ЛИТЕРАТУРА

1. Ameta J. et al. Synthesis and characterization of CeFeO 3 photocatalyst used in photocatalytic bleaching of gentian violet //Journal of the Iranian Chemical Society. -2009. -Vol. 6. $-N_{2}$. 2. -P. 293-299.

2. Naidu V. et al. Magnetic Property Study of Nickel Cerium Substituted Zinc Ferrite Nano Particles //International Journal of Computer Applications. -2012. -Vol. 40. $-N_{\odot}$. 4. -P. 7-12.

3. Theofanidis S. et al. Fe-based nano-materials in catalysis //Materials. -2018. -Vol. 11. $-N_{2}$. 5. -P. 831.

> А.Л. Козловский^{1,2}, К.К. Кадыржанов³, М.В. Здоровец^{2,3,4} ¹Казахско-Российский международный университет, Актобе, ²Институт ядерной физики МЭ РК, Алматы, ³Евразийский национальный университет им. Л.Н. Гумилева, Астана, ⁴Уральский федеральный университет, Екатеринбург

ИССЛЕДОВАНИЕ СТРУКТУРНЫХ ХАРАКТЕРИСТИК FeNi НАНОСТРУКТУР

Среди всего многообразия форм наноструктур наибольший интерес представляют полые магнитные наноструктуры, в форме трубок [1-3]. Повышенный интерес к ним обусловлен как с фундаментальной точки зрения, который связан с миниатюризацией размеров и структурных и магнитных свойств, так и с широкими возможностями практического применения нанотрубок. Возрастание интереса к получению и исследованию свойств связано еще и с тем, что многие свойства, в частности магнитная текстура и ориентация магнитных доменов обусловлена не только фазовым составом, но и геометрическими характеристиками структуры [4]. Среди многообразия различных составов наноструктур неослабевающим железосодержащие интересом пользуются или $Fe_{100-x}Ni_x$ которые благодаря наноструктуры, своим магнитным характеристикам нашли широкое применение в области катализа, магнитных носителей co сверхвысокой плотностью записи, биомедицине [5].

В качестве шаблонных матриц для электрохимического осаждения Fe/Ni нанотрубок использовались трековые мембраны с плотностью пор $4,0\cdot10^7$ см⁻² и диаметрами 380 ± 5 нм. Состав раствора электролита для получения железных и железо-никелевых наноструктур: 7-водные сульфаты железа и никеля – FeSO₄×7H₂O, NiSO₄×7H₂O в необходимом молярном соотношении, борная – H₃BO₃ и аскорбиновая C₆H₈O₆ кислоты. Все растворенные компоненты

347

переливались в одну колбу, и, для контроля уровня pH, к ним добавлялась аскорбиновая кислота. Все использованные химические реактивы имели чистоту ч.д.а (содержание основного компонента выше 98 %) или х.ч (содержание основного компонента более 99 %).

Исследование структурных характеристик И элементного состава, полученных нанотрубок проводилось с использованием растрового электронного микроскопа «Hitachi TM3030» с системой XFlash MIN микроанализа «Bruker **SVE**» при ускоряющем напряжении 15 кВ. Рентгеноструктурный анализ проводился на ADVANCE ECO (Bruker, Германия) при дифрактометре D8 использовании излучения CuKα (*λ*=1.54060 Å). Для идентификации фаз и исследования кристаллической структуры использовалось BrukerAXSDIFFRAC.EVAv.4.2 обеспечение программное И международная база данных ICDD PDF-2.

Для определения влияния условий осаждения на кристаллическую структуру был проведен РСА синтезированных условиях различных синтеза. образцов при Ha рисунке 1 представлены рентгеновские дифрактограммы синтезированных образцов.

Рисунок 1 – Рентгеновские дифрактограммы исследуемых образцов: 1) Fe₂₁Ni₇₉; 2) Fe₃₉Ni₆₁; 3) Fe₆₂Ni₃₈; 4) Fe₈₁Ni₁₉; 5) Fe₁₀₀Ni₀

Анализ дифрактограмм показал следующее: при концентрации железа 80 и 60 % в структуре нанотрубок преобладает ОЦК фаза при этом с увеличением концентрации железа наблюдается увеличение параметра кристаллической решетки с 2,8794 Å для $Fe_{80}Ni_{20}$ до 2,8854 Å для $Fe_{60}Ni_{40}$. При этом для образца $Fe_{40}Ni_{60}$ наблюдается наиболее интенсивный пик характерный для соединения $FeNi_3$ с индексами

Миллера (111) с параметром ячейки 3,5131 Å. Для образца Fe₂₀Ni₈₀ в кристаллической структуре наблюдается преобладание ГЦК фазы никеля с параметром элементарной ячейки 3,5695 Å. При аппроксимации линий на дифрактограмме необходимым числом симметричных функций псевдо-Фойгта была определена ширина FWHM, зарегистрированных линий которая позволила кристаллической охарактеризовать совершенство структуры И оценить степень кристалличности. Согласно представленным данным видно, что с увеличением концентрации никеля в структуре увеличивается степень кристалличности, а также меняются основные характеристики кристаллической структуры: параметр элементарной ячейки, средний размер кристаллитов, текстурные коэффициенты. В результате обработки полученных рентгеновских дифрактограмм были определены параметры элементарной ячейки для исследуемых образцов. Результаты расчетов основных параметров кристаллической структуры представлены в таблице 1.

		Средний				Атом	ное
	Параметр	размер	Фазовое		соотношение,		
	кристаллической	кристаллитов,	содержание		%		
	решетки, Å	HM	Ni	Fe	FeNi	Ni	Fe
Fe ₁₀₀	2.8627	21	0	100	0	0	100
Fe80Ni20	2.8794	19	5	82	13	19	81
Fe ₆₀ Ni ₄₀	2.8854	18	26	59	15	38	62
Fe ₄₀ Ni ₆₀	3.5131	15	37	45	18	61	39
Fe ₂₀ Ni ₈₀	3.5695	13	68	7	25	79	21

Таблица 1 – Данные кристаллической структуры синтезированных нанотрубок

Исследования, посвященные изучению кристаллической структуры и магнитных характеристик, имеют свою ценность с прикладной точки зрения для потенциального применения наноструктур в качестве магнитных устройств для хранения данных.

ЛИТЕРАТУРА

1. Vivas L.G., Ivanov Y.P., Trabada D.G., Proenca M.P. Magnetic properties of Co nanopillar arrays prepared from alumina templates. // Nanotechnology. – 2013. – V.24. – P.105703.

2. Yen S.K., Padmanabhan P., Selvan S.T. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. // Theranostics. -2013 - V.3 - P.986-1003.

3. Rawtani D., Sajan T., Agrawal Y.K. Emerging strategies for synthesis and manipulation of nanowires: a review. // Rev. Adv. Mater. Sci. -2015. - V.40. - P.177-187.

4. Lisiecki I., Pileni M.P. Synthesis of copper metallic clusters using reverse micelles as microreactors // J. Am. Chem. Soc. -1993. - V. 115. -P. 3887.

5. Prunier H., Ricolleau C., Nelayah J., Wang G., Alloyeau D. Original Anisotropic Growth Mode of Copper Nanorods by Vapor Phase Deposition // Cryst. Growth Des. – 2014. – V. 14. – P. 6350.

И.А. Ямановская¹, Т.В. Кусова¹, Г.А. Беликов², А.С. Краев¹, А.В. Агафонов¹

¹Институт химии растворов российской академии наук им. Г.А. Крестова, ²Ивановский государственный химико-технологический университет

РАЗРАБОТКА РАСТВОРНЫХ МЕТОДОВ ПОЛУЧЕНИЯ НОВЫХ УПОРЯДОЧЕННЫХ МЕЗОПОРИСТЫХ МАТЕРИАЛОВ НА ОСНОВЕ ОКСИДОВ И ГИДРОКСИДОВ МЕТАЛЛОВ И ИХ КОМПОЗИТОВ

Разнообразие мезопористых структур, а также возможность управления их пористостью и модификацией в процессе синтеза в зависимости от практического приложения, вызывает огромный интерес к этим материалам. Упорядоченная структура, большие площади поверхности и объемы пор, а также однородные и настраиваемые размеры мезопор, вследствие использования различных структурообразующих темплатов, позволят применять данные материалы и композиты оксидов металлов в качестве фотоктализаторов, адсорбентов, электродных материалов для суперконденсаторов и др.

Актуальность проведенного исследования определяется тем, что среди химических подходов для получения мезопористых оксидов металлов наиболее перспективен процесс самосборки гибридных органо-неорганических мезофаз, образуемых продуктами гидролиза прекурсоров металла И мицеллярными структурами оксида поверхностно-активных веществ и полимеров в качестве шаблонов в растворах. Представляет значительный научный и практический интерес выяснение механизма формирования структуры мезопористых оксидов металлов и смешанных оксидов в зависимости применяемого темплата, каталитически ОТ типа активных модификаторов, разработка новых мезопористых структур, путем использования различных методов обработки мезоструктурированных