ЧИСЛЕННО-АНАЛИТИЧЕСКИЙ РАСЧЕТ РАВНОВЕСНЫХ ХАРАКТЕРИСТИК НАНОЧАСТИЦ В РАМКАХ ДВУХУРОВНЕВОГО МОЛЕКУЛЯРНО-СТАТИСТИЧЕСКОГО МЕТОДА

И. И. Наркевич, Е. В. Фарафонтова, Н. А. Липай

Белорусский государственный технологический университет, г. Минск, narkevich@belstu.by

Для изучения микро- и макроструктуры кристаллических наночастиц используется двухуровневый молекулярно-статистический подход к описанию структуры и характеристик неоднородных систем. Он базируется на одновременном использовании метода коррёлятивных функций ББГКИ, метода условных распределений Л. А. Ротта и метода термодинамических функционалов плотности. Этот подход позволяет рассчитывать радиальные профили плотности с учетом пространственной релаксации узлов решетки на границе наночастиц и анизотропии в микрораспределении атомов или молекул в окрестности новых положений узлов деформированной кристаллической решетки наночастиц.

Введение. Для теоретического описания характеристик отдельных наночастиц и наноструктурированных систем, которые являются существенно неоднородными объектами, оказывается эффективным двухуровневый молекулярно-статистический подход [1], позволяющий учесть неоднородное распределение средних чисел заполнения n_i микроячеек объемами ω_i метода условных распределений Л. А. Ротта [2], форма и размеры которых изменяются вблизи границ наночастиц по отношению к их размерам в макроскопически однородных кристаллических системах. При этом используется F_{11} -приближение, учитывающее множество наиболее вероятных состояний конденсированной системы из N молекул в объеме V, причем в каждой микроячейке может содержаться не более одной частицы. Поэтому количество микроячеек M превышает число частиц, так что некоторые микроячейки с определенной вероятностью могут быть вакантными. В результате средние числа заполнения ячеек меньше единицы, а поле их распределения по объему отражает макроскопическую неоднородность наночастицы.

В результате вычисления конфигурационного интеграла в первом F_{11} -приближении модифицированного за счет вакантных ячеек (узлов решетки) метода условных распределений получено приближенное статистическое выражение для функционала свободной энергии наночастицы с неоднородным распределением поля плотности $\rho_i = n_i / \omega_i$:

$$F(\{n_p\},\{\omega_p\}) = \Theta \sum_{i=1}^{M} \left(n_i \ln n_i + (1-n_i) \ln(1-n_i) - \frac{n_i}{2} \ln(\omega_i Q_i) \right).$$
(1)

Здесь $\theta = kT, Q_i$ – нормировочный множитель унарной функции.

Равновесные функции распределения атомов или молекул и равновесное поле чисел заполнения *n_p* объемов ω_p микроячеек находятся в результате решения соответствующих вариационных задач [3].

Использование усредненного потенциала Леннард – Джонса в качестве аппроксимирующей формулы для потенциалов средних еил. В случае кристаллических наночастиц функции распределения молекул вблизи узлов имеют сильно выраженные максимумы, что позволяет функции \hat{F}_{11} заменить на вспомогательные функции \hat{F}_{11} с равномерным распределением внутри сфер с радиусами b_i , центры которых совпадают с узлами решетки. Параметры b_i подбираем так, чтобы среднеквадратичные отклонения σ_i молекул от узлов были равными для функций \hat{F}_{11} и \hat{F}_{11} [3]:

$$\sigma_{i} = \int_{\omega_{i}} r^{2} \hat{F}_{11}(x, y, z) d\omega_{i} = \sqrt{3/5} b_{i}, \qquad (2)$$

$$\hat{F}_{11}(\vec{q}_i) = A_i \exp\left\{-\beta \sum_{j \neq i}^M \varphi_{ij}(\vec{\rho}_i)\right\}, \quad Q_i = \int_{\omega_i} \exp\left\{-\beta \sum_{j \neq i}^M \varphi_{ij}(\vec{\rho}_i)\right\} d\omega_i.$$
(3)

Здесь $\beta = 1/\theta$, ϕ_{ij} – потенциалы средних сил метода условных распределений, $\vec{\rho}_i$ – радиус-вектор молекулы в ячейке ω_i по отношению к системе координат, начало которой совмещено с узлом ячейки ω_j , а $A_i = 1/Q_i$.

Вспомогательные функции \hat{F}_{11}^* позволяют аналитически усреднить по объему сферы b_i потенциал Леннард – Джонса $\Phi(r)$ с парамет-

рами σ и ε , который используем в безразмерных переменных ($r^* = r/\sigma$ и $\Phi(r) = \Phi(r)/\varepsilon$, далее звездочки опускаем):

$$\varphi(\rho) = n_j \frac{\int_{V_b} \hat{O}(r) E(r-d) dV_b}{\int_{V_b} E(r-d) dV_b} = n_j \frac{I(r,b,d) \Big|_{\eta}^{r_2}}{V(r,b,d) \Big|_{\eta}^{r_2}}.$$
 (4)

Здесь E(r-d) – ступенчатая функция Хевисайда, учитывающая тот факт, что молекулы не могут находиться на расстояниях меньше, чем d(d – параметр обрезания, в расчетах он принимался равным 0,9).

Вычисляя в сферической системе интегралы в (4), получаем [3]:

$$\varphi^*(\rho,b,d) = \frac{\varphi(\rho,b,d)}{n_i} =$$

$$=\begin{cases} \frac{I(\rho+b,b,d)-I(\rho-b,b,d)}{4\pi b^{3}/3} & \text{при } \rho \ge b+d; \\ \frac{I(\rho+b,b,d)-I(d,b,d)}{V(\rho+b,b,d)-V(d,b,d)} & \text{при } d-b < \rho < b+d; \\ \Phi(\rho+b) & \text{при } \rho \le d-b. \end{cases}$$
(5)

Эти выражения позволяют рассчитывать унарную функцию $\hat{F}_{11}(x, y, z)$ в соответствии с формулой (3) и решать интегральные уравнения (2) относительно параметра b_i , определяющего среднеквадратичное отклонение σ_i ($\sigma_i = \sqrt{3/5}b_i$) для атомов или молекул во всех микроячейках в объеме V наночастицы.

Результаты численного решения системы уравнений (2)–(5) для однородного кристалла с ГЦК решеткой. Система уравнений (2)–(5) решалась, как и ранее [3], методом итераций для макроскопического кристаллического образца с числами заполнения узлов n = 0,999, что соответствует концентрации вакантных узлов $c = 1 - n \approx 10^{-3}$ при безразмерной температуре $\theta = 0,4$ (температура тройной точки $\theta_{\rm тр} = 0,7$) и параметре решетки R = 1,12.

При выполнении первой итерации (i = 1) задавалось пробное (начальное) значение параметра $b_i = \sqrt{5/3}\sigma_i$, соответствующее сред-

неквадратичному отклонению $\sigma_1 = 0,223$ (первая строка табл. 1). С помощью формул (5) находились все потенциалы, определяющие унарную функцию распределения (3) и рассчитывалось новое значение среднеквадратичного отклонения σ_2 ($\sigma_2 = 0,166$). Далее выполнялись аналогичные расчеты для других итераций (n = 2, 3, ..., 7). Параллельно рассчитывались координаты x, y, z центра унарной функции и ее нормировочный множитель Q для каждой итерации. Из табл. 1 видно, что уже после 5-й итерации все параметры функции распределения практически не изменяются, что указывает на хорошую сходимость итерационной процедуры решения интегрального уравнения (2).

Таблица 1

Номер итерации	Откло- нения σ	Координаты центра трехмерного поля плотности распределения мо- лекулы внутри примитивной ячей- ки ГЦК решетки			Сомно- житель Q
		x	y	Z	
1	0,223	0	0	0	7,931·10 ⁶
2	0,166	8,734·10 ⁻¹⁰	8,734.10-10	0	$1,273 \cdot 10^7$
3	0,081	$1,151 \cdot 10^{-15}$	0	0	$4,127 \cdot 10^{8}$
4	0,059	0	0	0	$2,719 \cdot 10^{12}$
5	0,063	0	0	0	$8,506 \cdot 10^{12}$
6	0,063	0	0	0	$7,461 \cdot 10^{12}$
7	0,063	0	0	0	$7,585 \cdot 10^{12}$

Значения отклонения σ , координат x, y, z центра тяжести унарной функции и ее нормировочного множителя Q при концентрации n = 0.999, температуре $\theta = 0.4$ и параметре решетки R = 1.12

На рис. 1 изображены профили сечения унарной функции, полученные для первой и последней итераций (i = 1, 7). Видно, что в результате выполнения 7 итераций исходный (нереалистичный) профиль унарной функции с двумя резкими пиками и одним пологим максимумам в центре примитивной ячейки, т. е в узле ГЦК решетки превранился в хорошо сформированный профиль с одним острым пиком в узле решетки, что характерно для кристаллического состояния со среднеквадратичным отклонением $\sigma = 0,063$ при температуре $\theta = 0,4$ и нараметре решетки R = 1,12.

Рис. 1. Зависимость профиля унарной функции F_{11} от номера *i* итерации

Результаты численного расчета параметров наночастицы с неоднородным заданным профилем чисел заполнения микроячеек. В соответствии с описанной в предыдущем пункте итерационной процедурой проведены расчеты для сферической наночастицы, содержащей 86 узлов, принадлежащих шести координационным сферам. Для заданного профиля чисел заполнения n_l (рис. 2) при температуре $\theta = 0,4$ и параметра решетки R = 1,12 выполнены расчеты параметров микроструктуры наночастицы, которые приведены в табл. 2 для последней итерации (i = 8).

Профили сечений унарных функций распределения молекул в центральной микроячейке (l = 0) и микроячейке, принадлежащей шестой координационной сфере (l = 6), которые получены после восьмой итерации, изображены на рис. 3. Соответствующая им зависимость среднеквадратичных отклонений σ_l от радиусов R_l сфер, представлена на рис. 2.

Таблица 2

Номер	Числа запол-	Отклоне-	Сомножи-	Радиальные сме-
сферы l	нения n _l	ния о	тель Q_l	щения Δr _l узлов
1	0,990	0,080	$4,261 \cdot 10^{9}$	0,015
3	0,990	0,253	$3,378 \cdot 10^4$	0,124
5	0,500	0,279	430,267	0,154
6	0,001	0,493	95,595	0,297

Значения параметров функции \hat{F}_{11} наночастицы (8-я итерация)

Рис. 2. Зависимости чисел заполнения n_l и отклонений σ_l^* от радиусов R_l

Рис. 3. Профили унарной функции \hat{F}_{11} при l = 0 и l = 6 для наночастицы

Из рис. З видно, что совершенно симметричный профиль унарной функции в центральной ячейке (l = 0) постепенно деформируется так, что максимумы функций сдвигаются вправо, что соответствует смещению узлов решетки наночастицы в радиальном направлении. При l = 6 часть профиля унарной функции оказывается за пределами примитивной недеформированной ячейки.

Литература

1. Narkevich, I. I. Statistical theory of nonuniform systems and reduced description in the density fluctuation theory / I. I. Narkevich // Physica. -1982. – Vol. 112 A. – P. 167–192.

2. Rott, L. A. Statistical Method of Conditional Distributions / L. A. Rott, V. S. Vikhrenko // Fortschr. Phys. - 1975. - Vol. 23, No. 3. P. 133-164.

3. Бокун, Г. С. Статистическое описание свойств сферических уг леродных наночастиц разных размеров / Г. С. Бокун, В. С. Вихренко, И. И. Наркевич // Наноструктуры в конденсированных средах: сб. на уч. ст. – Минск: Институт тепло- и массообмена имени А. В. Лыкова, 2016. – С. 378–384.