IK 541.124:542.952.6:547.313

КОМПОЗИЦИОННОЕ ПОКРЫТИЕ ОЛОВО-НИКЕЛЬ-ДИОКСИД ТИТАНА

© 2019 г. А. В. Пянко^{1, *}, И. В. Макарова¹, Д. С. Харитонов¹, И. С. Макеева², О. А. Алисиенок¹, А. А. Черник¹

¹Белорусский государственный технологический университет, Беларусь, 220006 Минск, ул. Свердлова, 13а Киевский национальный университет технологий и дизайна, Украина, 01011 Киев, ул. Немировича-Данченко, 2

*e-mail: pyanko@belstu.by Поступила в редакцию 05.10.2018 г. После доработки 18.12.2018 г. Принята к публикации 17.01.2019 г.

Методом вольтамперометрии установлено влияние наноразмерного диоксида титана, синтезированного прямым окислением порошкообразного титана, на катодную поляризацию процессов электрохимического осаждения Sn, Ni и сплава Sn—Ni во фторидно-хлоридном электролите. Изучены морфология (СЭМ) и фазовый состав (РФА) полученных покрытий. Показано принципиальное влияние pH электролита на его стабильность и качество получаемых покрытий. Установлено, что процесс осаждения целесообразно проводить в диапазоне pH электролита 3.0 ± 0.1 и плотности тока 1.0 ± 0.1 А/дм². Обнаружено, что соосаждение никеля и олова в сплав происходит с эффектом деполяризации, обусловленным образованием интерметаллических соединений NiSn₂ и Ni₃Sn₂, а введение диоксида титана приводит к сдвигу процесса восстановления сплава в более электроотрицательную область. Показано, что введение в электролит 2 г/дм³ диоксида титана приводит к его внедрению в состав покрытия в количестве 0.7 мас. %.

Ключевые слова: фторидно-хлоридный электролит, поляризация, микроструктура, фазовый состав **DOI:** 10.1134/S0002337X19060137

введение

Диоксид титана является одним из составляюк активного слоя в солнечных батареях [1, 2], собен разлагать органические загрязнители, исутствующие в воздухе и воде, модифицируюе микроорганизмы. Благодаря своей высокой стокаталитической активности, стабильности и соксичности TiO₂ применяют в различных проссах фотокаталитической дезинфекции [3–6].

Фотокаталитически активный наноструктуриванный порошок диоксида титана синтезиругидротермическим, химическим [7] и золь-геным методами [8, 9]. Для создания покрытий, падающих фотокаталитическими свойствами, гут использоваться методы химического (CVD) изического (PVD) напыления в вакууме, элекфоретическое и электрохимического осажде-[7]. Метод электрохимического осаждения изется наиболее приемлемым для создания фоаталитических покрытий на металлических верхностях. При этом покрытие должно предвлять собой композит, состоящий из металликой матрицы и диоксида титана в качестве рой фазы. Получение нанокомпозитных покрытий с различным типом внедренных частиц является одним из самых перспективных направлений функционализации поверхности. В качестве инертной фазы могут выступать различные материалы: TiO₂ [10–12], SiC [13, 14], Al₂O₃ [15, 16], TiN [17], углеродные нанотрубки [18], полимеры, например политетрафторэтилен и полиэтилен [19–22].

Фотокаталитические свойства диоксида титана в составе композиционного электрохимического покрытия определяются металлом-матрицей. В ряде работ исследовалось применение в качестве матрицы Zn [10, 11], Ni [23], Cu [24–27] и сплавов Ni–Zn [12] и Cu–Sn [28]. Во всех случаях введение диоксида титана в состав композиционного электрохимического покрытия увеличивает микротвердость в 1.5–2.0 раза по сравнению с чистыми металлами, при этом присутствие диоксида титана способствует осаждению покрытий с более компактной структурой, повышенными антикоррозионными свойствами и износостойкостью.

Наиболее активно применяемой матрицей для композитов является никелевая благодаря высоким декоративным и механическим свойствам данного металла [29—33], а также устойчивости к

Рис. 1. Катодные поляризационные кривые медного электрода в электролите осаждения Ni (1, I'), Sn (2, 2'), Sn–Ni (3, 3') $(t = 70^{\circ}$ C, pH 3), полученные во фторидно-хлоридном электролите.

коррозии. Никель широко применяется в качестве как функционального, так и декоративного покрытия и является наиболее перспективным материалом для получения TiO₂-содержащих композиционных электрохимических покрытий. Однако никель является частой причиной аллергического и ирритантного контактного дерматита и его применение ограничено для поверхностей, имеющих контакт с кожей человека.

Альтернативой никелю может быть сплав олово-никель. Совместное осаждение нескольких металлов позволяет получать покрытия с более высокими антикоррозионными и декоративными свойствами, с большей твердостью и сопротивляемостью механическому износу и действию температуры по сравнению с индивидуальными металлическими покрытиями [34-42]. Сплав олово-никель (65 мас. % Sn и 35 мас. % Ni) отличается высокой коррозионной стойкостью, привлекательным внешним видом, не вызывает раздражения при контакте с кожей человека. Данный сплав применяется в промышленности в качестве защитно-декоративного покрытия изделий из меди и стали [37, 38]. Покрытие сплавом такого состава с одним медным подслоем без промежуточного никелирования может заменять декоративное хромирование с подслоем меди и никеля [37].

Цель настоящей работы – изучение закономерностей процессов осаждения композиционных электрохимических покрытий олово—никель—диоксид титана.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Композиционное покрытие олово—никель диоксид титана толщиной 9 мкм осаждали электрохимически из электролита следующего состава (r/дм³): SnCl₂ · 2H₂O – 45–50; NiCl₂ · 6H₂O – 250– 300; NH₄F – 60. Осаждение проводили при температурах 50 \pm 2 и 70 \pm 2°C в диапазоне плотностей тока 1.0 \pm 0.1 А/дм². Содержание диоксида титана в электролите составляло 1–2 г/дм³. Термостатирование ячейки осуществляли при помощи водяной бани БВ-04. В качестве анодов использовали оловянные и никелевые пластины, взятые в соотношении 1 : 5. В качестве подложки для осаждения использовали медь марки М0, предварительно подготовленную согласно ГОСТ 9.305-84.

Наноразмерный диоксид титана синтезировали прямым окислением порошкообразного металлического титана по методике [43], в результате чего получали смесь двух полиморфных модификаций диоксида титана — анатаза и рутила с размером частиц 30—50 нм.

Для приготовления электролитов применяли реактивы квалификации "ч. д. а." и "х. ч.". Необходимые значения pH электролитов (2 и 3) устанавливали добавлением 0.1 М HCl или NH₄OH и контролировали pH-метром pH-150.

Поляризационные характеристики получали с помощью потенциостата IPC-Pro M. В качестве рабочего электрода использовали медные пластины; вспомогательный электрод – никель, электрод сравнения – насыщенный хлоридсеребряный. Измерения осуществляли в стандартной трехэлектродной ячейке ЯСЭ-2. Температура раствора (50 и 70°С) поддерживалась с помощью жидкостного термостата 5 OK-20/0,05CИ-03. Процесс выделения индивидуального компонента сплава проводили из электролитов того же состава, но в отсутствие в растворе ионов второго металла, при этом для поддержания постоянства ионной силы в раствор вводили NaCl.

Морфологию поверхности полученных образцов изучали методом сканирующей электронной микроскопии (СЭМ) на микроскопе JEOL JSM-5610 LV. Элементный состав покрытий и порошка TiO₂ определяли методом энергодисперсионного рентгеновского микроанализа (EDX) с использованием системы химического микрорентгеноспектрального анализа EDX JED-2201. Фазовый состав покрытий определяли методом рентгенофазового анализа (РФА) на дифрактометре Bruker D8 Advance AXS. Съемку рентгенограмм проводили со скоростью 1 град/мин с использованием Си K_{α} -излучения. Положение максимумов анализируемых линий измеряли с точностью до $\pm 0.05^\circ$.

Фазовый состав полученных покрытий и порошка TiO₂ изучали методом конфокальной спектроскопии комбинационного рассеяния света

Рыс 2. Дифрактограммы покрытий, электроосажденных из фторидно-хлоридного электролита: Ni (1), Ni–TiO₂ (2), Sn (3), Sn–TiO₂ (4), Sn–Ni (5), Sn–Ni–TiO₂ (6).

СРС). Спектры КРС снимали в диапазоне комшионного сдвига 100–1000 см⁻¹ при комнаттемпературе на спектрометре JobinYvon -00, оснащенном конфокальным микроско-Оlympus BX40 с объективом 50× (NA 0.75). В стве источника возбуждения использовали -лазер с длиной волны 514.5 нм и мощностью мВт. Время накопления сигнала составляло с, количество накоплений – 2. Достоверность пьтатов обеспечивалась снятием спектров на характерных участках поверхности сплава.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Катодные поляризационные кривые осаждения никеля, олова и сплава олово—никель представлены на рис. 1. Осаждение индивидуальных металлов протекает при достаточно отрицательных потенциалах: никеля при потенциалах катоднее —0.35 В, олова — катоднее —0.30 В. Следует отметить, что разряд ионов олова протекает с малой поляризацией.

Поляризационная кривая катодного процесса в электролите при совместном разряде ионов Sn(II)

Рис. 3. Катодные поляризационные кривые медного электрода при нанесении покрытия Sn-Ni из фторидно-хлоридного электролита без добавки и с добавкой диоксида титана ($t = 50^{\circ}C$).

и Ni(II) сдвигается в более электроположительную область (рис. 1, кривая *3*), что может быть связано с образованием сплава и бинарных соединений.

Совместное осаждение Sn(II) и Ni(II) на катоде возможно при наличии в электролите ионов Cl⁻ и F⁻, которые образуют с оловом прочные комплексные анионы SnF₄²⁻ и SnF₂Cl₂²⁻. Это приводит к сдвигу потенциала олова в более электроотрицательную область, что способствует сближению потенциалов олова и никеля и создает условия для совместного восстановления ионов этих металлов. Совместному осаждению олова и никеля также способствует деполяризация при разря-

Таблица 1. Завис	симость выхода по току от состава по-
крытия и режим	ов электроосаждения
	Выход по току, %

Состав покрытия	Выход по току, %			
	pH 2		рН 3	
	50°C	70°C	50°C	70°C
Ni	56.97	64.54	93.61	78.54
Ni–TiO ₂	76.64	78.64	90.26	71.77
Sn	82.77	81.83	78.51	77.87
Sn-TiO ₂	76.66	76.01	76.21	75.06
Sn–Ni	72.84	80.68	81.39	74.71
Sn–Ni–TiO ₂	71.02	80.25	80.68	71.05

де ионов обоих металлов вследствие образования химических соединений $NiSn_2$ и Ni_3Sn_2 (рис. 2), что энергетически выгодно.

Анализ рентгенограмм полученных покрытий показывает (рис. 2), что болышинство дифракционных пиков соответствует основным компонентам покрытий: никелю (рис. 2, дифрактограммы 1, 2), олову (рис. 2, дифрактограммы 3, 4), а в сплаве — олову и никелю (рис. 2, дифрактограммы 5, 6). Присутствие пика меди обусловлено регистрацией сигнала подложки сквозь поры покрытия. В составе сплава дополнительно обнаружены фазы интерметаллидов Ni₃Sn₄ и NiSn₂. В работе [10] внедрение оксида TiO₂ связывают с пиками в диапазоне $23^{\circ}-28^{\circ}$. В исследуемых покрытиях пик наблюдается для покрытия Sn—TiO₂ и соответствует фазе рутила с направленным ростом в плоскости (110) (рис. 2).

Температура и рН электролита являются определяющими факторами при осаждении сплава. В электролите с рН 2 при температуре 50°С осаждение сплава Sn-Ni (рис. 3) начинается при потенциале -0.22 В, при этом наблюдается активное выделение водорода. Увеличение значения рН электролита до 3 сдвигает потенциал начала осаждения в область более электроотрицательных значений -0.30 В (рис. 3). Повышение температуры до 70°С при рН 3 приводит к уменьшению катодной поляризации, вследствие чего сплав Sn-Ni начинает осаждаться уже при потенциале -0.25 В (рис. 1).

Присутствие в электролитах TiO₂ неоднозначно влияет на осаждение как индивидуальных металлов, так и сплава. Для никеля катодная поляризационная кривая при введении TiO₂ сдвигается в более электроположительную сторону, и при $i = 0.8 \text{ A/дм}^2$ появляется плато предельного тока (рис. 1), что, вероятно, связано с адсорбцией атомарного водорода и его дальнейшей рекомбинацией на никеле. Это также может являться следствием адсорбции частиц TiO₂ на катоде, что способствует увеличению площади адсорбции частиц никеля, увеличивая транспорт ионов никеля. Максимальный наклон поляризационных кривых соответствует интервалу катодной плотности тока 0.5-1.0 А/дм². При дальнейшем повышении плотности тока наклон кривых уменьшается и становится незначительным.

Электроосаждение сплава (рис. 1, 3) с добавкой диоксида титана происходит с большей поляризацией, что свидетельствует о затруднении протекания процесса электроосаждения в присутствии дисперсной фазы в электролите, но наклон поляризационной кривой не меняется. При значении pH электролита 2 влияние TiO₂ на поляризационные характеристики процесса осаждения незначительно. Увеличение катодной поля-

Рис. 4. Рентгендисперсионный спектр композиционного покрытия Sn-Ni-TiO₂.

е в в элекотмечено в [14].

В целом, влияние введения диоксида титана в тролиты на выход по току, определенный метрически с учетом соотношения металлов наве, незначительно. При 70°С выход по току составляет 74.7 ± 1.0% и уменьшается до ± 1.0% при введении TiO₂, что связано со сметем поляризационной кривой в электрооттельную область и увеличением доли тока на есс выделения водорода (табл. 1). В большей ни выход по току покрытий зависит от сотемпературы и значения pH электролита.

Согласно данным элементного анализа, устано, что введение в электролиты 2 г/дм³ дититана приводит к его внедрению в состав пий. В покрытии Sn–Ni содержание TiO₂ ляет 0.7 ат. % (рис. 4).

На свойства осадков существенное влияние вают температура и pH электролита. Устано, что осаждение равномерных блестящих покрытий Sn-Ni с плотноупакованной рой без дендритов происходит из электрос pH 3.0 ± 0.1, причем наиболее качественные ешнему виду покрытия осаждаются при ости тока 1.0-1.5 А/дм², а оптимальная плотсоставляет 1.0 А/дм² (рис. 5а). Повышение ости тока более 1.0 А/дм² приводит к появлена поверхности покрытий трещин. При шении значения pH до 2.0-2.5 покрытия чески перестают осаждаться, уменьшается по току сплава, интенсифицируются провыделения водорода и роста дендритов на ным [8, 9], в электролите наблюдается агломерация и седиментация вводимого диоксида титана. Электроосаждение индивидуальных никеля и олова из электролитов того же состава при плотности тока 1.0 А/дм² не позволяет сформировать качественные покрытия. Никелевые покрытия имеют мелкокристаллическую структуру (рис. 5д) и черный, не характерный для данного металла, цвет. Оловянные покрытия (рис. 5в), имеют игольчатую структуру, растут нитевидные кристаллы, что характерно для электролитов лужения в отсутствие поверхностно-активных веществ. Введение в электролит TiO₂ приводит к снижению формирования дендритов на поверхности покрытия. В целом получается сплошное покрытие с привлекательным внешним видом и качественными декоративными свойствами (рис. 56, 5г, 5е).

поверхности катода. Повышение значение рН

выше 3.0 нецелесообразно, так как, согласно дан-

Спектры КРС Sn-Ni-TiO₂ покрытий и характерные участки исследуемой поверхности (рис. 6) показали спектральное распределение, характерное для диоксида титана [44, 45]. Полосы поглощения синтезированного порошка диоксида титана с максимумами комбинационного сдвига ~146, 197, 399, 513 и 639 см⁻¹ характерны для монокристалла анатаза [44]. Спектры покрытия Sn-Ni, полученного из электролитов с добавкой диоксида титана, содержат отдельно стоящую полосу с максимумом при 146 см⁻¹, что можно связать с включением анатаза в покрытие.

Рис. 5. СЭМ-изображения покрытий олово-никель (a, б), олово (в, г), никель (д, е), полученных из фторидно-хлоридного электролита без (a, в, д) и в присутствии в растворе 2 г/дм³ TiO₂ (б, г, е) ($t = 50^{\circ}$ C, i = 1 А/дм², pH 3).

ЗАКЛЮЧЕНИЕ

Присутствие диоксида титана в составе электролита приводит к поляризации электродных процессов осаждения олова и никеля. На основе экспериментальных данных о влиянии рН электролита, плотности тока и концентрации диоксида титана на состав, микроструктуру и свойства электрохимически осаждаемого сплава олово-никель определены условия получения композиционных покрытий олово-никель-диоксид титана.

Изучены морфология и фазовый состав покрытий. Показано принципиальное влияние pH электролита (оптимальная величина составляет 3.0) на его стабильность и качество покрытий. Выявлено, что выделение никеля и олова в сплав происходит с эффектом деполяризации, обусловленным образованием интерметаллических соединений NiSn₂ и Ni₃Sn₂, а введение диоксида титана приводит к увеличению поляризации процесса восстановления сплава. Установлено, что введение в электролит 2 г/дм³ TiO₂ приводит к внедрению диоксида титана в состав покрытия в количестве 0.7 мас. %.

БЛАГОДАРНОСТЬ

Исследования выполнены при финансовой поддержке Министерства образования Республи-

Рис 6. Спектры КРС, а также СЭМ-снимки покрытия Sn–Ni–TiO₂ (а) и порошка TiO₂ (б), иллюстрирующие характерные участки снятия спектров.

Беларусь (грант № 18-070 "Электрохимическое сормирование композиционных покрытий оло-—никель—наноразмерный диоксид титана").

Dr. Izabela Bobowska and mgr. inz. A. Wrzesińska Lodz University of Technology, Department of Mocular Physics, Lodz, Poland) are acknowledged for help with performing Raman measurements.

СПИСОК ЛИТЕРАТУРЫ

- Park N.-G., Van de Lagemaat J., Frank A.J. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO₂ Solar Cells // J. Phys. Chem. 2000. V. 104. № 38. P. 8989–8994.
- 2 Smestad G., Bignozzi C., Argazzi R. Testing of Dye Sensitized TiO₂ Solar Cells I: Experimental Photocurrent Output and Conversion Efficiencies // Solar Energy Mater. Solar Cells. 1994. V. 32. № 3. P. 259–272.
- Mills A., Le Hunte S. An Overview of Semiconductor Photocatalysis // J. Photochem. Photobiol. A: Chem. 1997. V. 108. № 1. P. 1–35.
- Masoudi M., Mashreghi M., Goharshadi E., Meshkini A. Multifunctional Fluorescent Titania Nanoparticles: Green Preparation and Applications as Antibacterial and Cancer Theranostic Agents // Artif Cells Nanomed. Biotechnol. 2018. 29:1-12. P. 51–56.
- 5. Hoffmann M.R., Martin S.T., Choi W. et al. Environmental Applications of Semiconductor Photocatalysis // Chem. Rev. 1995. V. 95. P. 69–96.

- Matsunaga T., Tomoda R., Nakajima T., Nakamura N., Komine T. Continuous-Sterilization System that Uses Photosemiconductor Powders // Appl. Environ. Microbiol. 1988. V. 54. P. 1330–1333.
- Chen X.B., Mao S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Application // Chem. Rev. 2007. V. 107. № 7. P. 2891–2959.
- Мурашкевич А.Н., Алисиенок О.А., Жарский И.М. и др. Влияние условий синтеза модифицированного алюминием наноразмерного диоксида титана на эффективность его использования в электрореологических дисперсиях // Коллоидный журн. 2017. Т. 79. № 1. С. 87–93.
- 9. Мурашкевич А.Н., Алисиенок О.А., Максимовских А.И. и др. Синтез и термоаналитическое исследование композиций SiO₂-TiO₂ модифицированных макроциклическими эндорецепторами // Неорганические материалы. 2016. Т. 52. № 3. С. 294-300.
- Frade T., Bouzon V., Gomes A. et al. Pulsed-Reverse Current Electrodeposition of Zn and Zn–TiO₂ Nanocomposite Films // Surf. Coat. Technol. 2010. V. 204. P. 3592–3598.
- Camargoa Magali K., Tudelab Ignacio, Schmidta Udo et al. Ultrasound Assisted Electrodeposition of Zn and Zn– TiO₂ Coatings // Electrochim. Acta. 2016. V. 198. P. 287–295.
- Katamipour A., Farzam M., Danaee I. et al. Effects of Sonication on Anticorrosive and Mechanical Properties of Electrodeposited Ni-Zn-TiO₂ Nanocomposite Coatings // Surf. Coat. Technol. 2014. V. 254. P. 358– 363.

- Gyftou P., Pavlatou E.A., Spyrellis N. Effect of Pulse Electrodeposition Parameters on the Properties of Ni/nano-SiC Composites // Appl. Surf. Sci. 2008. V. 254. P. 5910–5916.
- Burzyńska L., Rudnik E., Koza J. et al. Electrodeposition and Heat Treatment of Nickel/Silicon Carbide Composites // Surf. Coat. Technol. 2008. V. 202. P. 2545–2556.
- Thiemig D., Bund A. Influence of Ethanol on the Electrocodeposition of Ni/Al₂O₃ Nanocomposite Films // Appl. Surf. Sci. 2009. V. 255. P. 4164–4170.
- Thiemig D., Lange R., Bund A. Influence of Pulse Plating Parameters on the Electrocodeposition of Matrix Metal Nanocomposites // Electrochim. Acta. 2007. V. 52. P. 7362–7371.
- Fa-feng Xia, Meng-hua Wu, Fan Wang et al. Nanocomposite Ni–TiN Coatings Prepared by Ultrasonic Electrodeposition // Curr. Appl. Phys. 2009. V. 9. P. 44–47.
- Gia Vu Pham, Anh Truc Trinh, Thi Xuan, Hang To et al. Incorporation of Fe₃O₄/CNTs Nanocomposite in an Epoxy Coating for Corrosion Protection of Carbon Steel // Adv. Nat. Sci.: Nanosci. Nanotechnol. 2014. V. 5. P. 035016–035022.
- Ha H.T., Anh C.T., Ha N.T. et al. Mechanical and Corrosion Resistance Properties of TiO₂ Nanoparticles Reinforced Ni Coating by Electrodeposition // J. Phys.: Conf. Ser. 2009. V. 187. P. 012083.
- Low C.T.J., Wills R.G.A., Walsh F.C. Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit // Surf. Coat. Technol. 2006. V. 201. P. 371–383.
- 21. *Cayton R.H.* Nanoparticle Composite for Coating Application // NSTI-Nanotech. 2004. V. 3. P. 312.
- Aal A.A. Hard and Corrosion Resistant Nanocomposite Coating for All Al Alloy // Mater. Sci. Eng. 2008. V. 474. P. 181.
- Sadeghi A., Khosroshahi R., Sadeghian Z. Morphological, Mechanical, Corrosion and Hydrogen Permeation Characteristics of Ni-nano-TiO₂ Composite Coating Compared to Ni Electrodeposited on Low Carbon Steel // J. Surf. Inves.: X-ray, Synchrotron Neutron Techniques. 2011. V. 5. № 1. P. 186–192.
- Ramalingam S., Muralidharan V.S., Subramania A. Electrodeposition and Characterization of Cu–TiO₂ Nanocomposite Coatings // J. Solid State Electrochem. 2009. V. 13. P. 1777–1783.
- Jing Ya, Ningning Yang, Fengjiao Hu et al. Preparation and Activity Evaluation of TiO₂/Cu–TiO₂ Composite Catalysts // J. Sol-Gel Sci. Technol. 2015. V. 73. P. 322–331.
- Javaherian Sh.Sh., Aghajani H., Mehdizadeh P. Cu– TiO₂ Composite as Fabricated by SHS Method // Int. J. Self. Propag. High-Temp. Synth. 2014. V. 23. № 1. P. 47–54.
- Sorkhe Y.A., Aghajani H., Taghisadeh Tabrizi A. Synthesis and Characterisation of Cu-TiO₂ Nanocomposite Produced by Thermochemical Process // Powder Metall. 2016. V. 59. № 2. P. 107-111.
- Lixia Ying, Zhenghui Li, Wu Ke et al. Effect of TiO₂ Sol on the Microstructure and Tribological Properties of Cu-Sn Coating // Rare Met. Mater. Eng. 2017. V. 10. P. 2801-2806.
- Антихович И.В., Черник А.А., Жарский И.М. и др. Особенности электроосаждения никелевого покрытия из низкотемпературного ацетатнохлорид-

ного электролита никелирования // Электрохимия. 2015. Т. 51. № 3. С. 328–333.

- Antihovich I.V., Ablazhey N.M., Chernik A.A. et al. Electrodeposition of Nickel and Composite Nickel-Fullerenol Coatings from Low-Temperature Sulphate-Chloride-Isobutyrate Electrolyte // Proc. Chem. 2014. V. 10. P. 373–377.
- Антихович И.В., Черник А.А., Жарский И.М. Электрохимическое осаждение никеля из ацетатнохлоридного электролита в присутствии ацетата аммония // Вестн. БГУ. 2014. Сер. 2. № 1. С. 15–20.
- Maibach H.I., Dannaker C.J., Lanti A. Contact Skin Allergy / Allergy: Principles and Practice, 4th edn / Ed. Middleton Jr.E. et al. St. Louis: C.V. Mosby, 1993. P. 1605–1647.
- Dotterud L.K., Falk E.S. Contact Allergy in Relation to Hand Eczema and Atopic Diseases in North Norwegian Schoolchildren // Acta Pediatr. 1995. V. 84. P. 402–406.
- Lačnjevac U.Č., Jović V.D., Jović B.M. Electrodeposition and Characterization of Ni–Sn Alloy Coatings as Cathode Material for Hydrogen Evolution Reaction in Alkaline Solutions // Zaštita Materijala. 2011. V. 52. P. 153–158.
- Bełtowska-Lehman E., Subiah J. Kinetics of Electrodeposition of Ni–Sn Alloy Deposits from an Acid Chloride Bath // Surf. Technol. 1985. V. 15. № 3. P. 191–198.
- 36. *Lacnjevac U., Jovic B.M.* Electrodeposition of Ni, Sn and Ni–Sn Alloy Coatings from Pyrophosphate-Glycine Bath // J. Electrochem. Soc. 2012. V. 159. № 5. P. D310–D318.
- 37. Вячеславов П.М. Электрохимическое осаждение сплавов. Л.: Машиностроение, 1986. 112 с.
- Дасоян М.А., Пальмская И.Я., Сахарова Е.В. Технология электрохимических покрытий. Л.: Машиностроение, 1989. 269 с.
- Jalota S.K. Tin nickel Alloy Plating // Metal Finish. 1999. V. 97. № 1. P. 319–322.
- 40. Воробьева Т.Н., Кудако А.А. Зависимость состава, микроструктуры и свойств электрохимических покрытий Ni-Sn от условий осаждения из фториднохлоридного электролита // Журн. Бел. гос. ун-та. Химия. 2017. № 2. С. 28-35.
- Cuthbertson J.W., Parkinson N., Rooksby H.P. Electrodeposition of Tin – Nickel Alloy Plate from Chloride-Fluoride Electrolytes // J. Electrochem. Soc. 1953. V. 100. № 3. P. 107–119.
- Vinchentso A., Kavallotti P.L. Structure and Electrokinetic Study of Nickel Electrodeposition // Russ. J. Electrochem. 2008. V. 44. P. 716–727.
- 43. Коваленко И.В., Черненко Л.В., Хайнаков С.А., Лысин В.И., Андрийко А.А. Синтез и физико-химические свойства нанодисперсных оксидов титана, станума, тантала // Укр. хим. журн. 2008. Т. 74. № 3-4. С. 52-54.
- Toshiaki O., Fujio I., Yoshinori F. Raman Spectrum of Anatase, TiO₂ // J. Raman Spectrosc. 1978. V. 7. № 6. P. 321–324.
- Yang L., Wu W., Zhao Y. Effect of TiO₂ Particles on Normal and Resonance Raman Spectra of Coumarin 343: a Theoretical Investigation // Phys. Chem. Chem. Phys. 2015. V. 17. P. 10910–10918.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 6 2019