Контрольный экземпляр

Учреждение образования «Белорусский государственный технологический университет»

УТВЕРЖДАЮ

Проректор по учебной работе БГГУ

А.А. Сакович « **29**» об 2018 г.

Регистрационный № УД- 952 /уч.

Теория механизмов и машин Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-36 01 08 «Конструирование и производство изделий из композиционных материалов»

1-36 07 02 « Производство изделий на основе трехмерных технологий»

Учебная программа составлена на основе Типовой учебной программы, утвержденной Министерством образования Республики Беларусь 18.11.2015 года. Регистрационный номер № ТД-I.1297/тип.

СОСТАВИТЕЛЬ:

Г.С. Бокун, доцент кафедры механики и конструирования учреждения образования «Белорусский государственный технологический университет», кандидат физико-математических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой механики и конструирования учреждения образования «Белорусский государственный технологический университет» (протокол № 12 от 21 июня 2018

Методической комиссией факультета химической технологии и техники учреждения образования «Белорусский государственный технологический университет» (протокол № 10 от 27 июня 2018 г.)

Учебно- методическим советом учреждения образования «Белорусский государственный технологический университет» (протокол № ⁷ от *19.06.* 2018 г.)

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1. Актуальность, цель и задачи преподавания и изучения учебной дисциплины

Являясь фундаментальной общеинженерной дисциплиной, курс теории механизмов и машин определяет методы и подходы, на основании которых осуществляется современное проектирование и создание новых машин и механизмов. Задачи преподавания состоят в изложении и привитии всех существующих подходов, которые можно применить при реализации процессов проектирования, обеспечивающих оптимальные режимы работы разнообразных устройств и машин. Практическая значимость и актуальность курса в том, что здесь даются подходы, на основании которых можно принимать инженерные решения касающиеся вопросов проектирования и работы машин.

Целью курса «**Теория механизмов и машин**» является продолжение фундаментальной подготовки будущих инженеров-механиков в области механических явлений для успешного перехода к усвоению специальных предметов и для использования в дальнейшей деятельности.

Задачи курса: 1. Получение навыков в построении динамических моделей, отражающих основные свойства реальных машин.

- 2. Получение навыков в аналитическом описание построенных моделей с помощью нелинейных дифференциальных уравнений.
- 3. Знакомство с расчетными методами позволяющими получить приближенные аналитические решения нелинейных дифференциальных уравнений и провести анализ их решений.

1.2. Требования к уровню освоения содержания учебной дисциплины В результате изучения учебной дисциплины студент должен:

знать:

- основные виды механизмов, их кинематические и динамические характеристики;
- принципы работы отдельных механизмов;
- общие методы кинематического анализа и синтеза механизмов;
- общие методы динамического анализа механизмов;
- основы проектирования типовых механизмов;

уметь:

- составлять расчетные схемы типовых элементов машин и механизмов;
- находить кинематические параметры механизмов графическими и аналитическими методами;
- решать задачи синтеза механизмов по заданным кинематическим и динамическим свойствам;
- решать задачи динамического исследования движения машин;

владеть:

терминологией основных разделов курса;

- методами определения характеристик и решения уравнений движения простых динамических моделей механизма;
- методами силового анализа рычажных, зубчатых и кулачковых механизмов;
- методикой нахождения кинематических параметров и определения передаточных функций рычажных, зубчатых и кулачковых механизмов;
- навыками построения и анализа кинематических схем машин и механизмов.
- анализировать влияние динамических факторов на поведение устройств в рассматриваемой предметной области;
- проводить необходимые расчеты в рамках курса;.

1.3. Формирусмые компетенции

Образовательным стандартом высшего образования предусматривается, что у студента, освоившего курс теории механизмов и машин , должны быть сформированы следующие компетенции:

а) академические компетенции:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
- АК-2. Владеть системным и сравнительным анализом.
- АК-3. Владеть исследовательскими навыками.
- АК-4. Уметь работать самостоятельно.
- АК-6. Владеть междисциплинарным подходом при решении проблем.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

б) социально-личностные компетенции:

СЛК-6. Уметь работать в команде.

в) профессиональные компетенции:

- ПК-1. Проводить научные исследования и разработки с использованием современных информационных технологий.
- ПК-2. Анализировать и объективно оценивать достижения науки и техники в области процессов, машин и аппаратов, перспективы и направления развития.
- ПК-10. Владеть современными программными средствами моделирования, расчета и компьютерного проектирования изделий и технологических процессов.
- ПК-19. Самостоятельно принимать профессиональные решения с учетом их социальных, экономических и экологических последствий.
- ПК-20. Разрабатывать новые образцы технологического оборудования с использованием современных информационных и компьютерных технологий.

1.4 Перечисление дисциплин, освоение которых необходимо для изучения курса теории механизмов и машин:

No No		D ()
	Название	Раздел (тема)
пп	дисциплины	
1.		1. Элементы линейной алгебры и аналитической геомет-
	Математика	рии.
		2. Векторная алгебра.
		3. Основы дифференциального исчисления.
		4. Интегральное исчисление.
		5. Дифференциальные уравнения.
2	Теоретиче-	1.Статика
	ская механи-	2.Динамика
	ка	3.Кинематика

1.5. Структура содержания учебной дисциплины

При очной форме обучения учебные планы предусматривают для изучения курса «Теория механизмов и машин» 142 учебных часа, из них 68 часа аудиторных занятий на протяжении одного семестра. Распределение часов по видам занятий следующее: лекций – 50, практических – 18,. На самостоятельную работу отводится 74 часа, из них 5 часов – на управляемую самостоятельную работу. Форма текущей аттестации -экзамен.

2. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

ВВЕДЕНИЕ

Теория механизмов и машин — научная основа создания новых механизмов и машин, автоматизации и механизации производственных процессов. Содержание дисциплины и ее значение для инженерного образования. История развития науки о механизмах и машинах. Связь теории механизмов и машин с другими областями знаний.

Основные этапы проектирования машин. Учет многих критериев и факторов при создании новых машин (производительность, быстродействие, энергопотребление, материалоемкость, точность, надежность и т.п).

РАЗДЕЛ 1. ОБШИЕ СВЕДЕНИЯ ПО ТЕОРИИ ТЕХНОЛОГИЧЕСКИХ МАШИН И МЕХАНИЗМОВ

Тема 1.1 Рабочие процессы и машины

Технологические, транспортные, энергетические, информационные рабочие процессы. Машины как системы, осуществляющие механические движения для выполнения механической работы, связанной с реализацией рабочего процесса. Структура машин и машин-автоматов.

Тема 1.2 Основы строения механизмов

Основные понятия: механизм, звено, кинематическая пара. Основные виды механизмов, используемых в машиностроении. Классификация кинематических пар. Кинематические цепи. Обобщенные координаты и число степеней свободы механизма. Структурные и параметрические степени свободы. Структурный синтез и анализ механизмов. Избыточные связи и местные подвижности в механизмах.

РАЗДЕЛ 2. ОБЩИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ КИНЕМАТИЧЕСКИХ И ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК МЕХАНИЗМОВ И МАШИН. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЗВЕНЬЕВ МАШИН Тема 2.1 Моделирование геометрических и кинематических связей в механизмах

Кинематические передаточные функции и их производные (аналоги скоростей и ускорений). Определение кинематических характеристик плоских рычажных механизмов аналитическим методом (метод замкнутых векторных контуров). Кинематический анализ плоских рычажных механизмов графическим методом (построение планов положений, скоростей и ускорений). Особенности кинематики рычажных механизмов с заданным относительным движением звеньев. Определение передаточных отношений фрикционных и зубчатых механизмов с неподвижными осями вращения Использование численных методов и применение ЭВМ для расчетов кинематических характеристик механизмов.

Тема 2.2 Математическое моделирование и исследование движения машин и механизмов с жесткими звеньями

Силы, действующие в машинах, приборах и других устройствах, и их характеристики. Динамическая и математическая модели машины с одной степенью свободы. Приведение сил и масс. Уравнение движения модели в энергетической и дифференциальной формах. Определение динамических характеристик модели. Режимы движения машин. Определение закона движения звена приведения при установившемся и неустановившемся режимах для различных случаев задания внешних сил. Использование численных методов и ЭВМ для решения уравнения движения. Задача ограничения периодических колебаний скорости звена приведения при установившемся движении. Определение постоянной составляющей приведенного момента инерции машин по заданному коэффициенту неравномерности движения.

Тема 2.3 Силовой анализ, трение и изнашивание в механизмах

Действие сил в кинематических парах. Метод кинетостатики. Силы инерции звеньев. Условие статической определимости кинематических цепей. Силовой анализ плоских рычажных механизмов аналитическим и графическим методами. Трение в подшипниках и роликовых направляющих качения. Приведенные коэффициенты трения.

Тема 2.4 Уравновешивание механизмов

Статическое и динамическое уравновешивание вращающихся звеньев. Различные виды неуравновешенности роторов и ее устранение. Статическая и динамическая балансировки. Определение главного вектора и главного момента сил инерции механизма. Статическое уравновешивание масс плоских рычажных механизмов.

РАЗДЕЛ 3. ПРОЕКТИРОВАНИЕ СХЕМ ОСНОВНЫХ ВИДОВ МЕХА-НИЗМОВ

Тема 3.1 Синтез рычажных механизмов

Входные и выходные параметры и этапы синтеза механизмов. Целевые функции, ограничения и дополнительные условия синтеза. Применение методов оптимизации и ЭВМ при синтезе механизмов. Многовариантность решения. Условие существования кривошипа. Синтез по заданным положениям входного и выходного звеньев. Синтез по коэффициенту изменения средней скорости выходного звена. Синтез по заданному ходу и максимальным углам давления.

Тема 3.2 Синтез зубчатых механизмов

Виды зубчатых механизмов и области их применения. Относительное движение звеньев, находящихся в зацеплении. Основная теорема зацепления. Геометрические параметры зубчатых колес. Основные свойства и характеристики эвольвентного зацепления. Подрезание зубьев и условия его отсутствия. Оп-

ределение основных геометрических параметров цилиндрической эвольвентной переости внутреннего зацепления цилиндрических эвольвентных колес.

Тема 3.3. Синтез кулачковых механизмов

Виды и назначение кулачковых механизмов. Этапы синтеза механизмов. Основные параметры кулачковых механизмов. Законы движения выходного звена. Угол давления и его влияние на передачу сил, на размеры и надежность механизмов. Определение основных размеров плоских кулачковых механизмов из условия ограничения угла давления или из условия выпуклости профиля кулачка.

3. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА

Номер разде- ла, темы, заня- тия	Наименование раздела, темы, занятия; перечень изучаемых вопросов	Лекции	Практ. занят	Са- мост.работа студента	Управл. са- мостоятель- ная работа	Форма кон- троля знаний
1	2	3	4	5	6	7
1	Общие сведения по теории технологи- ческих машин и механизмов	8	2	14	2	
1.1	Рабочие процессы и машины	2		6	1	
1.2	Основы строения механизмов	2	2	4	1	
1.3	Кинематические цепи. Обобщенные координаты и число степеней свободы механизма. Структурные и параметрические степени свободы.	2		2		
1.4	Структурный синтез и анализ механизмов. Избыточные связи и местные подвижности	2		2		
2	Общие методы определения кинематиче- ских и динамических характеристик меха- низмов и машин. Математическое модели- рование движения звеньев машин	22	8	40	2	Защита РГР
2.1	Моделирование геометрических и кинематических связей в механизмах Кинематические передаточные функции и их	8	2	10	1	

	производные (аналоги скоростей и ускорений)					
2.1.1	. Определение кинематических характеристик плоских рычажных механизмов аналитическим методом (метод замкнутых векторных контуров	2	2	2		
2.1.2	Кинематический анализ плоских рычажных механизмов графическим методом (построение планов положений, скоростей и ускорений).	2		4	1	
2.1.3	Определение передаточных отношений фрикционных и зубчатых механизмов с неподвижными осями вращения Использование численных методов и применение ЭВМ для расчетов кинематических	4		4		
2.2	Математическое моделирование и исследование движения машин и механизмов с жесткими звеньями	8	2	10	1	
2.2.1	. Динамическая и математическая модели машины с одной степенью свободы. Приведение сил и масс. Уравнение движения модели в энергетической и дифференциальной формах. Определение динамических характеристик модели	2		2		
2.2.2	. Режимы движения машин. Определение закона движения звена приведения при установившемся и неустановившемся режимах для различных случаев	2	2	2		

	задания внешних сил.					
2.2.3	Использование численных методов и ЭВМ для решения уравнения движения.	2		2		
2.2.4	Задача ограничения периодических колебаний скорости звена приведения при установившемся движении.	2		4		
2.3	Силовой анализ, трение и изнашивание в механизмах	4	2	10		Защита РГР
2.3.1	Действие сил в кинематических парах. Метод кинетостатики. Силы инерции звеньев	2	2	6		
2.3.2	Условие статической определимости кинематических цепей. Силовой анализ плоских рычажных механизмов аналитическим и графическим методами.	2		4		
2.4	Уравновешивание механизмов	2	2	10		
3	Проектирование схем основных видов механизмов	20	8	20	1	
3.1	Синтез рычажных механизмов	4	2	10	1	
3.1.1	Целевые функции, ограничения и до-	2		5		

3.1.1	Целевые функции, ограничения и до-	2		5		
	полнительные условия синтеза. Применение методов оптимизации и ЭВМ при синтезе механизмов. Условие существования кривошипа.					
3.1.2	Синтез по заданным положениям входного и выходного звеньев. Синтез по коэффициенту изменения средней скорости выходного звена. Синтез по заданному ходу и максимальным углам давления	2	2	5	1	
3.2	Синтез зубчатых механизмов	8	4	5		Защита РГР
3.2.1	Виды зубчатых механизмов и об-	2		2		
	ласти их применения. Относительное движение звеньев, находящихся в зацеплении.					
3.2.2	Основная теорема зацепления. Геометрические параметры зубчатых колес.	2	2	1		
3.2.3	Основные свойства и характеристики эвольвентного зацепления. Подрезание зубьев и условия его отсутствия.	2		1		
3.2.4	Определение основных геометрических параметров цилиндрической эвольвентной переости внутреннего зацепления цилиндрических колес.	2	2	1		
		,				
3.3	Синтез кулачковых механизмов	8	2	5		
3.3.1	Виды и назначение кулачковых	2		2		

	механизмов. Этапы синтеза механизмов					
3.3.2	Основные параметры кулачковых ме- ханизмов. Законы движения выходного звена	2	1	1		
3.3.3	Угол давления и его влияние на передачу сил, на размеры и надежность механизмов	2		1		
3.3.4	Определение основных размеров плоских кулачковых механизмов из условия ограничения угла давления или из условия выпуклости профиля кулачка.	2	1	1		
	Количество часов	50	18	74	5	

4. ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

4.1. Перечень основной литературы

		К-во экз.
1	Артоболевский, И.И. Теория механизмов и машин / И.И. Артоболевский. — М.: Наука, 1988. — 640 с	115
2	Теория механизмов и машин / Под общ. Ред. К.В. Фролова. – М.: Высшая школа, 1987. – 496 с.	83
3	Теория механизмов и машин. Сборник заданий к курсовому проекту для студентов заочной формы обучения/ С.А.Борисевич, Д.В. Гапанюк, А.Н. Камлюк, Р.Н.Ласовский. — Минск: УО «Белорусский государственный технологический университет», 2010. — 72 с.	114
4	Курсовое проектирование по теории механизмов и машин / Под общей ред. Г.Н. Девойно. – Минск: Вышэйшая школа, 1986. – 285 с.	182
5	Попов, С.А. Курсовое проектирование по теории механизмов и машин / С.А. Попов, Г.А. Тимофеев. – М.: Высшая школа, 2002. – 351с.	35
6	Теория механизмов и машин Методические указания к выполнению лабораторных работ для студентов инженернотехнических специальностей очной и заочной форм обучения/ С.А.Борисевич, Д.В.Гапанюк, Р.Н.Ласовский. – Минск: УО «Белорусский государственный технологический университет», 2013. –76с.	134

4.2 Перечень дополнительной литературы

		К-во экз.
1	Бадеев В.П. Теория механизмов и машин. Сборник заданий к расчетным работам по одноименному курсу/ В.П.Бадеев, Д.В.Гапанюк, А.Н.Камлюк. – Минск: УО «Белорусский государственный технологический университет», 2005.	320
2	Юдин, В.А. Теория механизмов и машин / В.А. Юдин, Л.В. Петрокас. – М.: Высшая школа, 1967. – 528 с	3
3	Марголин Ш.Ф. Теория механизмов и машин / Ш.Ф. Марголин. – М.: Высшая школа, 1968. – 357 с.	50

4.3 Перечни заданий и контрольных мероприятий управляемой самостоятельной работой студентов

№ п/п	Контрольное мероприятие	Неделя проведе- ния/выдачи	Неделя сдачи
	5-й семес	стр	
1	Расчетно-графическая работа №1	2	10
2	Задание 1-1		5
3	Задание 1-2		7
4	Задание 2-1		9
5	Расчетно-графическая работа №2	8	15
6	Задание 4-1		12
7	Задание 5-2		14

4.3 Перечни используемых средств диагностики результатов учебной деятельности

- 4.3.1 Проверка расчетно-графических работ.
- 4.3.2 Индивидуальные беседы со студентами по темам пропущенных занятий.
- 4.3.3 Индивидуальный опрос студентов по темам практических занятий.
- 4.3.4 Проведение межсессионных аттестаций в форме анализа результатов написания контрольных работ и выполнения РГР. Весовые коэффициенты составляют значения 0.2 для первой и 0.3 для второй аттестаций.

4.4 Перечень практических занятий

- 1. Кинематические пары.
- 2. Структурный анализ механизмов.
- 3. Кинематический анализ механизмов (скорости, ускорения).
- 4. Контрольная работа №1
- 5. Синтез плоских рычажных механизмов.
- 6. Кинематическое исследование зубчатых механизмов.
- 7. Контрольная работа №2
- 8. Исследование движения звена приведения машинного агрегата.
- 9. Моделирование движения механизмов под действием заданных сил.

5. ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название дисцип-	Кафедра, которая	Предложения кафед-	Принятое ре-
лины, с которой	обеспечивает	ры о внесении изме-	шение кафедры.
требуется согласо-	изучение этой	нений в содержании	Дата, № прото-
вание	дисциплины	учебной программы	кола
	Кафедра механи-		
	ки и конструии-		
	рования		

Зав. кафедрой к.т.н., доцент

Спиглазов А.В.