ОПРЕДЕЛЕНИЕ ПОТЕНЦИОМЕТРИЧЕСКИМ МЕТОДОМ НЕКОТОРЫХ ФУНКЦИОНАЛЬНЫХ ГРУПП В АКТИВНЫХ УГЛЯХ

Л.И.Хмылкс, Б.А.Бутылин, В.П.Глыбин, И.М.Жарский Технологический институт, г. Минск Эффективность преобразования химической энергии в топливных элементах зависит от ряда факторов, основным из которых является создание электродных материалов, способных катализировать токообразующие реакции. Среди различных материалов известный интерес представляют материалы на основе углерода (уголь, графит и их композиции). С целью улучшения электрохимической активности электродов

В настоящей работе проведено определение содержание некоторых функциональных групп в активном угле, термообработанного при различных условиях.

предлагается проводить термическую активацию поверхности.

а также вносить катализаторы платиновой группы.

Известно, что на поверхности угля присутствуют карбонильные, хиноидные и семихиноидные, карбоксильные и фенольные группы, определяющие его каталитические и окислительно-восстановительные своиства.

В работе использовался обезноленный по известным методикам активированный уголь марки СКТ. Термическая обработка угля проводилась в вакууме и в атмосфере инертного газа в течение 4-х часов.

Для количественного определения функциональных групп по методу отдельных навесок на поверхности активированного угля применялось потенциометрическое титрование угля растворами ИСІ и NаОН в среде с постоянной ионной силой. Этот метод повволяет определять карбоксильные N фенольные N группы и оксиды типа N000.

С целью достижения ионообменного равновесия навески угля в количестве I г выдерживались в растворах 1 N NaCe + QIN нес им 1 N NaCe + QIN N

Результаты опретеления содержация поверхностных

оксидов активированного угля, обработанного при различных температурах, приведены в таблице

Таблица

атмосфер	-	PH ! B	концентрация, мг-экв/г		
обработи	KH [1	-C=0H	Se-OH	-Cx0
	¥	3,8	0,29	0,92	0,42
Гелий	900 ⁰	7,8	0,18	0,42	0,78
Гелий	I200°	9,2	0,10	0,12	0,92
Гелий	1500°	9,4	0,05	0,05	1,05
Вакууш	1700°	9,6	-	-	I,08

ж исходный уголь СКТ

Из приведенных результатов видно, что исходный уголь СКТ является кислым. Термообработка угля при 900° С переводит его уже в слабоосновной, поскольку преобладают оксидытипа - $C_{\star}O$, процесс гидралитического расщепления которых в растворе электролитов протекает по схеме:

C.O + HO = [C.OH] + + OH-

Концентрация этих оксидов с ростом температуры обработки материала увелипивается. Для угля, термообработанного в вакууме при 1700°С наблюдается практически полное отсутствие карбоксильных и фенольных групп наряду с высокой концентрацией оксидов основного жарактера.

Полученные результаты представляют непомненный интерес, т.ж. позволяют предсказать пути создания электродных материалов с заданными свойствами.