УДК 54-31+536.413+537.31/.32+666.654

Н. С. Красуцкая, младший научный сотрудник (БГТУ);

Е. А. Чижова, кандидат химических наук, старший преподаватель (БГТУ);

Т. С. Бусель, студент (БГТУ); А. И. Клындюк, кандидат химических наук, доцент (БГТУ)

ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ $(Na, M)_x CoO_2$ (M = Li, K, Cs)

Синтезирована керамика $(Na,M)_xCoO_2$ (M = Li, K, Cs; x = 0,55; 0,89), изучены ее фазовый состав, тепловое расширение, электропроводность и термо-ЭДС. Полученные материалы являются многофазными и состоят из кобальтита натрия (γ -Na_xCoO₂), Co₃O₄ и кобальтитов других щелочных металлов (LiCoO₂, KCoO₂, Cs₂CoO₃). Температурные зависимости электропроводности образцов (Na,M)_{0,55}CoO₂ (M = K, Cs) и (Na,M)_{0,89}CoO₂ имели полупроводниковый, а (Na,Li)_{0,55}CoO₂ – металлический характер. Изученные материалы являются проводниками *p*-типа, значения термо-ЭДС и фактора мощности (P) которых увеличивались с ростом температуры, а величина температурного коэффициента линейного расширения варьируется в пределах (11,1–14,9) · 10⁻⁶ K⁻¹. Введение в керамику Na_{0,55}CoO₂ оксидов лития или калия повышает ее фактор мощности; так, для состава Na_{0,28}K_{0,27}CoO₂ $P_{1100} = 361$ мкВт · м⁻¹ · K⁻², что на 85% больше, чем для Na_{0,55}CoO₂.

The $(Na,M)_xCoO_2$ (M = Li, K, Cs; x = 0.55; 0.89) ceramics was synthesized, and its phase composition, thermal expansion, electrical conductivity and thermo-EMF were investigated. The materials obtained are polyphase and consists of sodium cobaltite (γ -Na_xCoO₂), Co₃O₄ and other alkaline metals cobaltites (LiCoO₂, KCoO₂, Cs₂CoO₃). The temperature dependences of electrical conductivity of the (Na,M)_{0.55}CoO₂ (M = K, Cs) and (Na,M)_{0.89}CoO₂ samples had semiconducting character, but (Na,Li)_{0.55}CoO₂ ones had metallic character. The materials studied are *p*-type conductors, which thermo-EMF and power factor (*P*) values increased at temperature increasing, and values of linear thermal expansion coefficient vary within (11.1–14.9) \cdot 10⁻⁶ K⁻¹. Introduction into Na_{0.55}CoO₂ ceramics the lithium or potassium oxides increases its power factor; so, for Na_{0.28}K_{0.27}CoO₂ compound $P_{1100} = 361 \,\mu\text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-2}$, which 85% higher than for Na_{0.55}CoO₂.

Введение. Слоистый кобальтит Na_xCoO₂ демонстрирует высокие значения электропроводности и термо-ЭДС и низкую теплопроводность, что позволяет рассматривать его как перспективный термоэлектрический материал [1]. Термоэлектрические свойства Na_xCoO₂ улучшаются при увеличении содержания в нем натрия [2, 3] и частичном замещении кобальта другими переходными металлами [4, 5]. Авторами [6] был получен твердый раствор Li_{0.48}Na_{0.35}CoO₂ и показано, что его термо-ЭДС значительно выше, чем для кобальтитов лития (Li_xCoO_2) и натрия (Na_xCoO₂). Учитывая результаты [6], замещение натрия другими щелочными металлами в Na_xCoO₂ можно рассматривать как перспективный способ улучшения термоэлектрических свойств керамики на его основе, в связи с чем синтез материалов $(Na,M)_x$ CoO₂ (M – щелочной металл, M = Li, K, Cs) и изучение их свойств представляет значительный интерес для термоэлектрического материаловедения.

Целью настоящей работы явилось исследование влияния замещения натрия другими щелочными металлами (литием, калием, цезием) в слоистом кобальтите Na_xCoO₂ на кристаллическую структуру и физико-химические свойства образующихся при этом материалов.

Методика эксперимента. Образцы состава $Na_{0.6-x}M_xCoO_2$ и $Na_{0.6}M_{0.6}CoO_2$ (M = Li, K, Cs;

x = 0,2; 0,3; 0,4; 0,5) получали из Na₂CO₃ (ч.д.а.), Li₂CO₃ (ч.), K₂CO₃ (ч.), CsNO₃ (х.ч.) и Co₃O₄ (ч.д.а.) твердофазным методом на воздухе в интервале температур 1133–1203 К по методике, описанной в [7].

Фазовый состав образцов определяли при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, CuK_α-излучение). Кажущуюся плотность (ρ) образцов находили по их массе и геометрическим размерам. Тепловое расширение, электропроводность (σ) и термо-ЭДС (*S*) спеченной керамики исследовали на воздухе в интервале температур 300–1100 К по методикам, описанным в [8, 9]. Температурный коэффициент линейного расширения (ТКЛР, α) образцов находили из линейных участков $\Delta l / l_0 = f(T)$. Значения фактора мощности (*P*) рассчитывали по формуле $P = S^2 \sigma$.

Результаты и их обсуждение. В процессе термообработки кобальтита натрия часть Na₂O сублимирует в окружающую среду [10]. Составы керамики после завершения синтеза, рассчитанные на основании ранее полученных нами данных [3, 8], приведены в таблице.

Согласно результатам РФА, все полученные в работе образцы были многофазными: на дифрактограммах порошков $(Na,M)_xCoO_2$, кроме рефлексов кобальтита натрия (γ -Na_xCoO₂) (рис. 1, 2, *a*), наблюдали рефлексы других фаз,

				-					-
Состав	τ, ч	а, нм	С, НМ	<i>V</i> · 10 ³ , нм	ρ, г/см ³	$\begin{array}{c} \alpha \cdot 10^{6}, \\ \mathrm{K}^{-1} \end{array}$	σ ₁₁₀₀ , См/см	<i>S</i> ₁₁₀₀ , мкВ/К	<i>Р</i> ₁₁₀₀ , мкВт/(м · К ²)
Na _{0,55} CoO ₂	12	0,285	1,116	78,5	3,64	12,2	23,3	289	195
Na _{0,37} Li _{0,18} CoO ₂		0,283	1,108	77,1	3,52	12,5	21,6	260	146
Na _{0,27} Li _{0,28} CoO ₂		0,285	1,101	77,6	3,58	12,1	22,6	315	224
Na _{0,18} Li _{0,37} CoO ₂		0,284	1,123	78,2	3,37	11,1	10,6	296	93,2
Na _{0,09} Li _{0,46} CoO ₂		0,284	1,126	78,4	3,64	12,6	14,7	427	268
Na _{0,37} K _{0,18} CoO ₂		0,286	1,145	80,9	2,86	14,3	20,3	199	80,7
Na _{0,27} K _{0,28} CoO ₂		_	_	_	2,74	14,2	17,6	453	361
Na _{0,18} K _{0,37} CoO ₂		0,290	1,043	75,9	2,80	14,9	10,0	481	232
Na _{0,09} K _{0,46} CoO ₂		0,289	1,143	82,9	2,85	13,5	9,64	467	145
Na _{0,37} Cs _{0,18} CoO ₂		0,285	1,088	76,5	3,21	11,6	27,2	205	115
Na _{0,27} Cs _{0,28} CoO ₂		_	—	_	3,34	11,7	28,9	279	224
Na _{0,18} Cs _{0,37} CoO ₂		0,286	1,070	75,6	3,54	13,6	23,3	318	235
Na _{0,09} Cs _{0,46} CoO ₂		0,283	1,114	77,4	3,78	12,0	14,6	378	209
Na _{0,89} CoO ₂		0,283	1,093	75,6	3,38	12,4	41,1	449	829
Na _{0,445} Li _{0,445} CoO ₂	25	0,277	1,069	71,3	3,07	_	_	_	-
	50	0,277	1,070	71,1	2,98	_	-	-	-
	75	0,288	1,015	72,7	2,81	_	_	_	-
	100	0,277	1,105	73,2	2,76	14,2	1,72	330	18,8
Na _{0,445} K _{0,445} CoO ₂	25	0,281	1,093	74,8	3,12	_	-	_	-
	50	0,283	1,091	75,7	3,07	-	_	_	—
	75	0,283	1,094	76,3	2,94	-	_	_	—
	100	0,283	1,074	74,7	2,89	14,6	14,3	300	129
Na _{0,445} Cs _{0,445} CoO ₂	25	0,283	1,094	75,6	3,17	_	_	_	-
	50	0,283	1,094	75,8	3,10	_	_	_	_
	75	0,283	1,095	75,7	2,98	_	_	_	_
	100	0,282	1,096	75,7	2,94	13,2	4,89	319	50,0

Состав, время термообработки (τ), кажущаяся плотность (ρ), средний температурный коэффициент линейного расширения (α), электропроводность (σ₁₁₀₀), термо-ЭДС (S₁₁₀₀) и фактор мощности (P₁₁₀₀) керамики на основе слоистых кобальтитов натрия Na_{0,55}CoO₂ и Na_{0,89}CoO₂, а также значения параметров (a, c) и объема (V) элементарной ячейки входящего в состав кобальтита натрия

идентифицированных нами как LiCoO₂, KCoO₂, Cs_2CoO_3 для M = Li, K, Cs соответственно [11]; помимо кобальтитов щелочных металлов, керамика содержала небольшое количество фаз Na₂CO₃ и Co₃O₄ [11], которые в соответствии с результатами [3] образуются при частичной деградации поверхности образцов вследствие их взаимодействия с атмосферным СО₂. Положения рефлексов на дифрактограммах порошков $(Na, M)_{0.55}CoO_2$ и параметры кристаллической структуры входящего в состав образцов кобальтита натрия (таблица, рис. 1, б), в пределах погрешности эксперимента, не изменялись при изменении соотношения Na : M. На основании полученных данных можно заключить о том, что входящие в состав гетерогенной керамики $(Na, M)_{0.55}$ CoO₂ кобальтиты щелочных металлов представляют собой индивидуальные соединения (γ -Na_xCoO₂, LiCoO₂ и др.), а не твердые растворы на их основе.

Параметры элементарной ячейки кобальтита натрия, входящего в состав керамики $Na_{0,445}M_{0,445}CoO_2$ (M = K, Cs), были практически равны таковым для фазы Na_{0,89}CoO₂ и не изменялись при увеличении времени термообработки, а для кобальтита натрия в составе керамики $Na_{0,445}Li_{0,445}CoO_2$, полученной после 25 ч обжига при температуре 1203 К, были значительно меньше, чем для базового кобальтита натрия (Na_{0.89}CoO₂) и не изменялись при увеличении времени термообработки при 1203 К (таблица, рис. 2, б). Таким образом, керамика $Na_{0.445}M_{0.445}CoO_2$ (*M* = K, Cs), помимо примесных фаз Na₂CO₃ и Co₃O₄, содержит индивидуальные кобальтиты щелочных металлов (γ -Na_xCoO₂, K_xCoO₂, Cs₂CoO₃), а керамика состава Na_{0,445}Li_{0,445}CoO₂ содержит твердый раствор (Na,Li)_{0,89}CoO₂ и кобальтит лития LiCoO₂.

Результаты нашего эксперимента позволяют заключить, что однофазные образцы твердых растворов (Na,M)_xCoO₂ (M = Li, K, Cs; x = 0,55; 0,89) твердофазным методом получить нельзя, образующаяся керамика является гетерогенной и состоит из кобальтитов отдельных щелочных металлов.

Рис. 1. Рентгеновские дифрактограммы порошков $Na_{0,18}M_{0,37}CoO_2$ (M = Li (1), K (2), Cs (3)) (a) и зависимости объема элементарной ячейки входящего в их состав кобальтита натрия от степени замещения натрия литием (4), калием (5), цезием (6) (δ). ^ $-\gamma$ -Na_xCoO₂; ° - LiCoO₂; # - KCoO₂; + - Cs₂CoO₃; * - Co₃O₄

В системе Na_{0,89}CoO₂ – Li_{0,89}CoO₂ обнаружена ограниченная растворимость кобальтита лития в кобальтите натрия, приводящая к образованию твердого раствора (Na,Li)_{0.89}CoO₂.

Кажущаяся плотность керамики $(Na,M)_{0,55}CoO_2$ и $Na_{0,445}M_{0,445}CoO_2$ изменялась в пределах 2,80– 3,78 г/см³ и 2,76–3,17 г/см³ соответственно (таблица) и, за исключением составов $(Na,Li)_{0,55}CoO_2$, была ниже, чем для незамещенных кобальтитов натрия $Na_{0,55}CoO_2$ (3,64 г/см³) и $Na_{0,89}CoO_2$ (3,38 г/см³), причем наименьшими значениями плотности характеризовалась керамика $(Na,K)_xCoO_2$. Сопоставляя результаты измерения кажущейся плотности образцов и РФА, можно заключить, что пористость гетерогенной керамики $(Na,M)_xCoO_2$ (M = Li, K, Cs) больше, чем однофазных кобальтитов натрия, причем наибольшие значения пористости имеют образцы $(Na,K)_{0,55}CoO_2$.

Зависимости $\Delta l / l_0 = f(T)$ исследованной керамики были практически линейными, а значения ее ТКЛР изменялись в пределах (11,1–14,9) \cdot 10⁻⁶ K⁻¹ и (13,2–14,6) \cdot 10⁻⁶ K⁻¹ для керамики (Na,*M*)_{0,55}CoO₂ и Na_{0,445}*M*_{0,445}CoO₂ соответственно (таблица) и, за исключением составов (Na,Li)_{0,55}CoO₂, были выше, чем для незамещенных кобальтитов натрия Na_{0,55}CoO₂ (12,2 \cdot 10⁻⁶ K⁻¹) и Na_{0,89}CoO₂ (12,4 \cdot 10⁻⁶ K⁻¹), при этом наиболее высокие значения ТКЛР наблюдались для керамики (Na,K)_{0,55}CoO₂, что, очевидно, обусловлено ее высокой пористостью.

Проводимость керамики Na_{0,55}CoO₂, (Na,Li)_{0,55}CoO₂ и Na_{0,445} $M_{0,445}$ CoO₂ носила полупроводниковый ($\partial \sigma / \partial T > 0$), а Na_{0,89}CoO₂ и (Na,M)_{0,55}CoO₂ (M = K, Cs) – металлический характер ($\partial \sigma / \partial T < 0$) (рис. 3, *a*, *г*), при этом, в целом, величина электропроводности керамики (Na,M)_{0,55}CoO₂ (M = Li, Cs) была выше, а (Na,K)_{0,55}CoO₂ и Na_{0,445} $M_{0,445}$ CoO₂ ниже, чем для незамещенных кобальтитов натрия Na_xCoO₂ (рис. 3, \mathcal{K} , κ , таблица). Кроме того, в пределах серий (Na,M)_{0,55}CoO₂ уменьшение соотношения Na : M приводило к снижению электропроводности керамики (рис. 3, \mathcal{K} , таблица).

Рис. 2. Рентгеновские дифрактограммы порошков Na_{0,445}K_{0,445}CoO₂ (*a*) после обжига при 1203 К в течение 25 ч (*1*), 75 ч (*2*), 100 ч (*3*), а также зависимости объема элементарной ячейки кобальтита натрия (*б*), входящего в состав порошков Na_{0,445}M_{0,445}CoO₂ (*M* = Li (*4*), K (*5*), Cs (*6*)). ^ – γ-Na_xCoO₂; # – KCoO₂

Рис. 3. Температурные зависимости электропроводности (σ) (*a*, *г*), термо-ЭДС (*S*) (*б*, *d*) и фактора мощности (*P*) (*e*, *e*) керамики состава Na_{0,28}M_{0,27}CoO₂ (*a*–*e*) и Na_{0,445}M_{0,445}CoO₂ (*г*–*e*), где *M* – Na (*1*, 5), Li (*2*, *6*), K (*3*, 7), Cs (*4*, *8*). На врезках приведены зависимости электропроводности (σ₁₁₀₀), термо-ЭДС (S₁₁₀₀) и фактора мощности (*P*₁₁₀₀) керамики (Na,*M*)_xCoO₂ от степени замещения катионов натрия (*ж*–*u*) и природы замещающего катиона (*к*–*м*)

Величина термо-ЭДС образцов во всем интервале температур была положительна, из чего можно заключить, что образцы (Na,M), CoO2, как и фаза Na_{0.55}CoO₂, являются полупроводниками р-типа. Термо-ЭДС исследованной керамики возрастала при увеличении температуры (рис. 3, δ , ∂) и для образцов $(Na, M)_{0.55}$ CoO₂ была, в целом, выше, чем для фазы Na_{0.55}CoO₂ (за исключением керамики состава Na_{0.37}K_{0.18}CoO₂ и образцов $(Na,Cs)_{0.55}CoO_2$ при T < 580 К) (рис. 3, б, з), что, по всей видимости, обусловлено гетерогенностью образцов. Значения термо-ЭДС образцов $Na_{0.445}M_{0.445}CoO_2$ были ниже, чем для незамещенного кобальтита $Na_{0,89}CoO_2$ (рис. 3, κ , π , таблица). Сопоставляя результаты исследования термо-ЭДС образцов различных серий, можно сделать вывод, что создание фазовой неоднородности в керамике Na_xCoO₂ при низком содержании натрия (x = 0,55) увеличивает, а при высоком (x = 0.89) – уменьшает ее термо-ЭДС.

Значения фактора мощности исследованной керамики возрастали при увеличении температуры и для образцов (Na,M)_{0,55}CoO₂, в целом, были выше, а для составов Na_{0,445}M_{0,445}CoO₂ – ниже, чем для базовых кобальтитов натрия Na_xCoO₂ (рис. 3, *в*, *е*, *и*, *м*, таблица). При этом максимальные значения фактора мощности при повышенных температурах наблюдали для керамики состава Na_{0,09}Li_{0,46}CoO₂ и Na_{0,27}K_{0,28}CoO₂ – 268 и 361 мкВт · м⁻¹ · K⁻² соответственно при 1100 К, что в основном обусловлено высокими значениями термо-ЭДС этих образцов. Таким

образом, введение оксидов щелочных металлов (Li_2O, K_2O) в керамику на основе слоистого кобальтита натрия позволяет повысить значения ее фактора мощности, что можно использовать на практике при разработке новых оксидных термоэлектриков с улучшенными функциональными характеристиками.

Заключение. В работе методом твердофазных реакций получена керамика состава (Na,M)_xCoO₂ (M = Li, K, Cs; x = 0,55; 0,89), определен ее фазовый состав, изучены тепловое расширение, электропроводность и термо-ЭДС. Показано, что полученная керамика является неоднофазной и состоит из кобальтитов щелочных металлов (γ -Na_xCoO₂, LiCoO₂, KCoO₂, Cs₂CoO₃). В системе Na_{0,89}CoO₂ – Li_{0,89}CoO₂ обнаружена ограниченная растворимость кобальтита лития в кобальтите натрия, приводящая к образованию твердого раствора (Na,Li)_{0,89}CoO₂.

На основании результатов исследований кажущейся плотности и теплового расширения образцов сделано заключение о том, что ТКЛР керамики $(Na,M)_xCoO_2$ возрастает при увеличении ее пористости.

Установлено, что электропроводность образцов (Na,Li)_{0,55}CoO₂ и Na_{0,445} $M_{0,445}$ CoO₂ носит полупроводниковый, а (Na,M)_{0,55}CoO₂ (M = K, Cs) – металлический характер, при этом все исследованные материалы являются проводниками *p*-типа, значения термо-ЭДС и фактора мощности (P) которых возрастают при увеличении температуры и для (Na,M)_{0,55}CoO₂, в целом,

выше, а для (Na,M)0.89CoO2 – ниже, чем для базовых кобальтитов натрия $Na_x CoO_2$ (x = 0.55; 0,89), что обусловлено гетерогенностью исследованных материалов. Установлено, что максимальное значение фактора мощности имеет керамика $Na_{0.28}K_{0.27}CoO_2 - 361$ мкВт · м⁻¹ · K⁻² при 1100 К, что на 85% больше, чем для кобальтита Na_{0.55}CoO₂. На основании полученных результатов сделано заключение о том, добавление оксидов щелочных металлов (Li₂O, K₂O) к керамике на основе слоистого кобальтита натрия с низким содержанием натрия позволяет повысить значения ее фактора мощности, что можно использовать на практике при разработке новых оксидных термоэлектриков с улучшенными функциональными характеристиками.

Работа выполнена в рамках ГПНИ «Функциональные материалы и технологии, наноматериалы», подпрограмма «Кристаллические и молекулярные структуры» (задание 1.02) и при поддержке Белорусского республиканского фонда фундаментальных исследований (грант X12M-039).

Литература

1. Oxide Thermoelectrics. Research Signpost / ed. by K. Koumoto, I. Terasaki, N. Murayama. – India: Trivandrum, 2002. – 255 p.

2. Terasaki, I. Impurity-induced transition and impurity-enhanced thermopower in the thermoelectric oxide $NaCo_{2-x}Cu_xO_4 / I$. Terasaki, I. Tsukada, Y. Iguchi // Phys. Rev. B. – 2002. – Vol. 65. – P. 195106 (7 pages).

3. Влияние содержания натрия на свойства кобальтита Na_xCoO₂ $(0,53 \le x \le 0.97)$ / Н. С. Кра-

суцкая [и др.] // Вес. Нац. акад. навук Беларусі. Сер. хім. навук. – 2012. – № 1. – С. 11–15.

4. Lee, M. Enhancement of the thermopower in Na_xCoO₂ in the large-x regime $(x \ge 0.75)$ / M. Lee // Physica B. - 2008. - Vol. 403. -P. 1564-1568.

5. Park, K. Improvement in high-thermoelectric properties of $NaCo_2O_4$ through partial substitution of Ni for Co / K. Park, K. U. Jang // Materials Letters. – 2006. – Vol. 60. – P. 1106–1110.

6. Enhanced Thermopower in an Intergrowth Cobalt Oxide $Li_{0,48}Na_{0,35}CoO_2 / Z$. Ren [et al.] // J. of Phys:. Condens. Matter. – 2006. – Vol. 18. – P. 379–384.

7. Клындюк, А. И. Термоэлектрические свойства слоистого кобальтита натрия Na_xCoO₂ / А. И. Клындюк, Н. С. Красуцкая // Свиридовские чтения: сб. ст. – 2011. – Вып. 7. – С. 57–62.

8. Клындюк, А. И. Влияние температуры спекания на свойства керамики Na_xCoO₂ / А. И. Клындюк, Н. С. Красуцкая, Е. М. Дятлова // Труды БГТУ. Сер. III, Химия и технология неорган. в-в. – 2010. – Вып. XVIII. – С. 9–12.

9. Термоэлектрические свойства некоторых перовскитных оксидов / А. И. Клындюк [и др.] // Термоэлектричество. – 2009. – № 3. – С. 76.

10. Fabrication and thermoelectric properties of highly textured $NaCo_2O_4$ ceramic / J. Cheng [et al.] // J. of Alloys and Comp. – 2006. – Vol. 407. – P. 299–303.

11. The International Center for Diffraction Data. Joint Commitee of Powder Diffraction Standards. Files No. 00-027-0109, 00-029-0996, 00-030-182, 00-043-1003, 00-044-0145.

Поступила 03.03.2013