УДК 621.762.2

СТРУКТУРООБРАЗОВАНИЕ В УСЛОВИЯХ ВЫСОКИХ ДАВЛЕНИЙ И ТЕМПЕРАТУР КОМПОЗИТА НА ОСНОВЕ НАНОУГЛЕРОДА С ДОБАВКОЙ ЖЕЛЕЗА, ЛЕГИРОВАННОГО АМОРФНЫМ БОРОМ

Д. В. Куис¹, Г. П. Окатова¹, Н. А. Свидунович¹, В. С. Урбанович², А. И. Седов³

 ¹Белорусский государственный технологический университет, г. Минск, dmitrykuis@mail.ru
²ГО «НПЦ НАН Беларуси по материаловедению», г. Минск urban@ifttp.bas-net.by
³Физико-технический институт им. А. Ф. Иоффе РАН, г. Санкт-Петербург, Россия oychenko@mail.ioffe.ru

В условиях интенсивной высокотемпературной пластической деформации с использованием экстрагированной фуллереновой сажи получен композит на основе C-B-Fe гетерофазного аморфно-наноструктурного строения – высокотвердой углеродной "фазы-основы" – матрицы, заполненной упрочняющими нанокристаллитами карбидов и боридов Fe и карбоборидов, и распределенными в матрице особо твердыми частицами углеродной фазы с аморфизированной поверхностью.

Введение. Цель настоящего исследования – поиск путей оптимизации свойств композитного наноматериала инструментального, абразивного и конструкционного назначения на основе наноразмерного углерода с добавкой Fe легированием бором при спекании методом высокоэнергетической консолидации.

Изучение фазовых превращений в системе ультрадисперсных компонентов бор-углерод-железо связано с перспективами синтеза методами нанотехнологии новой нанокерамики с уникальными физикомеханическими свойствами с учетом того, что для бора интенсивная пластическая деформация однозначно связана с формированием в композитах наноструктурного состояния. При создании нового композита бор вводился в ранее полученный композит на основе экстрагированной фуллереновой сажи – $C_{Эфc}$ -10 мас.%Fe [1], как показавший лучшие результаты в серии разработанных материалов. Однако доминирующая в образцах композита на основе С–10%Fe связующая "фаза-основа" обладает пониженной трещиностойкостью, что проявлялось в образовании микротрещин при изломе образцов, при замерах микротвердости (допустимая нагрузка без образования микротрещин не более 50–100 г). Стремление решить эту проблему и привело к следующему этапу работы – созданию путем введения бора трещиностойкого композита С–В–Fe.

Прогнозировалось, что введение бора как микролегирующей добавки может способствовать доформированию в композите наноструктурного состояния и дать существенное повышение вязкости разрушения матрицы, т. е. увеличение конструкционной прочности композита, что важно для инструментальных и конструкционных материалов.

Материалы и технология. В качестве исходных компонентов использовались порошки экстрагированной фуллереновой сажи (80% С_{Эфс} – нанодисперсный углерод после исчерпывающей экстракции фуллеренов¹), аморфный бор марки «А» (10%), микропорошок карбонильного железа (10%).

Приготовление шихты проводилось с обеспечением сохранения нанодисперсности исходных порошков и тщательности их перемешивания в ильтразвуковой ванне и перемешивания в микроаттриторе на базе высокоскоростного станка"Вогt BTM-13.

Образцы спекались методом термобарической обработки на прессовой установке DO137A [2]. Метод обеспечивает быстрое уплотнение образцов до плотности, близкой к теоретической, с более высоким пределом прочности, повышенной твердостью, более точными размерами.

Для установления оптимальных технологических вариантов образцы спекались при постоянном давлении P = 4 ГПа, в температурных пределах 1100–1500 °С и времени спекания 30–140 с.

Результаты эксперимента. Легирование 10% бора нанокомпозита $C_{s\phi c} + 10\%$ Fe (рис. 1, *a*) привело к существенным положительным изменениям микроструктуры, кристалличности и свойств композита с бором (рис. 1, *б*).

¹ Получены на оборудовании ООО «ФизТехПрибор» на базе Физикотехнического института им. А. Ф. Иоффе РАН, г. Санкт-Петербург, Россия

Рис. 1. Микроструктура образцов композитов состава $C_{3\phi c}$ -10%Fe (*a*), $C_{3\phi c}$ -10%Fe (*b*) (x50)

Исследованием установлен ряд характерных особенностей и отличительных свойств в образцах полученного нанокомпозита С_{эфс}=10%B=10%Fe:

- структура образцов с бором получила ярко выраженный гетерофазный характер (рис. 1, б) с высокой микротвердостью и аморфнонанокристалличностью составляющих ее фаз;

– каркас образцов образует высокотвердая аморфизированная углеродная, микролегированная бором и железом связующая "фазаоснова" – матрица (рис. 2), заполненная упрочняющими ее наночастицами карбидов и боридов Fe и карбоборидов, микротвердость матрицы с бором возросла в ~2–4 раза – до HV₃₀₀ = 29–89 ГПа;

Рис. 2. Микроструктура связующей "фазы-основы" композита на основе С $_{2\phic}$ -10%B-10%Fe; $a - x1000; \delta - x5000$

– связующая "фаза-основа" отличается особым сопротивлением вдавливанию алмазным индентором: чаще всего вместо обычных четырехугольных отпечатков – ◇, получаются микроизображения тонко очерченных крестов +; трещины отсутствуют (рис. 3); вид отпечатков и отсутствие радиальных трещин в согласии с [3] указывает на высокую трещиностойкость и упругость полученных образцов углерод– бор-железного композита.

Рис. 3. Микроструктура фазы-основы с отпечатком индентора (по стр.), $\mathrm{HV}_{300} = 89,13$ ГПа

Композит упрочняют распределенные в матрице два типа частиц: супертвердые и твердые частицы "нового карбида железа":

– все образцы композита с добавкой 10% бора содержат большое количетво супертвердых частиц, имеющих дисперсный "глобулярный" рельеф поверхности (рис. 4), микротвердость супертвердых частиц – $HV_{300} = 48,8-93,7$ ГПа, многие частицы имеют – HV_{300} до и >100 ГПа;

– твердые частицы "нового карбида железа" размером от наночастиц до 100–200 мкм и более (рис. 1, δ), сформировавшиеся из исходного порошка карбонильного Fe, имеют сложное структурное (рис. 5) и микрохимическое (рис. 6) строение;

- аморфизированный углеродный и переходный диффузионный Fe-C-B слои образуют супертвердую оболочку карбида, основа которого заполнена нанокристаллитами карбидов и боридов Fe и карбоборидов (рис. 5, 6).

Микрохимический состав частиц карбида железа с распределенными в нем дискретно элементами (рис. 6, e) в среднем на уровне ~80% Fe, ~10% C и ~10% B.

ß

Рис. 4. Микроструктура (*a*) и топограммы поверхности (*б*, *в*) супертвердых частиц в образцах на основе ЭфсВFе: *а* – микрошлиф, HV₅₀₀ => 100 ГПа, отпечаток индентора (по стр.); *б*, *в* – изломы по супертвердым частицам с "глобулярным" рельефом; *а* – T_{cn} = = 1200 °C, τ_{cn} = 120 с; *б*, *в* – T_{cn} = 1500 °C, τ_{cn} = 30 с

Рис. 5. Топограмма излома по частице карбида Fe (*a*) с включениями Fe-B наночастиц и аморфизированным углеродным (99,58% C) слоем на поверхности карбида (δ) в образце композита C_{эфc}B-Fe

Микротвердость частиц "нового карбида Fe" для карбида Fe очень высокая – HV₁₀₀ от 11,6 до 15,8 ГПа, что почти вдвое выше, чем у обычного карбида железа и близка к твердости карбида вольфрама.

Фазовым анализом в образцах идентифицированы карбид бора – B_4C до 2,1%, карбиды железа – FeC, Fe₂C, Fe₃C, бориды Fe – FeB₄₉, Fe_{2.12}B_{13.36}, карбоборид Fe – Fe₂₃CB₆ в количествах до 3%.

Рис. 6. Микростроение и микрохимический состав частицы "нового карбида Fe": a, δ – Scan, $b - CM^2$, z - EDS; a – аморфизированный углеродный (99,58% C) слой на поверхности карбида; δ – сечение частицы через матрицу, аморфизированный углеродный слой, диффузионный, переходный Fe-C-B слой, основа собственно карбида, заполненная нанокристаллитами карбидов и боридов Fe и карбоборидов; b – вид переходного слоя, состоящего из игольчатых Fe-C-B частиц; z – график распределения C, B, Fe по линии на участке образца с частицей карбида Fe, имеющей по краям аморфизированный углеродный с B и Fe слой (по стр. 1, 5), следующий за ним – переходный Fe-C-B слой (по стр. 2, 4), далее идет основа частицы карбида Fe, содержащая в Fe основе карбида включения дисперсных частиц (по стр. 3), стр. 6 указан C-B участок "фазы-основы", в которой располагается эта частица карбида Fe

Рентгено-дифрактометрический спектр всех образцов композита с бором существенно отличается наличием на малых углах в интервале углов $2\theta = 10-20^{\circ}$ самого широкого аморфного "гало", отсутствующе-го в спектрах образцов без бора, что свидетельствует о еще большей аморфизации матрицы образцов с бором (рис. 7).

² СМ – световой микроскоп

Профили спектров образцов с бором $C_{3\phic}$ -В-Fe-27...-34 практически полностью совпадают по уширенной линии углерода – пику C_{002} с образцами без бора серии $C_{3\phic}$ -10%Fe, а вот "гало" в интервале углов $20 = 7-20^{\circ}$ (рис. 8 по стр. 1) отсутствует в образцах серии $C_{3\phic}$ -10%Fe.

Рис. 7. Дифрактограммы с разложением профиля на синглеты для образцов нанокомпозитов на основе: $a - C_{3\phi c} - 10\%B - 10\%Fe$, синглеты 1, 2, 3, 4; $6 - C_{3\phi c} - 10\%Fe$, синглеты 1, 2, 3; синглеты 2, 3 – аморфные "гало", самый широкий синглет 4 свидетельство глубокой аморфизации образца с $T_{cn} = 1250$ °C, $\tau_{cn} = 60$ с

Рис. 8. Сравнительное изображение дифрактограмм образцов: 1 – $C_{3\phi c}$ -10B-10Fe-30, 2 – $C_{3\phi c}$ -10Fe-18 с совмещением по оси Y = 0 О повышении аморфности и нанокристалличности говорит размер кристаллитов матрицы, который уменьшился по сравнению с композитом без бора, и составляет 0,5–11,9 нм (аморфнонанокристаллическое состояние).

Заключение. В условиях интенсивной высокотемпературной пластической деформации в композите на основе экстрагированной фуллереновой сажи с добавкой Fe легированием 10% аморфного бора, как прогнозировалось, произведена нанореструктуризация.

В результате получен композит на основе C-B-Fe гетерофазного аморфно-наноструктурного строения с высокотвердой углеродной матрицей, заполненной упрочняющими нанокристаллитами карбидов и боридов Fe и карбоборидов, и распределенными в матрице особо твердыми частицами углеродной фазы с аморфизированной поверхностью.

Нанореструктуризация привела к повышению микротвердости, трещиностойкости и упругости матрицы модифицированного бором С-Fe нанокомпозита, т. е. к существенному увеличению вязкости разрушения – повышению конструкционной прочности композита, что важно для инструментальных и конструкционных материалов.

Литература

1. Урбанович В. С., Куис Д. В., Окатова Г. П., Свидунович Н. А., Ойченко В. М., Баран Л. В. Влияние режимов термобарической обработки наноуглерода под высоким давлением на образование и тонкую структуру сверхтвердой фазы. Материал конференции // Изв. вузов. Сер. Химия и хим. технология. 2013. Т. 56, № 5. С. 31–35.

2. Урбанович В. С., Шкатуло Г. Г. Компьютеризованный комплекс для спекания нанокерамики при высоких давлениях // Порошковая металлургия. 2003. № 1/2. С. 21–27.

3. Черногорова О. П., Дроздова Е. И. и др. // Российские нанотехнологии. 2008. Т. 3. № 5-6. С. 150-157.