УДК 537.621.4+546.736.442.6+54.16

И. Н. Кандидатова, аспирант (БГТУ); **Л. А. Башкиров**, доктор химических наук, профессор (БГТУ); **А. И. Галяс**, кандидат физико-математических наук, старший научный сотрудник (НПЦ НАН Беларуси по материаловедению);

Л. С. Лобановский, кандидат физико-математических наук, старший научный сотрудник

(НПЦ НАН Беларуси по материаловедению); С. В. Труханов, кандидат физико-математических

наук, старший научный сотрудник (НПЦ НАН Беларуси по материаловедению)

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ $Gd_{1-x}La_xMO_3$ (M = Sc, In, Ga)

Керамическим методом получены твердые растворы $Gd_{1-x}La_xScO_3$, $Gd_{1-x}La_xInO_3$, $Gd_{1-x}La_xGaO_3$, изучена их кристаллическая структура и магнитные свойства. Установлено образование ряда твердых растворов $Gd_{1-x}La_xScO_3$ ($0,0 < x \le 1,0$), $Gd_{1-x}La_xInO_3$ ($0,2 \le x \le 1,0$) и $Gd_{1-x}La_xGaO_3$ ($0,5 \le x \le 1,0$) со структурой орторомбически искаженного перовскита. Обнаружено, что эффективный магнитный момент ионов гадолиния Gd^{3+} ($\mu_{3\phi}, Gd^{3+}$) для твердых растворов $Gd_{1-x}La_xScO_3$ с x = 0,10; 0,50 равен 7,76 μ_B ; 7,61 μ_B соответственно, что несколько меньше теоретического значения $\mu_{3\phi, \text{ теор, }Gd^{3+}} = 7,94 \ \mu_B$, а при x = 0,75; 0,90 он практически равен теоретическому значению. Для твердых растворов $Gd_{1-x}La_xGaO_3$ с x = 0,8; 0,9 $\mu_{3\phi, Gd^{3+}}$ равен 7,90 μ_B ; 7,99 μ_B соответственно, что близко к теоретическому. Для твердых растворов $Gd_{1-x}La_xInO_3$ эффективный магнитный момент $\mu_{9\phi, Gd^{3+}}$ изменяется без определенной закономерности в интервале (6,91–7,54) μ_B , что ниже теоретического значения $\mu_{9\phi, \text{ геор, }Gd^{3+}}$

Gd_{1-x}La_xScO₃, Gd_{1-x}La_xInO₃ and Gd_{1-x}La_xGaO₃ solid solutions were synthesized by the ceramic method, their crystal structure and magnetic properties was investigated. There exists a continuous range of Gd_{1-x}La_xScO₃ ($0.0 < x \le 1.0$), Gd_{1-x}La_xInO₃ ($0.2 \le x \le 1.0$), Gd_{1-x}La_xGaO₃ ($0.5 \le x \le 1.0$) solid solutions with the structure of orthorhombically distorted perovskite. The effective magnetic moment of the Gd³⁺ ion (μ_{ef} , Gd³⁺) for Gd_{1-x}La_xScO₃ solid solutions with x = 0.10; 0.50 is 7.76 μ_{B} ; 7.61 μ_{B} , respectively and it is slightly lower than the theoretical value $\mu_{ef. theor, Gd^{3+}} = 7.94 \,\mu_{B}$, for x = 0.75; 0.90 it is almost equal to the theoretical value. For Gd_{1-x}La_xGaO₃ solid solutions with x = 0.8; 0.9 the effective magnetic moment $\mu_{ef. Gd^{3+}}$ is 7.90 μ_{B} ; 7.99 μ_{B} , respectively, and it is close to the theoretical value 7.94 μ_{B} . For Gd_{1-x}La_xInO₃ solid solutions the effective magnetic moment $\mu_{ef. Gd^{3+}}$ is 7.90 μ_{B} ; 7.99 μ_{B} , respectively, and it is close to the theoretical value 7.94 μ_{B} . For Gd_{1-x}La_xInO₃ solid solutions the effective magnetic moment $\mu_{ef. Gd^{3+}}$ varies without a certain dependence on substitution level *x* from 6.91 μ_{B} to 7.54 μ_{B} and is lower than theoretical value.

Введение. Особое место среди современных перспективных материалов занимают соединения оксидов редкоземельных и других металлов со структурой перовскита, которые широко применяются в электронной и химической промышленности [1-3]. В частности, твердые растворы алюминатов, скандатов, галлатов, индатов лантана и других редкоземельных элементов (Ln) со структурой перовскита $(LnMO_3, M = Al, Sc, Ga, In)$ являются перспективными материалами для изготовления активных элементов лазерной техники [4-6]. Индаты и галлаты, содержащие редкоземельные ионы, также являются хорошими фото- и катодолюминофорами [7, 8], которые могут быть использованы при создании светодиодов белого света. Отмечена перспективность применения скандата лантана LaScO₃ как люминофорной матрицы для активации другими редкоземельными ионами, так как он не имеет собственного поглощения в видимой области спектра [9].

При частичном изовалентном замещении парамагнитных ионов редкоземельных элементов в LnAlO₃, LnGaO₃, LnInO₃ диамагнитными ионами La³⁺ наблюдается магнитное разбавление редкоземельных ионов, приводящее к уменьшению их взаимодействия между собой и усилению влияния кристаллического поля на спин-орбитальное взаимодействие, что приводит к «частичному замораживанию» орбитального момента редкоземельных ионов. В литературе подобные исследования практически отсутствуют, несмотря на их большую научную и практическую значимость.

Цель настоящей работы – установление закономерностей влияния магнитного разбавления парамагнитных ионов Gd^{3+} диамагнитными ионами La^{3+} на магнитную восприимчивость и эффективный магнитный момент ионов гадолиния Gd^{3+} в твердых растворах $Gd_{1-x}La_xScO_3$, $Gd_{1-x}La_xInO_3$, $Gd_{1-x}La_xGaO_3$ как новых перспективных материалов для электронной техники и химической промышленности.

Методика эксперимента. Поликристаллические образцы твердых растворов $Gd_{1-x}La_xScO_3$ (x = 0, 0-1, 0), $Gd_{1-x}La_xInO_3$ (x = 0, 0-1, 0), $Gd_{1-x}La_xGaO_3$ (x = 0, 3-1, 0), являющиеся предметом исследования, получали керамическим методом из оксидов гадолиния Gd_2O_3 , лантана La_2O_3 , скандия Sc_2O_3 , индия In_2O_3 , галлия Ga_2O_3 . Гигроскопичный оксид лантана перед взятием навески был предварительно прокален при 1173 К в течение 1 ч. Порошки исходных соединений, взятые в заданных молярных соотношениях, смешивали и мололи в планетарной мельнице Pulverizette 6 с добавлением этанола.

Полученную шихту прессовали под давлением 50–75 МПа в таблетки диаметром 25 мм и высотой 5–7 мм и затем обжигали на воздухе в электропечи сопротивления. После первого обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением 5×5 мм², которые обжигали на воздухе в электропечи сопротивления. Параметры синтеза приведены в табл. 1.

Таблица 1

Режимы синтеза твердых растворов Gd_{1-x}La_xScO₃, Gd_{1-x}La_xInO₃ и Gd_{1-x}La_xGaO₃

Система	1-й обжиг	2-й обжиг	3-й обжиг
$Gd_{1-x}La_xScO_3$	1523 К, 4 ч	1623 К, 1 ч	1523 К, 4 ч
Gd _{1-x} La _x GaO ₃	1523 К, 2 ч	1523 К, 2 ч	_
$Gd_{1-x}La_xInO_3$			
$0 \le x \le 0,7$	1523 К, 5 ч	1523 К, 5 ч	1773 К, 2 ч
$Gd_{1-x}La_xInO_3$			
$0,8 \le x \le 1,0$	1523 К, 5 ч	1523 К, 5 ч	_

Рентгеновские дифрактограммы получали на дифрактометре D8 ADVANCE с использованием CuK $_{\alpha}$ -излучения в диапазоне углов 2 Θ 20–80°. Параметры кристаллической структуры исследованных соединений определяли с использованием рентгеноструктурного табличного процессора RTP и данных картотеки международного центра дифракционных данных (ICDD JCPDS) [10–18].

Удельная намагниченность (σ_{ya}) в полях до 14 Тл и удельная магнитная восприимчивость (χ_{ya}) в интервале температур 6–300 К в поле 0,8 Тл образцов индатов гадолиния-лантана

 $Gd_{1-x}La_xInO_3$ измерялась вибрационным методом на универсальной высокополевой измерительной системе (Cryogenic Ltd, London, 4IS) ГО «Научно-практический центр НАН Беларуси по материаловедению», образцов $Gd_{1-x}La_xScO_3$ и $Gd_{1-x}La_xGaO_3$ – методом Фарадея в интервале температур 77–950 К в магнитном поле 0,86 Тл на установке лаборатории физики магнитных материалов также ГО «Научно-практический центр НАН Беларуси по материаловедению».

Основная часть. Рентгенофазовый анализ показал, что в системах GdScO₃ – LaScO₃ и системе (1-x) GdInO₃ – x LaInO₃ со значениями $0,2 \le x \le 1,0$ образуется непрерывный ряд твердых растворов Gd_{1-x}La_xScO₃ и Gd_{1-x}La_xInO₃ соответственно, имеющих кристаллическую структуру орторомбически искаженного перовскита. Увеличение степени замещения х ионов Gd^{3+} ионами La³⁺ приводит к постепенному увеличению параметров кристаллической решетки а, b, c орторомбически искаженной структуры перовскита. Образцы состава GdScO₃, GdInO₃, a также Gd_{0,9}La_{0,1}InO₃ содержали фазу непрореагировавшего Gd₂O₃.

Рентгенофазовый анализ показал, что при температуре синтеза 1573 К предельное замещение ионов La³⁺ парамагнитными ионами Gd³⁺ составляет 50 мол. %, что согласуется с литературными данными [19, 20]. При этом образцы твердых растворов Gd_{1-x}La_xGaO₃, содержащие более 30 мол. % гадолиния, кроме основной фазы со структурой перовскита содержат также фазы Gd₃Ga₅O₁₉ и Gd₄Ga₂O₉. Соединение Gd₄Ga₂O₉ изоструктурно Eu₄Al₂O₉ и принадлежит к моноклинной сингонии. Галлиевый гранат Gd₃Ga₅O₁₉ имеет кубическую структуру.

Параметры индивидуальных соединений GdScO₃, LaScO₃, LaInO₃ и LaGaO₃ хорошо согласуются с литературными данными [17, 18, 10, 14].

Таблица 2

Параметры кристаллической решетки *a*, *b*, *c* твердых растворов Gd_{1-x}La_xMO₃ (*M* = Sc, In, Ga) в зависимости от степени замещения *x*

Степень	Система Gd _{1-x} La _x ScO ₃		Система $Gd_{1-x}La_xInO_3$			Система $Gd_{1-x}La_xGaO_3$			
замещения х	а, нм	<i>b</i> , нм	С, НМ	а, нм	<i>b</i> , нм	С, НМ	а, нм	<i>b</i> , нм	С, НМ
0,00	0,55303	0,57741	0,79379	_	_	-	-	_	_
0,10	0,55498	0,57772	0,79764	_	_	_	_	_	_
0,20	_	_	_	0,55831	0,58735	0,81064	_	_	_
0,30	_	_	_	0,55994	0,58757	0,81211	_	_	_
0,40	_	_	_	0,56250	0,58863	0,81363	_	_	_
0,50	0,56121	0,57791	0,80318	0,56428	0,58894	0,81489	0,54937	0,54857	0,77511
0,60	_	_	_	0,56655	0,59032	0,81811	0,57984	0,57862	0,77555
0,70	_	_	_	0,56612	0,58977	0,81747	0,55123	0,54841	0,77631
0,75	0,56552	0,57846	0,80695	_	_	_	_	_	_
0,80	_	_	_	0,56929	0,59161	0,81855	0,55131	0,54897	0,77623
0,90	0,56732	0,57848	0,80782	0,57108	0,59270	0,82095	0,55183	0,54902	0,77698
1,00	0,56788	0,57848	0,80852	0,57181	0,59249	0,82122	0,55186	0,54925	0,77818

Температурные зависимости удельной намагниченности, определенные в магнитном поле 0,86 Тл в интервале температур 77–1000 К, и обратных величин удельной магнитной восприимчивости для образцов скандатов Gd_{1-x}La_xScO₃ приведены на рис. 1.

Рис. 1. Температурные зависимости удельной намагниченности (*a*) и обратных величин удельной магнитной восприимчивости (*б*) скандатов Gd_{1-x}La_xScO₃ при различных значениях *x*: *l* - 0,10; *2* - 0,00; *3* - 0,50; *4* - 0,75; *5* - 0,90

Анализ температурных зависимостей обратных величин удельной магнитной восприимчивости (рис. 1, б) показал, что для исследованных скандатов гадолиния-лантана можно выделить различные участки, на которых соблюдается закон Кюри – Вейсса (линейная зависимость $1 / \chi_{va}$ от *T*). Для интервалов температур, в которых удельная магнитная восприимчивость образцов изменяется по закону Кюри-Вейсса, методом наименьших квадратов определены уравнения линейной зависимости $1 / \chi_{ya}$ от T $(1 / \chi_{y_{\pi}} = a + bT)$. По коэффициентам *a* и *b* этих уравнений рассчитаны удельные постоянные Кюри $(C_{va} = 1 / b)$, постоянные Вейсса $(\Theta = -a / b)$. Величины молярной постоянной Кюри (См) определяли умножением Суд на молярную массу соответствующего скандата $Gd_{1-x}La_xScO_3$.

Эффективный магнитный момент ионов гадолиния Gd^{3+} ($\mu_{^{3+}}$, $_{Gd^{3+}}$) вычисляли по следующей формуле:

$$\mu_{9\phi, \mathrm{Gd}^{3+}} = \sqrt{\frac{7,997C_{\mathrm{M}}}{1-x}},\tag{1}$$

где 7,997 = $3k / N_A \mu_B^2$, k – постоянная Больцмана; N_A – постоянная Авогадро; μ_B – магнетон Бора.

Значения постоянной Вейсса и эффективного магнитного момента ионов гадолиния Gd³⁺ представлены в табл. 3. Таблица 3 Постоянная Вейсса ([©]) и эффективный магнитный момент ионов гадолиния Gd³⁺ (µ_{эф, Gd³⁺}) в интервале температур выполнения закона Кюри – Вейсса для образцов скандатов Gd_{1-r}La_rScO₃

x	$\mu_{9\Phi,0}$	$_{Gd}^{3+}$, μ_B	Θ, Κ		
	До 230 К	Выше 260 К	До 230 К	Выше 260 К	
0,10	7,76	7,54	-8,18	-4,88	
	(77–230 K)	(300–1080 K)	(77–230 K)	(300–1080 K)	
0,50	7,61	7,62	-2,86	-2,94	
	(77–220 K)	(270–1000 K)	(77–220 K)	(270–1000 K)	
0,75	8,00 (7	7–1000 K)	-5,91 (77-1000 К)		
0,90	8,06	8,19	-8,83	-23,85	
	(77–220 K)	(260–680 K)	(77–220 K)	(260–680 K)	

Примечание. В скобках приведены температурные интервалы, в которых соблюдается закон Кюри – Вейсса.

Анализ данных, приведенных в табл. 3, показывает, что рассчитанные значения эффективного магнитного момента ионов гадолиния $\mu_{3\varphi, Gd^{3+}}$ в однофазных образцах твердых растворов Gd_{1-x}La_xScO₃ для интервала температур выше 260 К постепенно возрастают с увеличением степени замещения парамагнитных ионов Gd³⁺ диамагнитными ионами La³⁺ и приближаются к теоретическому значению спинового магнитного момента для свободного иона гадолиния $\mu_{э\varphi, \text{ теор, Gd}^{3+} = 7,94 \mu_B.$

Температурные зависимости удельной магнитной восприимчивости, определенные в магнитном поле 0,8 Тл в интервале температур 7– 300 К, и ее обратных величин для образцов индатов Gd_{1-x}La_xInO₃ показаны на рис. 2.

Рис. 2. Температурные зависимости удельной магнитной восприимчивости (*a*) и обратных величин удельной магнитной восприимчивости (*б*) индатов Gd_{1-x}La_xInO₃ при различных значениях *x*: 1-0,4; 2-0,6; 3-0,7; 4-0,8; 5-0,9

Анализ температурных зависимостей обратных величин удельной магнитной восприимчивости (рис. 2, δ) показал, что для исследованных однофазных образцов Gd_{1-x}La_xInO₃ можно выделить различные участки, на которых соблюдается закон Кюри – Вейсса (линейная зависимость 1 / χ_{yg} от *T*). Математическая обработка для интервалов температур, в которых удельная магнитная восприимчивость образцов изменяется по закону Кюри – Вейсса, проводилась по описанному выше способу. Результаты представлены в табл. 4.

Таблица 4

Постоянная Вейсса (Θ) и эффективный магнитный момент ионов гадолиния Gd³⁺ ($\mu_{эф, Gd^{3+}}$) в интервале температур выполнения закона Кюри – Вейсса для образцов индатов Gd_{1-x}La_xInO₃

x	$\mu_{9\varphi,Gd^{3+}},\mu_B$	Θ, Κ	Интервал температур, К
0,4	7,30	-1,54	7–298
0,6	7,02	2,28	7-180
	7,01	-1,93	215-280
0,7	7,21	-0,63	7–100
	7,17	-0,01	7–230
0,8	6,98	-1,14	7–40
	6,91	5,10	100-270
0,9	7,54	-0,73	5-60

Установлено, что величины эффективного магнитного момента ионов Gd^{3+} ($\mu_{3\phi, \text{Gd}^{3+}}$) в однофазных образцах твердых растворов $\text{Gd}_{1-x}\text{La}_x\text{InO}_3$ заметно ниже теоретического значения $\mu_{3\phi, \text{Gd}^{3+}} = 7,94 \, \mu_{\text{B}}$ для свободных ионов Gd^{3+} вплоть до x = 0,9, причем величины $\mu_{3\phi, \text{Gd}^{3+}}$ изменяются без определенной зависимости от степени замещения парамагнитных ионов Gd^{3+} диамагнитными ионами La^{3+} .

Полевые зависимости намагниченности индатов $Gd_{1-x}La_xInO_3$ при 5 и 298 К в магнитных полях до 14 Тл приведены на рис. 3.

При увеличении магнитного поля до 14 Тл намагниченность возрастает линейно при температуре 298 К (рис. 3, *a*), а при температуре 5 К (рис. 3, δ) в полях выше \approx 3 Тл наблюдается выход на насыщение.

Намагниченность насыщения n_S для индатов Gd_{1-x}La_xInO₃, выраженная в μ_B при 5 K, рассчитана на 1 моль ионов Gd³⁺ по формуле

$$n_S = \frac{\sigma_{ya}M}{(1-x)\cdot 5585},\tag{2}$$

где σ_{yg} – удельная намагниченность, Гс · см³/г; M – молярная масса соответствующего индата, г/моль; 5585 – число, равное произведению величины магнетона Бора (9,274 · 10⁻²¹ эрг/Гс) на число Авогадро (6,021 · 10⁻²³ моль⁻¹).

Рис. 3. Полевые зависимости намагниченности образцов индатов $Gd_{1-x}La_xInO_3$ при температурах 5 К (*a*) и 298 К (*б*) в магнитных полях до 14 Тл при различных значениях *x*: 1 - 0,4; 2 - 0,5; 3 - 0,7; 4 - 0,8; 5 - 0,9

Рассчитанные значения намагниченности насыщения *n*_S приведены в табл. 5.

Таблица 5 Намагниченность насыщения одной формульной единицы индатов Gd_{1-x}La_xInO₃ (*n*₅) в расчете на 1 моль ионов Gd³⁺ при 5 К

x	<i>n_S</i> , µ _B на 1 моль ионов Gd ³⁺ при 14 Тл
0,4	5,87
0,6	5,58
0,7	5,76
0,8	5,05
0,9	6,28

Из анализа данных, приведенных на рис. 3, можно сделать вывод, что в твердых растворах Gd_{1-x}La_xInO₃ при увеличении магнитного разбавления парамагнитных ионов гадолиния Gd³⁺ диамагнитными ионами лантана La³⁺ наблюдается уменьшение величины магнитного поля, приводящего намагниченность образца к насыщению, и твердые растворы с x = 0.8; 0,9 при 5 К в полях порядка 14 Тл намагничиваются практически до насыщения. Однако величины намагниченности насыщения n_{S_3} рассчитанные на 1 моль ионов гадолиния Gd^{3+} , значительно меньше величины 7 µ_в (табл. 5) для спинового магнитного момента ионов Gd³⁺. Подобная си-туация описана для иона Gd³⁺ в GdAlO₃, где ферромагнитный момент иона гадолиния Gd³⁺ при выходе кривой намагничивания на насыщение равен 6,57 µ_В [21].

Температурные зависимости удельной намагниченности, определенные в магнитном поле 0,86 Тл в интервале температур 77–1000 К, и обратных величин удельной магнитной восприимчивости для образцов галлатов гадолиния-лантана Gd_{1-x}La_xGaO₃ показаны на рис. 4.

Рис. 4. Температурные зависимости удельной намагниченности (*a*) и обратных величин удельной магнитной восприимчивости (*б*) галлатов Gd_{1-x}La_xGaO₃ при различных значениях *x*: 1-0,5; 2-0,6; 3-0,7; 4-0,8; 5-0,9

Анализ температурных зависимостей обратных величин удельной магнитной восприимчивости (рис. 4, δ) показал, что для исследованных однофазных образцов Gd_{1-x}La_xGaO₃ можно выделить различные участки, на которых соблюдается закон Кюри – Вейсса (линейная зависимость 1 / χ_{yq} от *T*). Для интервалов температур, в которых удельная магнитная восприимчивость образцов изменяется по закону Кюри – Вейсса, математическая обработка зависимостей проводилась, как и для образцов Gd_{1-x}La_xScO₃. Рассчитанные величины приведены в табл. 6.

Таблица 6

Постоянная Вейсса (⊕) и эффективный магнитный момент ионов гадолиния Gd³⁺ (µ_{эф, Gd³⁺}) в интервале температур выполнения закона Кюри – Вейсса для образцов галлатов Gd_{1-x}La_xGaO₃

x	μ _{эф, G}	d^{3+}, μ_B	Θ, Κ		
	До 240 К	Выше 240 К	До 240 К	Выше 240 К	
0,5	7,81 (80	–1000 К)	4,14 (80–1000 K)		
0.6	7,87	7,55	0,22	3,05	
0,0	(120–240 K)	(490–750 К)	(120-240 K)	(490–750 K)	
0,7	7,85	7,56	1,03	23,29	
	(120–220 K)	(320-600 К)	(120-220 K)	(320-600 K)	
0,8	7,90	7,57	-1,07	23,18	
	(120–200 K)	(320-720 К)	(120-200 K)	(320–720 K)	
0,9	7,99		1,95		
	(120–220 K)	_	(120–220 K)	_	

Примечание. В скобках приведены температурные интервалы, в которых соблюдается закон Кюри – Вейсса.

Установлено, что величины эффективного магнитного момента ионов гадолиния Gd³⁺ (µ_{эф, Gd³⁺}) в однофазных образцах твердых растворов галлатов гадолиния-лантана Gd_{1-x}La_xGaO₃ с x = 0.8; 0.9 в интервале температур до 240 К равны 7,90 µ_в и 7,99 µ_в соответственно и незначительно отличаются от теоретической веспинового личины магнитного момента $\mu_{3\Phi. \text{ теор, Gd}^{3+}} = 7,94 \ \mu_B$ для свободных ионов гадолиния Gd³⁺. Величины эффективного магнитного момента ионов $Gd^{3\hat{+}}(\mu_{3\varphi, Gd^{3\hat{+}}})$ в образцах твердых растворов галлатов гадолиния-лантана $Gd_{1-x}La_xGaO_3$ c $0.5 \le x \le 0.7$ при температурах выше 240 К изменяются в интервале 7,55-7,77 µ_B, что несколько ниже теоретической величины $\mu_{3\phi. \text{ теор, } Gd^{3+}} = 7,94 \ \mu_B.$

Заключение. Керамическим методом получен непрерывный ряд твердых растворов $Gd_{1-x}La_xScO_3$ (0,0 < $x \le 1,0$), $Gd_{1-x}La_xInO_3$ (0,2 ≤ $x \le 1,0$), $Gd_{1-x}La_xGaO_3$ (0,5 ≤ $x \le 1,0$) со структурой орторомбически искаженного перовскита. Увеличение степени замещения x ионов гадолиния Gd^{3+} ионами лантана La^{3+} для твердых растворов $Gd_{1-x}La_xScO_3$ и $Gd_{1-x}La_xInO_3$ приводит к постепенному увеличению параметров кристаллической решетки a, b, c орторомбически искаженной структуры перовскита.

Установлено, что эффективный магнитный момент ионов гадолиния Gd^{3+} ($\mu_{3\phi, Gd^{3+}}$) для твердых растворов скандатов гадолиниялантана $Gd_{1-x}La_xScO_3$ с x = 0,10; 0,50 равен 7,76 µ_B; 7,61 µ_B соответственно, что несколько меньше теоретического значения µ_{эф. теор, Gd³⁺} = = 7,94 $\mu_{\rm B}$, а при x = 0,75; 0,90 он практически равен теоретическому значению. Для твердых растворов галлатов гадолиния-лантана $Gd_{1-x}La_xGaO_3$ c x = 0.8; 0.9 $\mu_{3\phi, Gd^{3+}}$ paber 7.90 μ_B ; 7,99 µ_в соответственно. Для твердых растворов индатов гадолиния-лантана Gd_{1-x}La_xInO₃ эффективный магнитный момент µ_{эф, Gd³⁺} изменяется без определенной закономерности в интервале (6,91–7,54) µ_в, что ниже теоретического значения µэф. теор, Gd³⁺.

При увеличении магнитного поля до 14 Тл намагниченность образцов $Gd_{1-x}La_xInO_3$ возрастает линейно при температуре 298 К, а при температуре 5 К в полях выше ≈ 3 Тл наблюдается выход на насыщение, однако теоретическое значение 7 μ_B для спинового магнитного момента ионов Gd³⁺ не достигается.

Литература

1. Соединения редкоземельных элементов. Системы с оксидами I–III групп / П. А. Арсеньев [и др.]. – М.: Наука, 1983. – 280 с.

2. Федоров, П. И. Химия галлия, индия, таллия / П. И. Федоров, М. В. Мохосоев, Ф. П. Алексеев. – Новосибирск: Наука, 1977. – 222 с. 3. Портной, К. И. Кислородные соединения редкоземельных элементов / К. И. Портной, Н. И. Тимофеева. – М.: Металлургия, 1986. – 480 с.

4. Арсеньев, П. А. Кристаллохимия твердых растворов окисных соединений со структурой перовскита / П. А. Арсеньев, В. В. Фенин, А. В. Потемкин // Межвузовский сборник / Уральск. политехн. ин-т. – Свердловск, 1979. – Вып. 3: Химия твердого тела. – С. 55–59.

5. Писаренко, В. Ф. Скандобораты редких земель – новые лазерные материалы / В. Ф. Писаренко // Соросовский образовательный журнал. – 1996. – № 11. – С. 111–116.

6. Boulon, G. Fifty years of advance in solidstate laser materials / G. Boulon // Optical Materials. – 2012. – Vol. 34. – P. 499–512.

7. New opportunities for lanthanide luminescence / J.-C.G. Bünzli [et al.] // Journal of rare earths. – 2007. – Vol. 25, Issue 5. – P. 257–274.

8. Luminescent properties of a new redemitting phosphor based on $LaInO_3$ for LED / A. Tang [et al.] // Optoelectronics and advanced materials – rapid communications. – 2011. – Vol. 5, N 10. – P. 1031–1034.

9. Синтез и некоторые свойства двойных окислов редкоземельных элементов и скандия / Н. В. Поротников [и др.] // Журнал неорганической химии. – 1980. – Т. 16, № 1. – С. 80–83.

10. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 00-009-0034.

11. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 00-023-0654.

12. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 00-043-1014.

13. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 01-070-0238.

14. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 00-024-1102.

15. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 00-013-0493.

16. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 00-053-1225.

17. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 00-026-1148.

18. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card 00-027-0220.

19. Crystal structure of $LaGaO_3$ and $(La,Gd)GaO_3$ solid solutions / L. Vasylechko [et al.] // Journal of Alloys and Compounds. – 1999. – Vol. 286. – P. 213–218.

20. Vasylechko, L. Perovskite-type aluminates and gallates / L. Vasylechko, A. Senyshyn, U. Bismayer // Handbook on the physics and chemistry of rare earth / ed. K. A. Gschneidner, J.-C. G. Bünzli, V. K. Pecharsky. – Elsevier, 2009. – Vol. 39. – Ch. 242. – P. 114–295.

21. Магнитные свойства алюминатов Gd, Nd, Pr со структурой перовскита / А. Т. Старовойтов [и др.] // Физика твердого тела. – 1970. – Т. 12. – С. 301–303.

Поступила 25.02.2013