УДК 621.785.36+537.621.4+546.73+54-165 А.А. Затюпо^{*}, асп.; Л.А. Башкиров^{*}, проф., д-р хим. наук Г.С. Петров^{*}, доц., канд. хим. наук А.И. Галяс^{**}, ст. науч. сотр., канд. физ-мат. наук (*БГТУ, г. Минск, ** ГО «НПЦ НАН Беларуси по материаловедению») КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ФЕРРИТОВ-ГАЛЛАТОВ Ві_{1-х}La_хFe_{1-х}Ga_xO₃

Магнитоэлектрические материалы открывают широкие персиск тивы применения в области информационных и энергосберегающия технологий: на их основе разрабатываются принципиально новые уст ройства магнитной памяти и спиновой электроники, сенсоры магнит ного поля, устройства сверхвысокочастотной техники, магнитофото ники и др. [1-3]. Это обуславливает значительно возросший в настоя щее время интерес к исследованию сегнетомагнетиков (мультиферон ков), среди которых наиболее интересными с практической точки зрения являются материалы, проявляющие магнитоэлектрические свой ства при комнатной температуре, например, материалы на оснощ феррита висмута BiFeO₃, имеющего температуру дипольного упоря дочения ~1100 К и антиферромагнитное упорядочение при ~640 К [4, 5]. Однако широкому практическому использованию BiFeO₃ п твердых растворов на его основе препятствует низкий уровень магнитоэлектрических взаимодействий, обусловленный существованисм пространственно-модулированной спиновой структуры циклоидного типа. Анализ литературных данных показал, что разрушение пространственно-модулированной структуры и улучшение магнитных п электрических свойств BiFeO3 достигается путем незначительного замещения либо ионов Bi^{3+} ионами редкоземельных (La³⁺, Nd³⁺, Sm³⁺, Gd³⁺ и др.)[1, 2, 4, 5] или щелочноземельных элементов (Ca²⁺, Sr³⁺, Pb²⁺, Ba²⁺) [1, 2], либо ионов Fe³⁺сегнетоактивными ионами Nb⁵⁺, Ti [1, 2]

В настоящей работе приведены результаты исследования кристаллической структуры и магнитных свойств твердых растворов ни основе феррита висмута BiFeO₃, в котором ионы Bi³⁺ замещены ионами La³⁺, а парамагнитные ионы Fe³⁺ диамагнитными ионами Ga³⁺. Таким образом, в подрешетке железа BiFeO₃ при образовании твердых растворов ферритов-галлатов Bi_{1-x}La_xFe_{1-x}Ga_xO₃ происходило магнитное разбавление ионов Fe³⁺, что приводило к изменению косвенных обменных взаимодействий, ответственных за установление определенного порядка или беспорядка в расположении спинов 3*d*-электронов ионов Fe³⁺.

Синтез поликристаллических образцов Bi_{1-x}La_xFe_{1-x}Ga_xO₃ (x=0, 105, 0,1; 0,5; 0,9; 0,95; 1,0) осуществлен методом твердофазных реакний из оксидов Bi₂O₃, Fe₂O₃, La₂O₃ и Ga₂O₃. В зависимости от состава волия синтеза образцов на воздухе варьировались в широких преденах $T = (850 - 1250)^{\circ}$ С и длительность обжига от 30 мин до 2 ч. При ном, чем больше ионов висмута замещено ионами редкоземельного отмента, тем выше была температура синтеза.

Рентгеновские дифрактограммы получали на дифрактометре D8 ADVANCED с использованием CuK_a-излучения. Параметры кристалинсской структуры образцов Bi_{1-x}La_xFe_{1-x}Ga_xO₃определяли при понопи рентгеноструктурного табличного процессора RTP и данных спротеки международного центра дифракционных данных (It DDJCPDS).

Удельную намагниченность (σ_{y_n}) и удельную магнитную восприимчивость (χ_{y_a}) твердых растворов Bi_{1-x}La_xFe_{1-x}Ga_xO₃измеряли меплом Фарадея в магнитном поле H = 0,86 Т в интервале температур 1/1000 К на установке лаборатории физики магнитных материалов 10 «Научно-практический центр НАН Беларуси по материаловедению».

Bi₂Fe₄O₉ Рисунок 1 – Рентгеновские дифрактограммы образцов Bi_{1-x}La_xFe_{1-x}Ga_xO₃ при различных значениях х

Рентгеновские дифрактограммы LaGaO3 и твердых растворов на основе LaGaO₃, в котором 5% и 10% ионов La^{3+} , Ga^{3+} замещено ионами Bi³⁺ и Fe³⁺ (рисунок 1, дифрактограммы 5, 6), показали, что они были однофазными и кристаллическую имели орторомбически структуру искаженного перовскита (пр. гр. Рbnm). Такую же орторомбическую кристаллическую структуру перовскита имел и образец твердого раствора на основе галлата лантана, в котором 50% ионов La³⁺, Ga³⁺ замещено ионами Bi^{3+} и Fe³⁺, но в нем присутст-

вовали примесные фазы Bi₂Fe₄O₉ и Bi₂₅FeO₃₉ (рисунок 1, дифрактограмма 4). В области составов твердых растворов Bi_{1-x}La_xFe_{1-x}Ga_xO₃ (1,0 $\ge x \ge 0,5$) с орторомбической структурой перовскита параметры кристаллической решетки *a,b, с* при увеличении содержания поле Bi³⁺ и Fe³⁺ постепенно увеличиваются: от значений*a* = 5,4046 *b* = 5,4997 Å, *c* = 7,7807 Å, *V* = 235,549 Å³ для LaGaO₃ до *a* = 5,5220 Å *b* = 5,5309 Å, *c* = 7,8208 Å, *V* = 239,105 Å³ для Bi_{0.5}La_{0.5}Fe_{0.5}Ga_{0.6} (1) При этом следует отметить, что параметры кристаллической решете для LaGaO₃, полученные в настоящей работе, хорошо согласуются и литературными данными (*a* = 5,5269 Å, *b* = 5,4943 Å, *c* = 7,7774 Å) Твердые растворы Bi_{1-x}La_xFe_{1-x}Ga_xO₃ (0 ≤ *x* ≤ 0,1) имели ромбоэдриче ски искаженную структуру перовскита (пр. гр.*R3c*) и на ренттет граммах данных образцов (рис.1, дифрактограммы *1, 2, 3*) присуто вовали примеси Bi₂Fe₄O₉ и Bi₂₅FeO₃₉. Таким образом, анализ ренте нограмм образцов системы BiFeO₃-LaGaO₃ показал наличие концен трационного структурного перехода от ромбоэдрической к орторон бической структуре перовскита около состава с *x* чуть выше 0,1.

По результатам исследования температурной зависимости удельной намагниченности для образцов $Bi_{1-x}La_xFe_{1-x}Ga_xO_3$ (x = 1, 0, 0, 95; 0, 9; 0, 5) показано, что LaGaO₃ является диамагнетиком, а тиси дые растворы с x = 0,95 и 0,9 – парамагнетиками (рисунок 2).

При этом температурная зависимость удельной намагниченности для феррита-галлата $Bi_{0.5}La_{0.5}Fe_{0.5}Ga_{0.5}O_3$ в интервале температур 77–1000 К (рисунок 2, кривая 3), имеет небольшой максимум при температуре 411 К на кривой нагревания, что указывает на присутст

значениях х

нем ангиферромагнитной фазы. Однако при охлаждении этого при на зависимости σ_{yg} отT (рисунок 2, кривая 3') данный макси-

Гемпературные зависимости удельной намагниченности образцов $I = I_{a_1,a_3}Ga_xO_3$ с x = 0.05; 0.1 (рисунок 3) содержат аномалию в виде по меньшей величины, чем на зависимости σ_{va} от T для феррита ВіГеО₃ (рисунок 3, вставка). Температуры максимума скачка о_{ул} обранцов $Bi_{1-x}La_xFe_{1-x}Ga_xO_3$ с x = 0.05; 0,1 равны 628 и 622 К, т. е. стически совпадают с температурой Нееля образца BiFeO₃ (626 K). стана, ссли температурная зависимость намагниченности для феррита ны при температурах ниже температуры Нееля содержит участок то плого уменьшения $\sigma_{y_{\pi}}$, то для образцов Bi_{1-x}La_xFe_{1-x}Ga_xO₃ с x = 0.05; Попотсутствует, и при снижении температуры оуд сначала почти не постоя, а затем начинает сильно увеличиваться. Температура Нееля образцов практически равна температуре Нееля BiFeO3. Следопельно, можно допустить, что антиферромагнетизм этих образцов мостольных обусловлен именно присутствием в них фазы BiFeO₃. Однако ситепофазовый анализ показал постепенное уменьшение параметра а тичение угла α кристаллической решетки ромбоэдрически искаиного перовскита при замещении 5 и 10% ионов Bi³⁺, Fe³⁺ ионами Ga¹. Следовательно, для системы BiFeO₃ – LaGaO₃ замещение 5% 10^{16} ионов Bi³⁺, Fe³⁺ ионами La³⁺, Ga³⁺ не приводит к полному разруначино антиферромагнитного упорядочения. Исследование темперапачных и полевых зависимостей удельной намагниченности для обваннов $Bi_{1,x}La_{x}Fe_{1,x}Ga_{x}O_{3}$ с x = 0.05 и 0.10 показало, что их магнитные ной тва определяются сосуществованием в них антиферромагнитной и ферромагнитной фаз.

ЛИТЕРАТУРА

Physics and Applications of Bismuth Ferrite / G. Catalan, J. F. Acott // Advanced Materials. – 2009. – №21. – P. 2463–2485.

2 Магнитоэлектрические материалы и мультиферроики / А.П. Питаков, А.К. Звездин // УФН. – 2012. – Т.182, №6. – С. 593 – 620.

3 On the room temperature multiferroic BiFeO₃: magnetic, dielectric and thermal properties / J. Lu et al. // The European Physical Journal B. - 4010 (75). - P. 451-460.

4 Слабый ферромагнетизм в мультиферроиках на основе BiFeO₃ 11 О. Троянчук [и др.] // Письма в ЖЭТФ. – 2009. – Т.89, вып. 4. – С. 104 – 208.

5 Локальные состояния железа в мультиферроиках іі "La_xFeO₃/ В.С. Покатилов, В.В. Покатилов, А.С. Сигов // Физика пердого тела. – 2009. – Т.51, №3. – С. 518 – 524.