26 сентября 2017 г., уникальный идентификатор работ (проекта) RFMEFI57417X0169.

ЛИТЕРАТУРА

1. Yakushin R., Kolesnikov V., Perfilieva A., Solovieva I., Chistolinov A. Degradation of 1-butanol under the action of dielectric-barrier discharge in aqueous solution / SGEM 18(5.2). 2018. P. 301-306.

УДК 621.35

А.А. Майзелис, канд. техн. наук, В.М. Артеменко, канд. техн. наук, доцент НТУ «ХПИ», Харьков

ЭЛЕКТРООСАЖДЕНИЕ СПЛАВА Zn-Sn ИЗ ПОЛИЛИГАНДНОГО ЭЛЕКТРОЛИТА

Введение. Покрытия сплавами олова с цинком отличаются широким спектром физико-химических и механических свойств: высокой коррозионной стойкостью, способностью к пайке, хорошей проводимостью, нетоксичностью. Они находят применение в аэрокосмической, автомобильной промышленности, микроэлектронике, в производсте изделий для условий морского климата [1]. Сплав олово-цинк предлагается для замены оловянно-свинцовых припоев, сплавов Sn-Ag, кадмиевых покрытий [2]. Покрытия сплавом Sn-Zn сочетают в себе высокое химическое сопротивление с анодным характером защитой стальной основы от коррозии [3].

Предлагаемые комплексные электролиты [1-2] не обеспечивают адекватную замену применяющихся токсичных щелочно-цианидных электролитов. Кроме того, особого подхода требует разработка электролитов, позволяющих осаждать сплавы различного состава в одной ванне, для формирования мультислойных покрытий [4, 5].

Цель данной работы состояла в создании нетоксичного электролита, обеспечивающего формирование сплавов, обогащенных как по цинку, так и по олову.

Методика. Поляризационные зависимости и хронопотенциограмы получали с помощью цифрового потенциостата MTech PGP-550M (рис. 1, 2). Электрод сравнения – хлорид серебряный, потенциалы приведены относительно этого электрода. Скорость развертки потенциала составляла 10 мВ/с. Исследования проводили в полилигандном электролите, содержащем неорганический и органический лиганды. В качестве ПАВ в электролит вводили гидролизованный столярный клей. Снимки морфологии покрытий получены на микроскопе микротвердомера ПМТ-3. Элементный состав определяли рентгенофлуоресцентным методом с помощью спектрометра СПРУТ (табл.).

Результаты и обсуждение. На рис. 1 представлены поляризационные зависимости, полученные при введении в электролит столярного клея.

При введении оптимального количества столярного клея наблюдается наличие двух волн: первая – осаждение сплава с преимущественныи содержанием олова, вторая – осаждение сплава с преимущественным содержанием цинка. Сохранение четко обособленных областей формирования сплава, обогащенного оловом и сплава, обогащенного цинком, при введении ПАВ в электролит стало возможным благодаря выбранной полилигандний системе электролита, которая обеспечивает существенную сверхполяризацию выделения олова и деполяризацию выделения цинка.

Рисунок 1 – Катодные поляризационные кривые в электролите, содержащем столярный клей, мг/дм³: 1 – 0; 2 – 35; 3 – 70; 4 – 100; 5 – 135; 6 – 170.

На рис. 2 приведены хронопотенциограммы осаждения покрытий из электролита, содержащего 135 мг/дм³ столярного клея при плотности тока от 5 мА/см² до 35 мА/см², а также микрофотографии покрытий, полученных при этих плотностях тока.

В ходе процесса осаждения при плотностях тока от 5 до 15 мА/см² потенциал стабилизируется в одной области значений (-1,45В ... -1,48 В), а при более высоких плотностях тока (до 30 мА/см²) – в другой (-1,53В ... -1,55 В). Судя по визуальному осмотру

N⁰	j, mA/cm ²	Zn		Sn		i _i
образца		$w_{Zn}, \%$	<i>i</i> _{Zn}	<i>w</i> _{Sn} , %	i _{Sn}	$\iota_{Zn} \neg \iota_{Sn}$
1	5	12,8	1150	87,2	6540	7690
2	10	25,4	1686	74,6	3840	5526
3	15	22,2	1511	77,8	4187	5698
4	20	77,9	1937	22,1	271	2208
5	25	80,6	1234	19,4	141	1375
6	30	71,3	1729	28,7	370	2099
7	35	75,2	1951	24,8	327	2278

Таблица – Результаты рентгенофлюоресцентного анализа

и микрофотографиям, все покрытия компактные. При низких плотностях тока – мелкокристаллические, матовые, а при высоких – мелкокристаллические, полублестящие.

Это позволяет прогнозировать возможность формирования сплавов существенно различного состава в одном и том же электролите в диапазонах плотностей тока 5–15 мA/см² и 20– 35 мA/см².

В таблице приведены данные рентгенофлюоресцентного анализа: содержание олова (w_{Sn}) , цинка (w_{Zn}) , а также интенсивность пиков (*i*). Поскольку все образцы сплавов осаждались на поверхность фольгированного диэлектрика с известной толщиной медного слоя

Рисунок 2 – Микрофотографии покрытий и хронопотенциограммы их осаджения при плотности тока, мА/см²: 1 – 5; 2 – 10; 3 – 15; 4 – 20; 5 –; 6 – 30; 7 – 35.

(30 мкм), а количество электричества во всех опытах было постоянным, то по интенсивности пиков можно судить об изменении выходов по току. Коррозионную стойкость покрытий в синтетической морской воде оценивали по поляризационным зависимостям в полулогарифмических координатах. Плотность тока коррозии образца сплава, обогащенного цинком (табл., № 2), составляет $3,2 \cdot 10^{-5}$ A/cm², а образца сплава, обогащенного оловом (табл., № 5), $-2,5 \cdot 10^{-5}$ A/cm², что почти на порядок ниже по сравнению с покрытиями сплавами аналогичных составов: плотность тока коррозии $5,24 \cdot 10^{-4}$ A/cm² для сплава, содержащего 25% Zn и $9,29 \cdot 10^{-4}$ A/cm² – для слава с 75% Zn [3].

Выводы. Предложенный полилигандный электролит позволяет осаждать качественные покрытия сплавами цинк-олово стабильного

состава, как обогащенные цинком, так и обогащеные оловом. При низкой плотности тока, до 15 мА/см², осаждаются покрытия, содержащие 12–25% цинка, а в области высоких плотностей тока, 20–35 мА/см², – сплавы, обогащенные по цинку (75–80%). Плотность тока коррозии покрытий в синтетической морской воде на порядок ниже, чем сплавов цинк-олово аналогичного состава, приведенных в литературе.

ЛИТЕРАТУРА

1. Electrodeposition of nanostructured Sn–Zn coatings / [Y. Salhi, S. Cherrouf, M. Cherkaoui, K. Abdelouahdi] // Applied Surface Science. – 2016. – vol. 367. – pp. 64–69.

2. Zhang J. Potentiodynamical deposition and corrosion behavior of thin Zn-Sn coatings with layered structure and varied composition from deep eutectic solvent / J. Zhang, C. Gu, J. Tu // Surface And Coatings Technology. – 2017. – vol. 320. – pp. 640–647.

3. Oladijo O.P. Characterization and corrosion behaviour of plasma sprayed Zn-Sn alloy coating on mild steel / O.P. Oladijo, M.H. Mathabatha, T.P. Ntsoane // Surface and Coatings Technology. – 2018. – vol. 352. – pp. 654–661.

4. Майзелис А.А. Влияние архитектуры мультислойных покрытий Cu/(Ni-Cu) на их пористость / А.А. Майзелис, Б.И. Байрачный, Л.В. Трубникова // Восточно-Европейский журнал передовых технологий. – 2012. – № 2 (5). – С.4–6.

5. Майзелис А.А. Электрохимическое формирование медноникелевых наноламинатов в аммонийно-пирофосфатном растворе / А.А. Майзелис, Б.И. Байрачный, Л.В. Трубникова // Вопросы химии и химический технологии. – Днепропетровск: УДХТУ. – 2011. – № 4(2). – С. 42–44.