длинных. Неравномерный рост НТ приводил к образованию «шапочек» над отдельными наноструктурами, достигшими поверхности шаблона раньше других. Формирование «шапочек» сопровождалось новыми направлениями роста с двойникованием кристаллитов и развитием новых граней.

На основе анализа магнитных характеристик HT FeNi (таблица) продемонстрировано объяснено наличие магнитной было И анизотропии со сложной зависимостью от длины в результате изменения аспектного отношения и неоднородности их структурных характеристик по длине. Значения основных магнитных параметров НТ FeNi различной длины определялись комбинированным эффектом магнитокристаллической анизотропии, упругих напряжений В структуре НТ и анизотропии формы.

Таблица – Параметры петель гистерезиса нанотрубок FeNi при двух разных ориентациях магнитного поля при разных длинах нанотрубок. Н_с - коэрцитивность, M_r - остаточная

Длина	Параллельно оси НТ		Перпендикулярно оси НТ	
мкм	H _c , Oe	$M_{\rm r}/M_{\rm s}$	H _c , Oe	$M_{\rm r}/M_{\rm s}$
3	18	0,02	110	0,122
6	10	0,041	120	0,145
9	17	0,015	150	0,333
12	17	0,022	95	0,0945
Шапочки	12	0,013	80	0,085

намагниченность, а M_s - намагниченность насыщения

HT Для малых ЛЛИН имеют небольшую степень кристалличности, высокую дефектность и малое соотношение сторон, что определяет низкую общую магнитную анизотропию. Рост НТ сопровождается увеличением степени кристалличности, а также снижением структурной дефектности, что приводит к увеличению анизотропии, которая увеличивается до ллин HT. магнитной Последующее уменьшение магнитной анизотропии связано С существенным уменьшением анизотропии формы. Дальнейшее осаждение металла приводит только к увеличению числа «шапочек» и, соответственно, к уменьшению общей магнитной анизотропии.

Таким образом, основной вывод исследования можно сформулировать как определение ограничений метода матричного синтеза для формирования наноструктур с заданной длиной и предсказуемыми структурными и магнитными свойствами.

ЛИТЕРАТУРА

1. Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes / V. Haehnel et al. // Acta Mater. -2010. - Vol. 58, No 7. - P. 2330–2337.

2. Fabrication and magnetic properties of arrays of amorphous and polycrystalline ferromagnetic nanowires obtained by electron beam lithography / J. I. Martín et al. // J. Magn. Magn. Mater. -2002. - Vol. 249, $N_{\rm P}$ 1–2. - P. 156–162.

3. Studies on Surface Facets and Chemical Composition of Vapor Grown One-Dimensional Magnetite Nanostructures / S. Barth et al. // Cryst. Growth Des. -2009. - Vol. 9, N 2. - P. 1077–1081.

4. PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties / J. R. Morber et al. // J. Phys. Chem. B. -2006. – Vol. 110, No 43. – P. 21672–21679.

5. Solvothermal synthesis and magneto-optical properties of Zn1-xNixO hierarchical microspheres / Z. Liu et al. // J. Magn. Magn. Mater. -2011. - Vol. 323, No 7. - P. 1022-1026.

6. Metal nanotubes prepared by a sol-gel method followed by a hydrogen reduction procedure / Z. Hua et al. // Nanotechnology. -2006. - Vol. 17, No 20. - P. 5106–5110.

7. Magnetic interaction in FeCo alloy nanotube array / D. Zhou et al. // J. Magn. -2011. - Vol. 16, N 4. - P. 413–416.

8. Magnetic properties of Co nanopillar arrays prepared from alumina templates. / L. G. Vivas et al. // Nanotechnology. -2013. - Vol. 24, No 10. - P. 105703.

9. Nanomaterials: A membrane-based synthetic approach / C. R. Martin // Science (80-.). – 1994. – Vol. 266, № December. – P. 1961–1966.

10. Characterization of Pet Track Membrane Parameters, in *NANO* 2016: Nanophysics, Nanomaterials, Interface Studies, and Applications, P. 79–91.

11. Evolution of the polyethylene terephthalate track membranes parameters at the etching process / E. Y. Kaniukov et al. // J. Contemp. Phys. (Armenian Acad. Sci. – 2017. – Vol. 52, N_{2} 2. – P. 155–160.

УДК 546.282.3:546.824-31:547.89

А. Н. Мурашкевич¹, Е. К. Юхно¹, О. А. Алисиенок¹, О. В. Федорова² ¹БГТУ, Минск, ¹Институт органического синтеза УрО РАН, Екатеринбург

СИНТЕЗ И ТЕРМОАНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ КОМПОЗИТОВНА ОСНОВЕ SiO₂-TiO₂, МОДИФИЦИРОВАННЫХ ФУНКЦИОНАЛИЗИРОВАННЫМИМАКРОЦИКЛИЧЕСКИМИ ЭНДОРЕЦЕПТОРАМИ

Ранее нами показана возможность увеличения сорбционной емкости и селективности краун-эфиров (КЭ) при сорбции катионов кислых растворов путем иммобилизации КЭ в металлов из композитSiO₂-TiO₂в процессе золь-гель синтеза[1]. Установлена также эффективность формирования отпечатка катиона стронция В адсорбенте использовании на этапе золь-гель-синтеза при функционализированного КЭ, позволяющаяувеличить адсорбцию