ОЦЕНКА БЕЗОПАСНОСТИ ТРУДА НА ГАЛЬВАНИЧЕСКИХ ПРОИЗВОДСТВАХ

Гальванические покрытия широко используются в машиностроении, так как позволяют улучшать свойства поверхностей деталей. Гальванические покрытия позволяют в частности приобрести поверхности термо- и износоустойчивость, антикоррозионную устойчивость, часто используются для декоративных целей.

Однако, в гальванотехнике используются токсичные и вредные вещества. В связи с этим важной проблемой остается использование электролитов, которые были бы наименее безопасны для окружающей среды и здоровья людей.

С целю оценки обеспечения безопасности труда в данной работе произведен расчет критерия потенциальной экологической опасности (далее - $K_{\Pi 9 O 9}$), предложенный авторами работы [1]. Как уже упоминалось в работе [1] применять следует электролит с меньшим значением $K_{\Pi 9 O 9}$.

В статье [2] было рассмотрено обеспечение безопасности технологических процессов анодного окисления металлов и полупроводников.

В настоящей работе будут рассмотрены составы электролитов для меднения, хромирования, цинкования, химического серебрения.

Результаты расчетов $K_{\Pi \ni O \ni}$ приведены в таблице.

Таблица 1 Значения критерия потенциальной экологической опасности $K_{\Pi \ni O \ni}$ для ряда составов электролитов

$N_{\overline{0}}$	Состав электролита	Концентрация компонента, c/π ;	К _{ПЭОЭ} 10 ⁻⁶
	Me,	днение [3]	
1	$H_2SO_4 + CuSO_4*5H_2O$	200 125	31,3
2	$H_2SO_4 + CuSO_4*5H_2O + C_2H_5OH$	40 200 50	50,5
3	$H_2SO_4 + CuSO_4*5H_2O$	50-75 200 – 250	50-62,5
4	(NH ₄) ₂ SO ₄ + CuSO ₄ *5H ₂ O + CH ₂ NH ₂ CH ₂ NH ₂	80 250 90-125	152,5-187,5
	Xpo	мирование	
5	H ₂ CrO ₄ + H ₂ SO ₄	150-175 1,5-1,75	7,5-8,8
6	H ₂ CrO ₄ + H ₂ SO ₄	220-250 2,2-2,5	11-12,5
7	H ₂ CrO ₄ + H ₂ SO ₄	275-300 2,75-3	13,8-15
	Ци	нкование	I
8	ZnO + NaOH + SnCl ₄	10 80 1	1
	Химическ	ое серебрение [4]	'
9	AgNO ₃ + NH ₄ OH + NaOH	6,8-5,5 14,6-20 5,5-4	0,3-0,4

Исходя из вышеуказанных значений $K_{\Pi \ni O \ni}$ при осаждении меди следует применять электролит под номером 1, а хромирование проводить с использованием электролита под номером 5 согласно таблице.

ЛИТЕРАТУРА

1. Милешко Л.П., Нестюрина Е.Е., Хлебинская А.С. Анализ экологичности электролитов для анодного окисления алюминия // «Технологии техносферной безопасности», 2014, № 1(54).

- 2. Хлебинская А.С., Милешко Л.П., Королева А.И. Анализ экологичности электролитов для анодного окисления металлов и полупроводников // Технологии техносферной безопасности, 2015, N_2 4(62).
- 3. Сорокин И.Н., Сеченов Д.А., Милешко Л.П., Королев А.Н. Методические указания по изучению курса «Физико-химические процессы в технологии радиоэлектронных средств и микроэлектроники» по теме: «Электрохимические технологические процессы». Ч.Ш. Электролитическое осаждение металлов. Таганрог: Изд-во: ТРТИ, 1988.— 67 с.
- 4. Гальванические покрытия в машиностроении. Справочник в 2-х томах под ред. М.А. Шлугера. М.: Машиностроение, 1985 240 с.

А.А. Косарев, А.А. Калинкина, А.Ф. Жуков, Т.А. Ваграмян Российский химико-технологический университет им. Д.И. Менделеева, Москва, alex_221_93@mail.ru

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТЕЙ ПОЛУЧЕНИЯ МЕДНЫХ ПОКРЫТИЙ В СКВОЗНЫХ ОТВЕРСТИЯХ ПЕЧАТНЫХ ПЛАТ

Равномерная металлизация сквозных отверстий печатных плат может достигаться при использовании сернокислых электролитов с добавками и высоким содержанием серной кислоты при постоянном токе [1] и в реверсных режимах [2]. В настоящей работе по методике, описанной в [3], проведена оценка возможности повышения рассеивающей способности сернокислого электролита меднения в ячейке Херинга-Блюма в реверсном режиме с прямоугольными импульсами тока при частотах ~0,6; 5; 10; 50 Гц, в том числе при использовании добавок (таблица 1).

Таблица 1 Составы электролитов

Tuotinga Teoerabbi stieri potiti tob			
V and a day of a day	Концентрация компонентов		
Компоненты электролитов	1	2	
CuSO ₄ *5H ₂ O, г/л	60	60	
H ₂ SO ₄ , г/л	230	230	
NaCl, мг/л	-	120	
FeSO ₄ *7H ₂ O, г/л	-	0,5	
Cupracid TP Leveller, мл/л	-	20	
Cupracid Brightner,мл/л	-	2	