УДК 541.124+546.431

У Цзэ, аспирант (БГТУ); Л. А. Башкиров, доктор химических наук, профессор (БГТУ);
 С. В. Труханов, кандидат физико-математических наук, старший научный сотрудник (НПЦ НАН Беларуси по материаловедению); Л. С. Лобановский, кандидат физико-математических наук, старший научный сотрудник (НПЦ НАН Беларуси по материаловедению); А. И. Галяс, кандидат физико-математических наук, старший научный сотрудник (НПЦ НАН Беларуси);

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА, МАГНИТНЫЕ, ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА И ТЕПЛОВОЕ РАСШИРЕНИЕ ФЕРРИТОВ СИСТЕМЫ $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0-0,5)

Твердофазным методом из оксидов Fe₂O₃, Sm₂O₃, ZnO и карбоната SrCO₃ получены образцы высококоэрцитивных ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ (x = 0–0,5) со структурой магнетоплюмбита, определена зависимость параметров кристаллической ячейки *a* и *c* от величины *x*. Установлено, что образцы Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ были однофазными до x = 0,2, а при $x \ge 0,3$ содержали также фазу α -Fe₂O₃, количество которой постепенно увеличивалось при повышении *x* до 0,5, а в образцах с x = 0,4 и 0,5 в небольшом количестве присутствовали фазы ZnFe₂O₄ и SmFeO₃. Изучены магнитные, электрические свойства и тепловое расширение этих ферритов, по магнитным петлям гистерезиса которых при 5 и 300 К определены величины удельной намагниченности насыщения (σ_s). Установлено, что твердый раствор Sr_{0,9}Sm_{0,1}Fe_{11,9}Zn_{0,1}O₁₉ при 300 К имеет удельную намагниченность насыщения (σ_s) и коэрцитивную силу ($_{\sigma}H_c$) на 0,4 и 9,7% соответственно больше, чем для базового феррита SrFe₁₂O₁₉.

High-coercivity ferrite samples $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0-0.5) with magnetoplumbite structure were prepared from oxides Fe_2O_3 , Sm_2O_3 , ZnO and carbonate $SrCO_3$ by solid-state ceramic method, the dependence of the unit cell parameters *a* and *c* on the value of *x* was determined. It was determined that samples of $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ were single-phased up to x = 0.2, and also contained α -Fe₂O₃ for $x \ge 0.3$ phase, quantity of which gradually increased with increasing *x* up to 0.5, and small quantities of phases $ZnFe_2O_4$ and $SmFeO_3$ were present in the samples with x = 0.4 and 0.5. The magnetic, electrical properties and thermal expansion of these ferrite samples were studied, the values of specific saturation magnetization (σ_s) were determined by magnetic hysteresis loops at 5 and 300 K. It was found that the solid solution $Sr_{0.9}Sm_{0.1}Fe_{11.9}Zn_{0.1}O_{19}$ at 300 K has specific saturation magnetization (σ_s) and coercive force ($_{\sigma}H_c$) respectively by 0.4 and 9.7% higher than the base ferrite $SrFe_{12}O_{19}$.

Введение. Феррит стронция SrFe₁₂O₁₉ со структурой магнетоплюмбита является магнитотвердым материалом, который применяется для изготовления керамических постоянных магнитов, широко используемых в различных областях науки и техники [1]. С 90-х гг. ХХ в. и до настоящего времени перспективным направлением поиска новых магнитотвердых материалов считается изучение твердых растворов на основе SrFe₁₂O₁₉, в котором ионы Sr²⁺ частично замещены ионами редкоземельного элемента Ln^{3+} (Ln – La, Nd, Pr, Sm), а эквивалентное количество ионов Fe³⁺ замещено ионами M²⁺ (M-Zn, Co, Mn, Cu). В работе [2] установлено, что в системе $Sr_{1-x}La_xFe_{12-x}Zn_xO_{19}$ повышение степени замещения х до 0,3 приводит к постепенному увеличению намагниченности И уменьшению коэрцитивной силы, и постоянный анизотропный магнит, изготовленный из твердого раствора Sr_{0.7}La_{0.3}Fe_{11.7}Zn_{0.3}O₁₉, имеет величину энергетического произведения системе Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ частичное замещение ионов стронция Sr^{2+} ионами La^{3+} и ионов Fe^{3+} ионами $\hat{C}o^{2+}$ до x = 0,2 вызывает снижение на-

магниченности, но одновременно с этим происходит увеличение поля анизотропии, что позволяет из твердого раствора Sr_{0.8}La_{0.2}Fe_{11.8}Co_{0.2}O₁₉ изготавливать анизотропные постоянные магниты с величиной $(\hat{BH})_{\text{max}} = 38,4 \text{ кДж/м}^3$. В последние годы опубликован ряд работ, в которых исследованы кристаллическая структура, спектры Мессбауэра и в меньшей степени магнитные свойства ферритов систем $Sr_{1-x}Ln_xFe_{12-x}M_xO_{19}$ (Ln – Nd, Pr, Sm; M – Zn, Co) [4–6]. В настоящей работе проведен синтез ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5) со структурой магнетоплюмбита, изучены их кристаллическая структура, намагниченность насыщения, коэрцитивная сила, электропроводность на постоянном токе и тепловое расширение.

Методика эксперимента. Керамические образцы ферритов системы $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0; 0,1; 0,2; 0,3; 0,4; 0,5) синтезированы твердофазным методом из оксидов самария (Sm_2O_3), железа (Fe₂O₃), цинка (ZnO) и карбоната стронция (SrCO₃). Все реактивы имели квалификацию ч.д.а. Оксид самария перед взвешиванием прокаливали при температуре

1273 К в течение 3 ч. Перемешивание и помол исходных соединений, взятых в необходимом соотношении, проводили в планетарной мельнице Puluerizette 6 фирмы Fritsch с добавлением этанола. Полученную шихту (с добавлением этанола для улучшения прессуемости) прессовали под давлением 50–75 МПа в таблетки диаметром 19 мм и высотой 5–7 мм, которые затем сушили на воздухе при 373 К и обжигали 4 ч на подложках из оксида алюминия при температуре 1523 К на воздухе. После предварительного обжига таблетки дробили, мололи, прессовали таблетки диаметром 9 мм, высотой 2–3 мм и бруски размером $5 \times 5 \times 30$ мм³, которые обжигали при 1523 К в течение 4 ч на воздухе.

Рентгеновские дифрактограммы образцов ферритов были записаны на рентгеновском дифрактометре Bruker D8 (излучение CuK_{α}) при комнатной температуре. Параметры элементарной ячейки (а и с) гексагональной структуры магнетоплюмбита были рассчитаны с помощью полнопрофильного анализа по методу Ритвельда (программа FullProf). Зависимости удельной намагниченности от температуры и величины магнитного поля ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ были получены в Научно-практическом центре НАН Беларуси по материаловедению. Удельную намагниченность (σ_{yg}) порошков ферритов в магнитном поле 8,6 кЭ измеряли методом Фарадея в интервале температур 77-900 К. Удельную намагниченность насыщения и параметры петли гистерезиса удельной намагниченности образцов ферритов цилиндрической формы длиной 5,0-5,4 мм и диаметром 1,0-1,2 мм определяли вибрационным методом в магнитом поле до 14 Тл при температурах 5 и 300 К. Электропроводность образцов измеряли при постоянном токе на воздухе в интервале температур 300-1100 К. Тепловое расширение керамических образцов исследовали дилатометрическим методом на кварцевом дилатометре с индикатором часового типа в интервале температур 300–1100 К.

Результаты и их обсуждение. Анализ рентгеновских дифрактограмм (рис. 1) показал, что полученные образцы ферритов

Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ с $x \le 0,2$ были однофазными. На рентгеновских дифрактограммах образцов ферритов с $x \ge 0,3$, кроме рентгеновских линий, принадлежащих гексагональной структуре магнетоплюмбита, присутствовали также самые интенсивные линии α -Fe₂O₃ и SmFeO₃. На рентгеновских дифрактограммах образцов ферритов с x = 0,4; 0,5, наряду с линиями примесных фаз α -Fe₂O₃, SmFeO₃, присутствовала линия ZnFe₂O₄, а в образце с x = 0,5 – едва заметная линия Sm₂O₃.

Рис. 1. Рентгеновские дифрактограммы образцов ферритов системы $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ при *x*: l - 0; 2 - 0,1; 3 - 0,2; 4 - 0,3; 5 - 0,4; 6 - 0,5; $\Delta - Sm_2O_3; * - SmFeO_3; \Box - \alpha - Fe_2O_3; \circ - ZnFe_2O_4$

В табл. 1 приведены значения параметров кристаллической решетки а, с и объема V элементарной ячейки образцов ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$. Видно, что повышение степени замещения х до 0,3 приводит к постепенному увеличению параметра кристаллической решетки *а* от величины 5,8791 Å для SrFe₁₂O₁₉ до 5,8823 Å для образца с x = 0,3(рис. 2, кривая 1). Параметр кристаллической решетки с при повышении степени замещения х от 0 до 0,3 постепенно уменьшается от величины 23,070 Å для SrFe₁₂O₁₉ до 22,997 Å для образца с x = 0,3, а при дальнейшем увеличении степени замещения х до 0,5 возрастает (рис. 2, кривая 2).

Таблица 1

Значения параметров *a*, *c* и *V* кристаллической решетки ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ ($0 \le x \le 0,5$) со структурой магнетоплюмбита. Рентгеноструктурная (ρ_{peh}), кажущаяся ($\rho_{каж}$) и относительная плотность ($\rho_{отн}$) твердых растворов ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ ($0 \le x \le 0,2$)

x	<i>a</i> , Å	<i>c</i> , Å	$V, Å^3$	$ρ_{peh}$, $Γ/cm^3$	$\rho_{\kappa a \kappa}, \Gamma / c M^3$	ρ _{отн} , %
0	5,8791	23,070	690,544	5,103	4,093	80,21
0,1	5,8805	23,055	690,431	5,142	4,028	78,34
0,2	5,8814	23,029	689,873	5,186	3,901	75,23
0,3	5,8823	22,997	689,128	-	_	—
0,4	5,8773	23,057	689,738	-	_	_
0,5	5,8749	23,048	688,915	-	_	_

Анализ данных, представленных в табл. 1 и на рис. 2, показывает, что предельная степень замещения ионов Sr^{2+} , Fe^{3+} в феррите $\mathrm{Sr}\mathrm{Fe}_{12}\mathrm{O}_{19}$ ионами Sm^{3+} , Zn^{2+} при температуре 1523 К с образованием твердых растворов $\mathrm{Sr}_{1-x}\mathrm{Sm}_x\mathrm{Fe}_{12-x}\mathrm{Zn}_x\mathrm{O}_{19}$ соответствует значению $x \approx 0,3$. Для базового феррита стронция $\mathrm{Sr}\mathrm{Fe}_{12}\mathrm{O}_{19}$ параметры *а* и *с*, определенные в настоящей работе (табл. 1), согласуются с величинами *а* и *с* (5,8844 и 23,05 Å) для $\mathrm{Sr}\mathrm{Fe}_{12}\mathrm{O}_{19}$, приведенными в работе [2].

Рис. 2. Зависимости параметров кристаллической решетки a(I) и c(2) твердых растворов ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0-0,5) от степени замещения x

В табл. 1 указаны величины рентгеноструктурной плотности, найденной по формуле

$$\rho_{\rm peh} = \frac{2M}{N_{\rm A}V},\tag{1}$$

где M-молярная масса феррита; N_A -число Авогадро; а также кажущейся плотности, рассчитанной по массе и объему образцов, и относительной плотности, вычисленной по следующей формуле:

$$\rho_{\rm oth} = \frac{\rho_{\rm kaw}}{\rho_{\rm peh}},\tag{2}$$

для образцов ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ со степенью замещения $x \le 0,2$. Видно, что в области однофазности рентгеноструктурная плотность при повышении степени замещения x увеличивается, а кажущаяся и относительная плотность уменьшаются. Это показывает на ухудшение спекаемости образцов при увеличении степени замещения x.

Из рис. 3 видно, что большинство кристаллитов ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (0 < $x \le 0,5$) не имеют четкой огранки, и их размер составляет 2–5 мкм. Однако фотография феррита $SrFe_{12}O_{19}$ (рис. 3, *a*) показывает, что в нем присутствуют отдельные кристаллиты, размер которых больше 10 мкм.

Рис. 3. Электронно-микроскопические снимки ферритов системы $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ при x: $a - 0; \ \delta - 0,1; \ s - 0,2; \ c - 0,3; \ \partial - 0,4; \ e - 0,5$ (×5000 раз)

На рис. 4 представлены температурные зависимости удельной намагниченности, измеренной в магнитном поле 8,6 кЭ для ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (0 $\leq x \leq 0,5$), по которым для этих ферритов определены температуры Кюри (Т_с), приведенные в табл. 2. В этой же таблице указаны значения удельной намагниченности при температурах 77 К (σ_{77}) и 298 К (σ₂₉₈). Следует отметить, что удельная намагниченность σ77, σ298 для твердого раствора с x = 0,1 немного выше, чем для феррита $SrFe_{12}O_{19}$, но при дальнейшем увеличении x от 0,2 до 0,5 величины σ77, σ298 резко уменьшаются. Вероятно, это связано с тем, что образцы ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ с $0,3 \le x \le 0,5$ содержат немагнитные фазы α-Fe₂O₃, ZnFe₂O₄ и фазу слабомагнитного феррита самария SmFeO₃.

намагниченности $\sigma_{y_{z}}$ образцов ферритов системы Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ при *x*: l - 0; 2 - 0, 1; 3 - 0, 2; 4 - 0, 3; 5 - 0, 4; 6 - 0, 5 Таблица 2

Температура Кюри (T_c), удельная намагниченность при температурах 77 и 298 К ($\sigma_{77}, \sigma_{298}$) образцов ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉

x	<i>Т</i> _{<i>c</i>} , К	σ ₇₇ , Гс · см ³ /г	σ ₂₉₈ , Γc · cm ³ /г
0	729	84,79	61,30
0,1	724	84,84	62,06
0,2	720	75,04	55,16
0,3	718	67,46	49,11
0,4	715	56,31	41,00
0,5	712	48,76	33,89

Эти данные показывают, что повышение степени замещения x приводит к постепенному снижению температуры Кюри от 729 К для SrFe₁₂O₁₉ до 712 К для образца Sr_{0.5}Sm_{0.5}Fe_{11.5}Zn_{0.5}O₁₉.

На рис. 5 в качестве примера приведены петли гистерезиса намагниченности для $SrFe_{12}O_{19}$ при температурах 5 и 300 К. Видно, что намагниченность насыщения этого феррита достигается в полях около 1 Тл (10 кЭ), выше которых происходит небольшое безгистерезисное возрастание намагничивания за счет парапроцесса.

Подобные петли гистерезиса намагничивания при температурах 5 и 300 К получены для всех исследованных ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (0 < $x \le 0,5$), по которым были определены удельная намагниченность насыщения (σ_s), удельная остаточная намагниченность (σ_r) и коэрцитивная сила ($_{\sigma}H_c$). Намагниченность насыщения (n_s), выраженная в магнетонах Бора на одну формульную единицу феррита $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ с $x \le 0,2$ рассчитана:

$$n_s = \frac{\sigma_s M}{5585},\tag{3}$$

где M – молярная масса соответствующего феррита; 5585 – величина, равная произведению магнетона Бора (μ_B) на число Авогадро. С использованием величин удельной остаточной намагниченности вычислены значения остаточной намагниченности (n_r) , выраженной в магнетонах Бора. Полученные значения n_s , n_r , $_{\sigma}H_c$ для ферритов системы $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ при 5 и 300 К приведены в табл. 3.

Анализ полученных магнитных параметров ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ показывает, что при температуре 300 К увеличение степени замещения х до 0,2 приводит к возрастанию удельной намагниченности насыщения (σ_s) от значения 64,71 Гс · см³/г для SrFe₁₂O₁₉ до 66,75 Гс · см³/г для твердого раствора с x = 0,2. Дальнейшее увеличение степени замещения х от 0,2 до 0,5 вызывает постепенное уменьшение удельной намагниченности насыщения (σ_s) до 39,86 Гс · см³/г для образца феррита с x = 0,5. Из данных, приведенных в табл. 3, следует, что удельная намагниченность насыщения (σ_s) и коэрцитивная сила (_о*H*_c) образца твердого раствора Sr_{0.9}Sm_{0.1}Fe_{11.9}Zn_{0.1}O₁₉ при 300 К на 0,4 и 9,7% соответственно больше, чем величины этих параметров для базового феррита SrFe₁₂O₁₉.

Рис. 5. Петли гистерезиса удельной намагниченности при температурах 5 К (1) и 300 К (2) для SrFe₁₂O₁₉

Таблица 3

Удельная намагниченность насыщения (σ_s), намагниченность насыщения одной формульной единицы (n_s), удельная остаточная намагниченность (σ_r), коэрцитивная сила ($_{\sigma}H_c$) образцов ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ при 5 и 300 К

	<i>T</i> = 5 K					<i>T</i> = 300 K						
x	$\sigma_s, \Gamma c \cdot c M^3/\Gamma$	$n_s, \mu_{ m B}$	$\sigma_r,$ $\Gamma c \cdot c M^3/\Gamma$	<i>n_r</i> , μ _B	_о Н _с , Э	σ_r / σ_s	σ _s , Гс · см ³ /г	$n_s, \mu_{ m B}$	$σ_r,$ Γ c · cm ³ /Γ	<i>n_r</i> , μ _B	_б <i>H</i> _c , Э	σ_r / σ_s
0	97,93	18,62	24,36	4,63	653	0,25	64,71	12,30	27,31	5,19	1885	0,42
0,1	94,28	18,05	20,85	3,99	422	0,22	64,99	12,44	28,94	5,54	2068	0,45
0,2	97,62	18,81	20,20	3,89	414	0,21	66,75	12,86	27,61	5,32	1808	0,41
0,3	81,07	_	16,82	_	1418	0,21	54,69	_	21,81	_	2058	0,40
0,4	78,98	_	11,44	_	399	0,15	53,87	-	12,67	_	1000	0,29
0,5	59,49	-	12,99	_	560	0,22	39,86	_	15,19	_	2184	0,38

Показанные на рис. 6 зависимости удельной электропроводности (æ) от температуры T и ln æ от T^{-1} для образцов ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ показывают, что электропроводность всех исследованных образцов ферритов с повышением температуры увеличивается и является полупроводниковой.

Рис. 6. Зависимости удельной электропроводности (æ) от температуры T(a) и ln æ от $T^{-1}(b)$ ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ при x: I - 0; 2 - 0,1; 3 - 0,2; 4 - 0,3; 5 - 0,4; 6 - 0,5

Повышение степени замещения х до 0,3 приводит к снижению удельной электропроводности при одинаковых температурах, а при дальнейшем увеличении х до 0,4; 0,5 наблюдается ее возрастание. На полученных для всех исследованных ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ прямолинейных зависимостях $\ln \mathfrak{E}$ от T^{-1} наблюдается излом при температуре $T_{\mu_{3,I}}$, которая приблизительно на 100 К выше температуры Кюри для соответствующего феррита $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$. При этом, как и в системе $Sr_{1-x}La_xFe_{12-x}Co_xO_{19}$ [7], наклон прямых зависи-мости ln æ от T^{-1} в области температур $T > T_{_{H3Л}}$ больше, чем для области температур $T < T_{_{\rm ИЗЛ}}$. Это указывает на более высокое значение энергии активации электропроводности ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ для температур $T > T_{_{ИЗЛ}}$ (E_{A2}) , чем для температур $T < T_{_{\rm ИЗЛ}}$ (E_{A1}) . Полученные результаты (табл. 4) показывают, что увеличение степени замещения x ионов Sr^{2+} в феррите $SrFe_{12}O_{19}$ ионами Sm^{3+} и ионов Fe^{3+} ионами Zn^{2+} от 0 до 0,3 приводит к повышению энергии активации электропроводности ЕА1, ЕА2: от значений 0,32; 0,44 эВ соответственно для феррита SrFe₁₂O₁₉ до величин 0,76; 0,82 эВ для твердого раствора Sr_{0,7}Sm_{0,3}Fe_{11,7}Zn_{0,3}O₁₉. Разница между E_{A2} и E_{A1} ($\Delta E = E_{A2} - E_{A1}$) при увеличении *x* изменяется незначительно: от 0,12 эВ для SrFe₁₂O₁₉ до 0,17; 0,13 эВ для твердых растворов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ с x = 0,1; 0,2 соответственно.

Таблица 4

Энергия активации электропроводности ниже (E_{A1}) и выше (E_{A2}) температуры $T_{_{H3,T}}$ и величина $\Delta E = E_{A2} - E_{A1}$ для ферритов $\mathrm{Sr}_{1-x}\mathrm{Sm}_x\mathrm{Fe}_{12-x}\mathrm{Zn}_x\mathrm{O}_{19}$

x	<i>Т</i> _{изл} , К	<i>E</i> _{A1} , эВ	<i>Е</i> _{А2} , эВ	ΔE , $3B$
0	822	0,32	0,44	0,12
0,1	799	0,35	0,52	0,17
0,2	806	0,49	0,62	0,13
0,3	869	0,76	0,82	0,06
0,4	823	0,63	0,89	0,26
0,5	823	0,72	0,86	0,14

Зависимости относительного удлинения от температуры (рис. 7) для всех образцов ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ (x = 0,1-0,5) практически линейны, что свидетельствует об отсутствии помимо магнитного перехода при T_c других фазовых переходов у данных образцов в исследуемом интервале температур. Проведенные расчеты показали, что линейный коэффициент теплового расширения (α) для ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ при увеличении степени замещения x уменьшается незначительно: от 1,22 · 10⁻⁵ K⁻¹ для SrFe₁₂O₁₉ до 1,12 · 10⁻⁵ K⁻¹ для Sr_{0.5}Sm_{0.5}Fe_{11.5}Zn_{0.5}O₁₉.

Заключение. Твердофазным методом на воздухе при температуре 1523 К синтезированы ферриты $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0-0.5). Рентгенофазовый анализ показал, что образцы с $x \le 0.2$ были однофазными, а при $x \ge 0.3$ содержали

также фазу α -Fe₂O₃, количество которой постепенно увеличивалось при росте *x* до 0,5, в образцах с *x* = 0,4; 0,5 в небольшом количестве присутствовали фазы ZnFe₂O₄ и SmFeO₃. Установлено, что повышение степени замещения *x* до 0,3 приводит к увеличению параметра кристаллической решетки *a* и к уменьшению параметра кристаллической решетки *c*.

Выявлено, что температура Кюри ферритов образцов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0-0,5) постепенно снижается при увеличении степени замещения x от 729 К для SrFe₁₂O₁₉ до 712 К для образца Sr_{0.5}Sm_{0.5}Fe_{11.5}Zn_{0.5}O₁₉. Измерения удельной намагниченности, проведенные при температурах 5 и 300 К в магнитном поле до 14 Тл, показали, что намагниченность насыщения ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ достигается в поле около 1 Тл. Установлено, что удельная намагниченность насыщения (σ_s) и коэрцитивная сила ($_{\sigma}H_c$) образца твердого раствора Sr_{0.9}Sm_{0.1}Fe_{11.9}Zn_{0.1}O₁₉ при 300 К на 0,4 и 9,7% соответственно больше, чем величины этих параметров для базового феррита SrFe₁₂O₁₉. Это свидетельствует о перспективности использования феррита Sr_{0.9}Sm_{0.1}Fe_{11.9}Zn_{0.1}O₁₉ для изготовления постоянных магнитов с высоким значением энергетического произведения (*BH*)_{max}.

Показано, что зависимость удельной электропроводности от температуры для всех исследованных ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0-0,5) является полупроводниковой. Энергия активации электропроводности, рассчитанная по линейным участкам зависимости ln æ от 1 / T, в области температур выше температуры излома ($T_{изл}$) на 0,06–0,26 эВ больше энергии активации электропроводности при температурах ниже температуры $T_{изл}$, которая приблизительно на 100 К больше температуры Кюри (T_c).

Линейный коэффициент теплового расширения (α) для ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ при увеличении степени замещения *x* уменьшается незначительно: от $1,22 \cdot 10^{-5} \text{ K}^{-1}$ для SrFe₁₂O₁₉ до $1,12 \cdot 10^{-5} \text{ K}^{-1}$ для Sr_{0,5}Sm_{0,5}Fe_{11,5}Zn_{0,5}O₁₉.

Литература

1. Технология производства материалов магнитоэлектроники / Л. М. Летюк [и др.]; под общ. ред. Л. М. Летюка. – М.: Металлургия, 1994. – 416 с.

2. High Energy Ferrite Magnets / H. Taguchi [et al.] // 7th International Conference on Ferrites, Bordeaux, 3–6 september 1996 / Bordeaux Convention Center France. – Bordeaux, 1996. – P. 3–4.

3. Yamamoto, H. Magnetic properties of anisotropic sintered magnets using Sr - La - Co system powders by mechanical compounding method / H. Yamamoto, G. Obara // J. of the Japan Society of Powder and Powder Metallurgy. – 2000. – Vol. 47. – P. 796–800.

4. Substitution effects in M-type hexaferrite powders investigated by Mossbauer spectrometry / L. Lechevallier [et al.] // J. of Magnetism and Magnetic Materials. – 2005. – Vol. 290–291, Iss. 2. – P. e1237–e1239.

5. Influence of the presence of Co on the rare earth solubility in M-type hexaferrite powders / L. Lechevallier [et al.] // J. of Magnetism and Magnetic Materials. – 2007. – Vol. 316, Iss. 2. – P. e109–e111.

6. On the solubility of rare earths in M-type $SrFe_{12}O_{19}$ hexaferrite compounds / L. Lechevllier [et al.] // J. of Phys: Condens. Matter. – 2008. – Vol. 20. – P. 175203–175212.

7. Кристаллическая структура, магнитные и электрические свойства ферритов Sr_{0,75-3x/4}Ca_{0,25-x/4}La_xFe_{12-x}Co_xO₁₉, Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ / Л. А. Башкиров [и др.] // Свиридовские чтения. – Минск: БГУ, 2008. – С. 100–106.

Поступила 26.02.2013