1983 Том XXVII № 11

УДК 539.211+548.4

В. С. ВИХРЕНКО, М. И. КУЛАК

ДИНАМИЧЕСКОЕ ПОВЕДЕНИЕ ЧАСТИЦ МОЛЕКУЛЯРНОГО КРИСТАЛЛА ВБЛИЗИ ПРИМЕСИ И ВАКАНСИИ

(Представлено академиком АН БССР Ф. И. Федоровым)

Настоящий этап развития теории конденсированных систем характеризуется резким возрастанием интереса к разупорядоченным системам, и в частности к кристаллам с точечными дефектами — простейшим системам, позволяющим проследить, как в принципе беспорядок влияет на динамику системы и ее свойства (1, 2). Успехи, достигнутые динамической теорией кристаллической решетки в исследовании свойств несовершенных кристаллов, связаны в основном с изучением влияния дефектов на их спектральные характеристики (3-5). Корреляционные свойства таких кристаллов, описываемые временными корреляционные ми функциями (ВКФ), изучены значительно слабее, хотя формальные выражения для последних имеются (см. (4)).

Общая теория ВКФ в рамках статистического метода условных распределений (⁶) была построена в работах (⁷⁻⁹). В (⁹) теория использована для исследования корреляционных и спектральных характеристик совершенного кристалла. Наиболее существенным отличием статистического подхода от динамического является то, что уже в первом приближении развиваемой теории вместо динамической матрицы появляется хотя и ее аналог, но зависящий от термодинамических параметров системы — температуры и объема и частично включающий в себя ангармонизмы всех порядков. В приложении к несовершенным кристаллам эта отличительная черта приобретает еще большее значение ввиду имеющейся возможности учета совместного влияния термодинамических параметров и структурных особенностей, обусловленных дефектами, на аналог динамической матрицы.

Резонансные и локальные колебания несовершенного кристалла, которые были предсказаны динамической теорией,— явления коллективные. Однако коллективный характер этих колебаний по-разному сказывается на поведении самого дефекта и окружающих его атомов матрицы. Например, амплитуды колебаний атомов матрицы экспоненциально убывают на больших расстояниях по мере удаления от дефекта. В непосредственной форме индивидуальное поведение частиц описывается временными корреляционными функциями, исследованию которых в случае несовершенного кристалла посвящена настоящая работа.

Динамическое поведение атомов матрицы, являющихся ближайшими соседями точечного дефекта (примеси замещения *р* или вакансии *v*), в первом приближении теории описывается уравнением

$$\hat{\mathbf{\phi}}_{(0)}^{(1)}(i; t) + (\omega^{2}\mathbf{E} - \mathbf{C}_{id} + \mathbf{C}_{id}^{c}\delta_{dp}) \cdot \mathbf{\phi}_{(0)}^{(1)}(i; t) =$$

$$= \sum_{j \gg i}^{12} \mathbf{C}_{ij} \cdot \mathbf{\phi}_{(0)}^{(1)}(j; t),$$
(1)

991

где $\varphi_{(1)}^{(+)}(i; t)$ — коэффициенты разложения одночастичных приведенных динамических функций (9) в ряд по ортогональным полиномам в конфигура-

пампческих функций (*) в ряд по ортогональном 12^{12} с_{*ij*} : Е, Е — единичный ционном и импульсном пространствах (*); $\omega^2 = \frac{1}{3} \sum_{i=1}^{12} C_{ij}$: Е, Е — единичный

тензор, Сі усредненным образом характеризуют взаимодействие частиц і и ј и образуют аналог динамической матрицы; δ_{dp} — символ Кронекера (при переходе к полевому описанию производится замена на б-функцию Дирака), δ_{pp} = 0, δ_{pp} = 1. Знак (') у суммы в правой части означает, что слагаемое, соответствующее примесному атому, должно быть домножено на отношение т/тр масс частицы и примеси.

Уравнение (1) следует из полученного в (9) уравнения для частиц совершенного кристалла в результате учета того, что если одна из соседних с i ячеек пустая (d=v), то взаимодействие с ней отсутствует и из выражения для ω^2 вычитается соответствующее слагаемое C_{iv} ; если в этой ячейке имеется примесь замещения (d=p), то вычитается слагаемое C_{ip}, соответствующее взаимодействию двух частиц матрицы, и прибавляется взаимодействие с примесью С(р).

Частицы матрицы, не имеющие в качестве ближайших соседей примесь или вакансию, описываются уравнениями совершенного кристалла, а уравнение для примеси имеет формально такой же вид (10), но везде вместо С_{іј} входят величины С^(р).

$$\tilde{\varphi}_{(0)}^{(1)}(p; t) + \frac{m}{m_p} \omega_p^2 \varphi_{(0)}^{(1)}(p; t) = \sum_{j=1}^{12} C_{jp}^{(p)} \cdot \varphi_{(0)}^{(1)}(j; t).$$
(2)

В настоящей работе учитывается лишь взаимодействие ближайших соседей и предполагается, что наличие дефекта не сказывается существенным образом на усредненном взаимодействии окружающих его частиц матрицы. Учет взаимодействия со следующими соседями, равно как и влияния дефекта на усредненное взаимодействие частиц матрицы, не вносит принципиальных затруднений, но существенно усложияет вычисления.

При исследовании ВКФ импульса или координаты начальное возмущение задается в ячейке, которой принадлежит рассматриваемая частица. Учитывая также наличие дефекта, приходим к заключению, что вследствие понижения симметрии задачи уравнения (1) необходимо решать для 1/4 пространства вместо 1/48 части в случае совершенного кристалла. Наиболее естественным при вычислении ВКФ является непосредственное интегрирование по времени системы уравнений (1), (2).

Начало координат выберем в центре ячейки, в которой задается возмущение в начальный момент времени (рис. 1), а плоскость ZOY проведем через центр ячейки, содержащей дефект. Условия симметрии позволяют ограничиться интегрированием уравнений для частиц, коор-динаты которых (см. (^{9, 10})) удовлетворяют неравенствам

$$m_1 \geqslant 0, \ m_3 \geqslant m_2.$$
 (3)

Условия (3) отражают наличие двух плоскостей зеркальной симметрин (X=0 и Y=Z) и выделяют отмеченную выше четверть пространства. Для того чтобы в дальнейшем можно было представить тензоры второго ранга ф через их скалярные инварианты, введем в каждой ячейке ортонормированный базис

$$n = (\mathbf{i}_{2} + \mathbf{i}_{3})/\sqrt{2},$$

$$\mathbf{l}_{i} = [(m_{3} - m_{2})\mathbf{i}_{1} + m_{1}(\mathbf{i}_{2} - \mathbf{i}_{3})]/Q_{i},$$

$$\mathbf{k}_{i} = [2m_{1}\mathbf{i}_{1} - (m_{3} - m_{2})(\mathbf{i}_{2} - \mathbf{i}_{3})]/Q_{i}\sqrt{2},$$

$$Q_{i} = [2m_{1}^{2} - (m_{3} - m_{2})^{2}]^{1/2}.$$
(4)

Для частиц, лежащих на диагонали Od $(m_1=0, m_2=m_3)$, величина Q_1 обращается в нуль. В этом случае определим векторы I, и k, как

$$\mathbf{l}_{i} = \mathbf{i}_{1}, \ \mathbf{k}_{i} = (\mathbf{i}_{2} - \mathbf{i}_{3})/\sqrt{2}.$$
 (5)

Переходя от системы тензорных уравнений (1), (2) к уравнениям относительно скалярных инвариантов, используем следующие представления тензоров:

$$\mathbf{C}_{ij} = C^{E}\mathbf{E} + C^{n}\mathbf{n}_{ij}\mathbf{n}_{ij},$$

$$\mathbf{C}_{id}^{p} = C_{id}^{E}\mathbf{E} + C_{id}^{n}\mathbf{n}_{id}\mathbf{n}_{id},$$

$$\mathbf{p}_{(0)}^{(1)}(i; t) = \beta_{i}^{n}\mathbf{n}\mathbf{n} + \beta_{i}^{t}\mathbf{l}_{i}\mathbf{l}_{i} + \beta_{i}^{k}\mathbf{k}_{i}\mathbf{k}_{i} - \beta_{i}^{nk}\mathbf{n}\mathbf{k}_{i} - \beta_{i}^{kn}\mathbf{k}_{i}\mathbf{n}.$$

Здесь п_{і і} — единичный вектор между ближайшими соседями і и і. Отметим, что тензор (*i*; *t*) несимметричен, поскольку может быть задано положительное направление обхода тройки узлов (Odi). Разложение тензора ф(0), связанного с ВКФ соответствующих частиц (^{7,9}), выполнено в базисе 4), (5).

Полученная система уравнений (ее явный вид приведен в (11)) относительно скалярных инвариантов в тензора с интегрировалась численным методом на ЭВМ EC-1022 с помощью методики, описанной в (⁹). Рассматривалась система частиц, расположенных на 50 координационных сферах, при температуре $\Theta = 1$ и объеме V = 0.98 (в единицах $\varepsilon/k_{\rm B}$ и о³; є и о — параметры потенциала Леннард-Джонса, k_в — постоянная Больцмана).

На рис. 2, а представлено поведение (в единицах $\langle p^2 \rangle$) двух компонентов (вⁿⁿ и в^{kk}) тензора временной корреляционной функции импульса частицы матрицы ⁸⁶Кг — ближайшего соседа легкой примеси замещения ⁴⁰Аг. Из соображений симметрии следует, что в^{kn} и в^{nk} для центральной частицы равны нулю. Поведение компонентов В^{II} и В^{kk} мало отличается друг от друга (поэтому В^{!!} не представлено на рисунке), а также от поведения автокорреляционной функции импульса совершенного кристалла (⁹), тогда как поведение βⁿⁿ проявляет существенные особенности (подчеркнем, что вектор п определяет направление на примесь, в то время как векторы k и l перпендикулярны этому направлению). К отличительным особенностям в поведении в^{ии} относятся уменьшение глубины первого минимума, исчезновение второго положи-

Рис. 1 З. Доклады АН БССР № 11

993

6)

тельного пика и более быстрое затухание колебаний. Вид спектральных плотностсй (рис. 2, б) автокорреляционных функций указывает на проявление локальных колебаний в поведении β^{nn} — компонента ближайнией к легкой примеси частицы матрицы. Доля локальных колебаний быстро падает по мере удаления частиц матрицы от примеси — уже для четвертого соседа, удаленного от примеси на расстояние всего в два раза большее, чем первый, локальная часть спектра оказывается примерно на порядок слабее. Это оправдывает понимание локальных колебаний не только в смысле расположения их частот в спектре, но и в смысле локализации колебаний вблизи примеси в координатном пространстве.

Авторы выражают признательность профессору Л. А. Ротту за полезное обсуждение работы.

Summary

The momentum time correlation functions are computed and the influence of the substitutional imperfection on the spectral and correlation properties of the neighbours of the imperfection is investigated.

Литература

¹ Лейбфрид Г., Бройер Н. Точечные дефекты в металлах.— М.: Мир. 1981.— 440 с. ² Займан Дж. Модели беспорядка.— М. Мир. 1982.—592 с. ³ Лифиииц И.М.— Успехимат. наук, 1952, т. 7, вып. 1, с. 171—180. ⁴ Марадудии А. А. Дефекты и колебательный спектр кристаллов.— М.: Мир. 1968.—432 с. ⁵ Косевич А. М. Филическая механика реальных кристаллов.— Киев: Наукова думка, 1981.—328 с. ⁶ Ротг Л. А. Статистическая теория молекулярных систем.— М.: Наука, 1979.—280 с. ⁷ Вихренко В. С., Кулак М. И.— ДАН БССР, 1980, т. 24, № 2, с. 129—132. ⁸ Кулак М.И., Вихренко В. С.— Весці АН БССР Сер. фіз-мат. навук, 1980, N.6, с. 90—95. ⁹ Кулак М.И., Вихренко В. С.— Весці АН БССР Сер. фіз-мат. навук, 1982, № 5. с. 91—97. ¹⁰ Вихренко В. С., Кулак М.И.—В сб.: Теор. и прикл. мех. Ми.: Вышэйшая школа, 1982, вып. 9, с. 106—112. ¹¹ Кулак М. И. Автореф. канд. дис.— Мн. 1982.—21 с.

Белорусский технологический институт им. С. М. Кирова Поступило 06.01.83