Т.Н. Воробьева ^{1,2}, О.Н. Врублевская ^{1,2}, А.А. Кудако¹, М.Г. Галуза ¹ НИИ ФХП БГУ, ² БГУ, Минск

ПРЕИМУЩЕСТВА И ПРОБЛЕМЫ ПРОЦЕССОВ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВОВ ОЛОВА ИЗ ГЛИКОЛЕВЫХ ЭЛЕКТРОЛИТОВ

Покрытия на основе легкоплавких сплавов (ат.%) Au71Sn29, Sn98,7Cu1,3, Sn39Bi61 эвтектического состава применяют в процессах сборки изделий электронной техники, финишной обработки печатных плат. Для этих же целей востребованы покрытия Ni35Sn65, отличающиеся высокой коррозионной стойкостью. Электроосаждение из водных растворов сплавов олова с Au, Cu, Ві указанных выше составов затруднительно из-за большой разницы значений электродных потенциалов второго стандартных олова И электроположительного металла. восстанавливающегося преимущественно. В сплавах Ni-Sn, наоборот, обычно доминирует олово, поскольку имеет больший электродный потенциал. Еще одна причина трудностей осаждения сплавов с заданным содержанием олова – непостоянство состава растворов, обусловленное: проявлением Sn(II) способности восстанавливать Au(I, III) и Cu(I, II), б) гидролизом Sn(II и IV), в) выделением на катоде водорода и ростом рН электролита. Адсорбция продуктов гидролиза и неполного восстановления приводит к пассивации катода.

Для подавления гидролиза Sn(II и IV), выделения водорода и изменения соотношения электродных потенциалов Sn и второго восстанавливаемого металла авторами данной работы предложены этилен- и пропиленгликолевые (EG, PG) электролиты для осаждения сплавов Au—Sn [1, 2], Bi—Sn [3], Cu—Sn и Ni—Sn с требующимся для пайки составом. В данной работе обобщены сведения об особенностях электроосаждения олова совместно с золотом, медью, висмутом или никелем из гликолевых электролитов; раскрыто влияние процессов специфической сольватации в растворах на состав сплавов и механизм их формирования. Сопоставление химического и фазового состава покрытий, скорости их роста, выхода металлов по току (ВТ), процессов на электродах и в объеме растворов, позволило выявить преимущества и недостатки EG и PG электролитов.

Составы электролитов, режимы осаждения сплавов и состав покрытий приведены в таблице. В электролиты для осаждения

сплавов Au–Sn, Sn–Cu и Bi–Sn олово введено в составе $SnCl_4\cdot 5H_2O$, поскольку Sn(II) восстанавливает Au(I, III) и Cu(II) в объеме растворов, а при электровосстановлении Sn(II) совместно с Bi(III) образуются дендриты. Отметим, что небольшое количество воды до 6–7 масс. % попадает в гликолевые электролиты при растворении кристаллогидратов и добавлении $HCl_{\text{конц}}$ до pH 1–3. Из полностью безводных растворов металлы не осаждаются.

Таблица 1 — Составы и условия эксплуатации гликолевых электролитов для осаждения сплавов, в максимальной мере соответствующих наиболее востребованным Au71Sn29, Sn98,7Cu1,3, Sn39Bi61, Ni35Sn65

Состав	С, моль/л	j,	Ско-	BT,	Доля олова	Фазовый
электролита		MA/cm^2 ,	рость,	%	в сплаве, ат%	состав
		анод	мкм/ч			сплава
Сплав Au–Sn, T = 35–40 °C						
KAu(CN) ₄	0,05	5,	1,8	40–55	31–39	Au ₅ Sn,
SnCl ₄ ·5H ₂ O	1,4	Pt				AuSn
Сплав Sn–Cu, T = 18–20 °C						
CuCl ₂ ·2H ₂ O	0,05					
Na ₂ ЭДТА	0,12	1–2,				Cu_6Sn_5 ,
SnCl ₄ ·5H ₂ O	0,25	Cu,	1–2	70–80	83–86	$Cu_{10}Sn_3$,
H ₃ BO ₃	0,3	бронза				β-Sn,
HCl _{конц}	до рН 3					Cu
Сплав Sn–Bi, T = 18–20 °C						
SnCl ₄ ·5H ₂ O	0,14-0,57					
BiC ₆ H ₅ O ₇	0,01-0,03	14–16,	10	30-	6	β-Sn,
H_3BO_3	0,08	Pt		40		Bi
HCl _{конц}	до рН 1					
Сплав Ni–Sn, T = 60 °C						
NiCl ₂ ·6H ₂ O	0,42	3,	5	65	63–66	Ni ₃ Sn ₄ ,
SnCl ₂ ·2H ₂ O	0,09	Ni				NiSn
HCl _{конц}	до рН 1–2					

Мелкозернистые плотные покрытия Au–Sn, близкие по составу к эвтектике (31–39 ат.% Sn, фазы AuSn, Au₅Sn), осаждаются со скоростью 1,8 мкм/ч при плотности тока (j) 5 мА/см² с BT 40–55 %. Качественные покрытия Cu–Sn, содержащие до 86 ат.% олова в составе фаз Cu₆Sn₅, Cu₁₀Sn₃ и β -Sn растут в присутствии в электролите борной кислоты со скоростью 2,7 мкм/ч при j = 2 мА/см², BT 70–80 %.

Методом ИК-спектроскопии установлено, что в EG и PG растворах Sn(IV) находится в составе комплексных соединений $SnCl_2G(H_2O)_2^{2+}$ [1], а состав комплексных ионов $Au(CN)_4^-$ и $Cu(ЭДТА)^{2-}$ неизменен. Анализ процессов восстановления металлов из комплексных ионов, введенных в раствор или образующихся в нем,

помог выявить механизм электроосаждения сплавов из гликолевых электролитов. При наложении разности потенциалов положительно заряженные ионы $SnCl_2G(H_2O)_2^{2+}$ диффундируют к катоду, образуя пару катион—анион с $Au(CN)_4^-$ и $Cu(\Im \Pi TA)^{2-}$. В отсутствие ионов $SnCl_2G(H_2O)_2^{2+}$ золото и медь осаждаются крайне медленно, в то время как образование ассоциатов катионов с анионами $Au(CN)_4^-$ и $Cu(\Im \Pi TA)^{2-}$, обеспечивает одновременный разряд Sn(IV) и Au(III) или Cu(II) и формирование интерметаллидов.

Данные циклической вольтамперометрии (ЦВА) подтверждают такой механизм совместного восстановления металлов, на что указывает факт деполяризации восстановления Au(III) и Cu(II) при наличии в электролитах комплексных катионов Sn(IV). Методом ЦВА установлено, что электровосстановление Sn(IV), Au(III) и Cu(II) двухстадийно, что обусловливает невысокие значения ВТ (таблица). При хранении более полугода или эксплуатации в течение нескольких десятков часов гликолевые электролиты мутнеют, а концентрация Sn(IV) в них убывает больше, чем расходуется на осаждение покрытий. Это свидетельствует о медленном гидролизе Sn(IV).

В электролитах для получения сплава Cu—Sn на медных анодах, в отличие от платиновых, медленно накапливается налет CuCl (определено методом $P\Phi A$). Данный факт свидетельствует о том, что при анодном растворении меди в раствор переходят ионы Cu(II) и Cu(I), связывающиеся с хлорид-ионами. Использование медных анодов нецелесообразно также вследствие избыточного накопления ионов меди(II) в растворе.

Максимальная доля олова, соосажденного из гликолевых электролитов с висмутом, составляет 6 ат.%. ВТ достигает 30-40 % при $j = 14-16 \text{ мA/cm}^2$, при этом скорость осаждения ~10 мкм/ч. Методом ИК спектроскопии установлено, что при растворении $BiC_6H_5O_7$ в гликоле изменяется система водородных связей гликоля, но сольватации ионов Bi(III) с образованием комплексных соединений с молекулами гликолей не происходит. Доминирование висмута в обусловлено соотношением стандартных потенциалов: $E^{\circ}(Bi^{3+}/Bi^{0}) = 0.51 \ B$ и $E^{\circ}(Sn^{4+}/Sn^{0}) = 0.01B$. Методом ЦВА показано, что совместном восстановлении Sn(IV) и Bi(III) имеет место эффект деполяризации по отношению к восстановлению Bi(III) и сверхполяризации по отношению к восстановлению Sn(IV). Необходимо отметить, что в бинарной системе висмут-олово отсутствуют интерметаллиды, образование которых могло бы облегчить восстановление Sn(IV). Невысокий обусловлен BT

двухступенчатым восстановлением олова и затратами электричества на небольшой разогрев раствора.

Электроосаждение покрытий олово-никель проводили из ЕС электролита, используя соединения Sn(II), поскольку они восстанавливают Ni(II) в объеме раствора. Из раствора, состав которого приведен в таблице, получены покрытия с содержанием олова 63-66 ат. % и доминирующей фазой Ni₃Sn₄, а также интерметаллидом NiSn, метастабильным что характерно осаждения сплава Ni–Sn из водных электролитов. При j = 3 мA/cм² скорость роста покрытий -5 мкм/ч, а BT = 65 %. Необходимое для регулирования доли металлов в сплаве комплексообразование в ЕС электролите достигнуто за счет сольватации, так как Ni(II) и Sn(II) образуют комплексные соединения с гликолем состава Me(EG)_nCl₂[4].

Для раздельного контроля содержания олова в степенях окисления +2 и +4 в EG электролите разработана методика иодатометрического определения концентрации Sn(II) и суммарного содержания Sn(II) и Sn(IV), включающая стадию восстановления Sn(IV) алюминием и анализ электролита до и после восстановления. Определено, что уменьшение концентрации Sn(II) в электролите в осаждения сплава превосходит количество осажденного в покрытия. Так, в течение 3 ч электролиза содержание олова(II) может понизиться на 27 %, в основном за счет окисления до Sn(IV), и лишь несколько процентов олова расходуется на осаждение покрытий. Следовательно, на аноде происходит окисление Sn(II). Накопление Sn(IV) в EG электролите и его двухступенчатое восстановление, возможно, являются причиной большого ВТ, а также осаждения покрытий с характерным подгаром после 3 недель эксплуатации электролита. Данные свидетельствуют о необходимости введения в электролит добавок, замедляющих окисление Sn(II).

ЛИТЕРАТУРА

- 1. Воробьева Т.Н., Мальтанова А.М., Врублевская О.Н. Сплавообразование при совместном электрохимическом осаждении золота и олова из этиленгликолевого и водного электролитов // Журн. физ. химии. 2016. Т. 90, № 5. С. 800–807.
- 2. Maltanava H.M., Vorobyova T.N., Vrublevskaya O.N. Electrodeposition of tin coatings from ethylene glycol and propylene glycol electrolytes // Surf. Coat. Technol. 2014. Vol. 254. P. 388–397.
- 3. Врублевская О.Н., Воробьева Т. Н., Филюта Л.И. Осаждение покрытий висмут-олово из гликолевых электролитов // Свиридовские чтения: сб. ст. 2018. Вып. 14. С. 9–18.

4. Knetsch D., Groeneveld W.L. Alcohols as Ligands. III. Complexes of ethylene glycol with some divalent metal halides // Inorg. Chem. Acta. 1973. Vol. 7, № 1. P. 81–87.

УДК 541.13.544.65

В.А. Меджидзаде, С.Ф. Джафарова, С.П. Мамедова, С.Д. Дадашова, Алиев А.Ш. Институт Катализа и Неорганической Химии им. М.Нагиева НАН Азербайджана vuska 80@mail.ru

ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ ПОЛУПРОВОДНИКОВЫХ ТОНКИХ ПЛЕНОК ХАЛЬКОГЕНИДОВ МЕТАЛЛОВ

Как известно, халькогениды металлов обладают многими фоточувствительными, полупроводниковыми, ценными люминесцентными, термоэлектрическими и др. свойствами и применяются во многих областях современной техники. Наряду с этим халькогениды переходных металлов являются чрезвычайно интересными и практически важными классами неорганических соединений. Повышенный интерес исследователей к этим материалам обусловлены, прежде всего их замечательными структурными, физическими и химическими свойствами, которые могут быть применены во многих областях современной промышленности и электротехники в качестве высокоэффективных катализаторов, антифрикционных материалов, фотоэлектродов фотоэлектрохимических преобразователях солнечной энергии и т.д.

К таким материалам можно отнести сульфиды и селениды сурьмы, висмута, молибдена, железа, кадмия и т.д. [1-2].

Целью нашего исследования является получение полупроводниковых материалов для применения в солнечных преобразователях в качестве фотоэлектрода. Получение материалов в виде тонких пленок более перспективно, так как тонкопленочная технология очень выгодна ДЛЯ снижения себестоимости при массовом производстве.

Для преобразования солнечной энергии в электрическую в широком диапазоне спектра мы электрохимическим способом получили и исследовали тонкие полупроводниковые пленки CdSe, CdS, Sb₂Se₃, MoS₂, Bi₂Se₃ и др. [3-5].

Тонкие пленки получены из сульфитных, тиосульфитных, тартратных и цитратных электролитов. Снятием