УДК 54.31 + 666.654

Е. А. ЧИЖОВА, С. В. ШЕВЧЕНКО

ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СЛОИСТОГО КОБАЛЬТИТА КАЛЬЦИЯ, МОДИФИЦИРОВАННОГО ОКСИДАМИ КОБАЛЬТА И МЕДИ

Белорусский государственный технологический университет, Минск, Республика Беларусь

Твердофазным методом получена керамика слоистого кобальтита кальция $Ca_3Co_4O_{9+\delta}$ с добавками оксидов кобальта (Co_3O_4 , Co_2O_3) и меди (Cu_2O , CuO), изучены ее пористость, электропроводность и термо-ЭДС, рассчитаны значения фактора мощности и кажущейся энергии активации электропроводности. Найдено, что спекаемость керамики улучшается при добавлении к ней оксидов меди (Cu_2O , CuO), электропроводность возрастает при введении в керамику Cu_2O , а коэффициент термо-ЭДС – при добавлении Co_2O_3 . Наибольшие значения фактора мощности характерны для керамики, включающей 8 масс. % Co_2O_3 или Cu_2O (220 и 206 мкВт/(м · K²) при 1050 K), что в 1,55 и 1,45 раза выше, чем для базовой фазы $Ca_3Co_4O_{9+\delta}$.

Using solid-state reactions method the Ca₃Co₄O_{9+ δ} ceramics with additions of cobalt oxides (Co₃O₄, Co₂O₃), and copper oxides (Cu₂O, CuO) had been prepared, its porosity, electrical conductivity, and thermo-EMF coefficient had been studied, and values of its power factor and apparent activation energy of electrical conductivity had been calculated. It had been found, that sinterability of ceramics improved at addition of Cu₂O, CuO copper oxides to it, electrical conductivity increased at introduction of Cu₂O into ceramics, and thermo-EMF coefficient enlarged when Co₂O₃ was added to it. The ceramics having composition of Ca₃Co₄O_{9+ δ} + 8 wt. % Co₂O₃ and Ca₃Co₄O_{9+ δ} + 8 wt. % Cu₂O demonstrated maximal power factor values equal to 220 and 206 μ W/(m · K²) at 1050 K, which were 1.55 and 1.45 times larger as compared with basic ceramics of Ca₃Co₄O_{9+ δ} phase.

Ключевые слова: слоистый кобальтит кальция; оксидные термоэлектрики; электро-проводность; термо-ЭДС; фактор мощности.

Keywords: layered calcium cobaltite; oxide thermoelectrics; electrical conductivity; thermo-EMF; power factor.

Слоистый кобальтит кальция ($Ca_3Co_4O_{9+\delta}$) представляет собой перспективную основу для разработки материалов *p*-ветвей высокотемпературных термоэлектрогенераторов, так как характеризуется высокими значениями электропроводности и коэффициента термо-ЭДС и низкой теплопроводностью, что обусловливает высокие значения его фактора мощности и показателя термоэлектрической добротности, а также устойчив на воздухе в широком интервале температур [1, 2].

Термоэлектрические характеристики керамики на основе $Ca_3Co_4O_{9+\delta}$ уступают таковым для монокристаллов, но могут быть улучшены за счет применения вместо твердофазного метода различных низкотемпературных «растворных» методов синтеза [3, 4], использования горячего прессования [4] либо плазменно-искрового спекания [5], путем частичного замещения в структуре фазы $Ca_3Co_4O_{9+\delta}$ ионов кальция ионами висмута [2, 6, 7] либо редкоземельных элементов [2, 8, 9] или ионов кобальта ионами переходных либо тяжелых металлов [2, 10, 11], а также за счет создания в керамике химической [12] либо фазовой неоднородности [7, 13–15].

В керамике на основе Ca₃Co₄O_{9+δ} фазовая неоднородность может быть создана различными способами: введением второй фазы в шихту на стадии синтеза или спекания [16, 17], варьированием катионной стехиометрии исходной смеси с целью выхода за пределы области гомогенности фазы Ca₃Co₄O_{9+δ} [18] (согласно [19] на воздухе слоистый кобальтит кальция может существовать в области составов Ca₃Co_{3,87}O_{9+δ}–Ca₃Co_{,4,07}O_{9+δ}), а также отжигом керамики при температурах, превышающих температуру перитектоидного распада Ca₃Co₄O_{9+δ} ($T_{\Pi} = 926$ °C [19]) по реакции Ca₃Co₄O_{9+δ} \leftrightarrow Ca₃Co₂O₆ + (Co,Ca)O.

В работе изучена возможность улучшения термоэлектрических свойств керамики на основе слоистого кобальтита кальция ($Ca_3Co_4O_{9+\delta}$) путем модификации ее оксидами кобальта (Co_3O_4 , Co_2O_3) и меди (Cu_2O , CuO).

МЕТОДИКА ЭКСПЕРИМЕНТА

Слоистый кобальтит кальция $Ca_3Co_4O_{9+\delta}$ получали керамическим методом из карбоната кальция $CaCO_3$ (ч. д. а.) и оксида кобальта Co_3O_4 (ч. д. а.), взятых в молярном соотношении 9 : 4, смесь которых подвергали помолу в планетарной лабораторной шаровой мельнице Retsch PM 100 CM (300 об/мин, 1 ч, материал мелющих шаров и стакана – ZrO_2 , с добавлением этанола), после чего прессовали с добавлением этанола в таблетки диаметром 25 мм и высотой 4–6 мм и обжигали при температуре 1173 К на воздухе в течение 12 ч на корундовых подложках. После обжига керамику измельчали и подвергали повторному помолу, а затем к порошку $Ca_3Co_4O_{9+\delta}$ добавляли порошки Co_3O_4 (ч. д. а.), Co_2O_3 (ч. д. а.), Cu_2O (ч. д. а.) и CuO (ч. д. а.) в количестве 2, 5, 8, 10 и 15 масс. %. После помола порошки прессовали в штабики размером 5×5×30 мм, которые затем спекали на воздухе при температуре 1193 К в течение 12 ч. Для измерения электропроводности из спеченной керамики вырезали образцы в форме прямоугольных параллелепипедов размером 5×5×2 мм.

Идентификацию образцов проводили методом рентгенофазового анализа (РФА) (дифрактометр Bruker D8 XRD Advance (Cu K_{α} -излучение, Ni-фильтр)).

Кажущуюся плотность образцов ($\rho_{\text{каж}}$) находили по их массе и геометрическим размерам. Общую пористость ($\Pi_{\text{общ}}$) керамики рассчитывали по формуле $\Pi_{\text{общ}} = (1 - \rho_{\text{каж}}/\rho_{\text{рент}}) \cdot 100 \%$, где $\rho_{\text{каж}}$ и $\rho_{\text{рент}} -$ кажущаяся и рентгенографическая плотности образца ($\rho_{\text{рент}} = 4,677 \text{ г/см}^3$ [20]). Электропроводность (σ) и коэффициент термо-ЭДС (S) образцов изучали на воздухе в интервале температур 300–1100 К по методикам [9, 21]. Перед измерениями на торцах образцов формировали серебряные контакты [21]. Значения кажущейся энергии активации электропроводности (E_A) керамики определяли из линейных участков зависимостей ln($\sigma \cdot T$) = f(1/T), а величину фактора мощности (P) образцов вычисляли по формуле $P = S^2 \cdot \sigma$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Согласно данным рентгенофазового анализа основной фазой спеченной керамики $Ca_3Co_4O_{9+\delta}$ + 8 масс. % MeO_x (Me = Co, Cu) является слоистый кобальтит кальция [22], положения рефлексов которого практически не изменяются при варьировании модифицирующей добавки. Отсутствие на дифрактограммах порошков рефлексов фаз примесных оксидов металлов (Со₃O₄, Со₂O₃, Cu₂O, CuO) обусловлено, вероятно, тем, что вследствие способности частично растворяться в кристаллической решетке слоистого кобальтита кальция [6, 7, 10, 11, 15, 19] они содержатся в спеченных образцах в количестве, меньшем чувствительности РФА. Неизменность же положений рефлексов слоистого кобальтита кальция при растворении в нем оксидов кобальта или меди связана, видимо, с тем, что из-за слоистого характера структуры $Ca_3Co_4O_{q+\delta}$ параметры его элементарной ячейки слабо изменяются при небольших степенях замещения ионов кобальта ионами других металлов. Наиболее выражены рефлексы фазы Ca₃Co₄O₉₊₆ с индексами Миллера 001, что указывает на сильную анизотропию зерен керамики, представляющих собой пластины (чешуйки), вытянутые в направлении слоев –СоО₂– кристаллической структуры этой фазы.

Кажущаяся плотность керамики на основе слоистого кобальтита кальция уменьшается при введении в нее оксидов кобальта (Co_3O_4 , Co_2O_3) и возрастает при добавлении к ней оксидов меди (Cu_2O , CuO) (таблица).

Значения кажущейся плотности ($\rho_{\text{каж}}$, г/см³), пористости (Π , %), кажущейся энергии активации электропроводности (E_a , эВ), электропроводности (σ_{1050} , См/см), коэффициента термо-ЭДС (S_{1050} , мкВ/К) и фактора мощности (P_{1050} , мкВт/(м · K²) керамики состава Ca₃Co₄O_{9+δ} и Ca₃Co₄O_{9+δ} + *a* масс. % Me_xO_y

Me_xO_y	а	ρ _{каж}	П _{общ}	EA	σ_{1050}	S_{1050}	P ₁₀₅₀
_	0	3,23	31	0,092	38,6	192	142
Co ₃ O ₄	8	2,74	41	0,080	29,5	170	85,3
Co ₂ O ₃	2	2,84	39	0,075	35,3	151	80,4
	5	2,73	42	0,078	27,4	140	53,6

Me_xO_y	а	$ ho_{\kappa a \kappa}$	П _{общ}	EA	σ_{1050}	S_{1050}	P ₁₀₅₀
Co ₂ O ₃	8	3,05	35	0,049	30,0	271	220
	10	2,77	41	0,067	21,7	190	78,2
	15	2,83	40	0,067	16,3	157	40,3
CuO	8	4,08	13	0,168	24,4	209	107
Cu ₂ O	2	3,52	25	0,084	46,5	101	47,4
	5	3,84	18	0,075	47,4	172	140
	8	3,93	16	0,086	52,4	198	206
	15	4,10	12	0,114	21,0	182	69,6

Окончание таблицы

Увеличение содержания оксида меди(I) в керамике приводит к закономерному снижению ее пористости от 31 % для немодифицированного слоистого кобальтита кальция до 12 % для керамики состава $Ca_3Co_4O_{9+\delta}$ + 15 масс. % Cu_2O . Пористость керамики, модифицированной оксидом кобальта(III), выше, чем чистого кобальтита кальция, и изменяется в пределах 35–41 %. Таким образом, введение в керамику оксидов одно- (Cu_2O) и двухвалентной меди (CuO) позволяет значительно улучшить спекаемость образцов за счет уменьшения их пористости.

Как видно из рис. 1–3, *a*, *б*, электропроводность полученных и исследованных материалов носит полупроводниковый характер, поскольку $\partial \sigma / \partial T > 0$. Электропроводность образца состава Ca₃Co₄O_{9+δ} + 8 масс. % Co₂O₃ имеет металлический характер, поскольку $\partial \sigma / \partial T < 0$. Эти материалы представляют собой проводники *p*-типа (S > 0), что характерно для керамики на основе слоистого кобальтита кальция [2–11, 16–18]. Электропроводность образцов Ca₃Co₄O_{9+δ} + *a* масс. % Co₂O₃ с ростом количества модифицирующей добавки (при T > 700 K) снижается (рис. 2, *a*, *c*), что связано, вероятно, как с увеличением пористости керамики, так и с тем, что вводимые в керамику добавки образуют между более электропроводящими зернами основной фазы – Ca₃Co₄O_{9+δ} – прослойки менее проводящих фаз, снижающих общую электропроводность материалов.

При введении в керамику до 8 масс. % Cu₂O электропроводность ее возрастает (рис. 3, *a*, *c*), что может быть обусловлено снижением пористости образцов, а затем уменьшается. Величина кажущейся энергии активации электропроводности исследованной керамики изменяется в пределах 0,049–0,168 эВ, уменьшаясь при введении в керамику на основе Ca₃Co₄O_{9+δ} оксидов кобальта (Co₃O₄, Co₂O₃), меди(I) и возрастая при введении в нее CuO. При этом наименьшее и наибольшее значение E_A зафиксировано для образцов состава Ca₃Co₄O_{9+δ} + 8 масс. % Co₂O₃ и Ca₃Co₄O_{9+δ} + 8 масс. % CuO – 0,049 и 0,168 эВ соответственно (см. таблицу).

Рис. 1. Температурные зависимости удельной электропроводности (*a*), коэффициента термо-ЭДС (*б*) и фактора мощности (*b*) керамических образцов состава $Ca_3Co_4O_{9+\delta}$ (*1*) и $Ca_3Co_4O_{9+\delta} + 8$ масс. % Me_xO_y : $Me_xO_y = Co_3O_4$ (*2*), Co_3O_3 (*3*), CuO (*4*), Cu_2O (*5*)

Рис. 2. Температурные (*a*-*e*) и концентрационные (*z*-*e*) зависимости удельной электропроводности (*a*, *z*), коэффициента термо-ЭДС (*б*, *д*) и фактора мощности (*e*, *e*) спеченной керамики $Ca_3Co_4O_{9+\delta} + a$ масс. % Co_2O_3 : *a* = 0 (*I*); 2 (*2*); 5 (*3*); 8 (*4*); 10 (*5*); 15 (*6*)

Рис. 3. Температурные (*a*-*в*) и концентрационные (*г*-*е*) зависимости удельной электропроводности (*a*, *г*), коэффициента термо-ЭДС (*б*, *д*) и фактора мощности (*в*, *е*) керамики состава $Ca_3Co_4O_{9+\delta} + a$ масс. % Cu_2O : a = 0 (*1*); 2 (*2*); 5 (*3*); 8 (*4*); 15 (*5*)

Значения коэффициента термо-ЭДС керамики возрастают при увеличении температуры во всем исследованном интервале температур при введении в керамику 8 масс. % CuO и Co₂O₃. Для материалов с добавками 8 масс. % Co₃O₄, 2-15 масс. % Cu₂O и 2, 5, 10 и 15 масс. % Co₂O₃ при T > 850-900 К наблюдается уменьшение S при возрастании температуры. При этом для образцов с добавками 8 масс. % CuO, 8, 10 масс. % Co₂O₃, а также 8, 15 масс. % Cu₂O величина коэффициента Зеебека (S) заметно выше, чем у базового слоистого кобальтита кальция Ca₃Co₄O₉₊₆, а у керамики с добавками 8 масс. % Co₃O₄ – близка к таковым (рис. 1–3, б). Наибольшие значения коэффициента термо-ЭДС наблюдаются у керамики состава $Ca_3Co_4O_{9+\delta} + 8$ масс. % Co_2O_3 (206 мкB/К при температуре 1050 К) (см. таблицу), причем в интервале температур 750-1100 К они на 42–49 % выше, чем для базовой фазы $Ca_3Co_4O_{9+\delta}$ (рис. 2, б). Отмеченное возрастание коэффициента термо-ЭДС обусловлено, по всей видимости, тем, что модификация керамики слоистого кобальтита кальция оксидами кобальта и меди приводит к созданию в ней фазовой неоднородности, в результате чего термо-ЭДС керамики возрастает за счет увеличения ее гетеросоставляющей [14].

Температурные зависимости фактора мощности исследованных материалов симбатны зависимостям коэффициента термо-ЭДС (рис. 1–3, δ , e), при этом рост фактора мощности по сравнению со слоистым кобальтитом

кальция наблюдается в случае керамики с добавками 5 и 8 масс. % Cu₂O и 8 масс. % Co₂O₃. Наибольшие значения фактора мощности имеет керамика состава Ca₃Co₄O₉₊₈ + 8 масс. % Co₂O₃, для которой при температуре 1050 К значение *P* составляет 220 мкВт/(м · K²) соответственно, что в 1,55 раза выше, чем в случае базовой керамики состава Ca₃Co₄O₉₊₈ при той же температуре (142 мкВт/(м · K²)), см. таблицу.

ЗАКЛЮЧЕНИЕ

Твердофазным методом синтезирована керамика слоистого кобальтита кальция, модифицированная оксидами переходных металлов (Co₃O₄, Co₂O₃, Cu₂O, CuO), исследованы ее пористость, электропроводность и термо-ЭДС керамики, рассчитаны значения фактора мощности и кажущейся энергии активации электропроводности. Установлено, что спекаемость керамики на основе слоистого кобальтита кальция улучшается при введении в нее оксидов меди (Cu₂O, CuO), электропроводность возрастает при добавлении к ней Cu₂O, a коэффициент термо-ЭДС – при введении Co₂O₃. При этом наибольшими значениями фактора мощности обладают материалы состава Ca₃Co₄O₉₊₈ + 8 масс. % Co₂O₃ и Ca₃Co₄O₉₊₈ + 8 масс. % Cu₂O, для которых величина P_{1050} составляет 220 и 206 мкВт/(м · K²) соответственно, что в 1,55 и 1,45 раза выше, чем в случае базовой керамики состава Ca₃Co₄O₉₊₈ ($P_{1050} = 142 \text{ мкВт/(M · K²}$).

Работа выполнена при поддержке ГПНИ «Физическое материаловедение, новые материалы и технологии» (подпрограмма «Материаловедение и технологии материалов», задание 1.55).

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

1. *Koumoto K., Terasaki I., Murayama N.* Oxide Thermoelectrics. Research Signpost. Trivandrum, India, 2002.

2. *Fergus J. W.* Oxide materials for high temperature thermoelectric energy conversion // J. Eur. Ceram. Soc. 2012. Vol. 32. P. 525–540.

3. *Królicka A. K., Piersa M., Mirowska A., Michalska M.* Effect of sol-gel and solidstate synthesis techniques on structural, morphological and thermoelectric performance of $Ca_3Co_4O_9$ // Ceram. Int. 2018. Vol. 44, No 12. P. 13736–13743.

4. *Katsuyama S., Takiguchi Y., Ito M.* Synthesis of $Ca_3Co_4O_9$ ceramics by polymerized complex and hydrothermal hot-pressing processes and the investigation of its thermoelectric properties // J. Mater. Sci. 2008. Vol. 43. P. 3553–3559.

5. Wu N. Y., Holgate T. C., Nong N. V. [et al.]. High temperature thermoelectric properties of $Ca_3Co_4O_{9+\delta}$ by auto-combustion synthesis and spark plasma sintering // J. Eur. Ceram. Soc. 2014. Vol. 34. P. 925–931.

6. Park J. W., Kwak D. H., Yoon S. H., Choi S. C. Thermoelectric properties of highly oriented $Ca_{2,7}Bi_{0,3}Co_4O_9$ fabricated by rolling process // J. Ceram. Soc. Jap. 2009. Vol. 117, No 5. P. 643–646.

7. *Мацукевич И. В., Клындюк А. И., Тугова Е. А.* [и др.].Термоэлектрические свойства керамики $Ca_{3-x}Bi_xCo_4O_{9+\delta}$ (0,0 ≤ *x* ≤ 1,5) // Неорган. материалы. 2016. Т. 52, № 6. С. 644–650.

8. *Preve M., Perez O., Noudem J. G.* Bulk textured $Ca_{2,5}(E)_{0,5}Co_4O_9$ (E: Pr, Nd, Eu, Dy and Yb) thermoelectric oxides by sinter-forging // Solid State Sci. 2007. Vol. 9. P. 231–235.

9. *Клындюк А. И., Мацукевич И. В.* Синтез и свойства твердых растворов Ca_{2,8}Ln_{0,2}Co₄O_{9+δ} (Ln – La, Nd, Sm, Tb–Er) // Неорган. материалы. 2012. Т. 48, № 10. С. 1181–1186.

10. *Wang Y., Sui Y., Ren P.* [et al.]. Strongly Correlated Properties and Enhanced Thermoelectric Response in $Ca_3Co_{4-x}M_xO_9$ (M = Fe, Mn, and Cu) // Chem. Mater. 2010. Vol. 22. P. 1155–1163.

11. *Клындюк А. И., Мацукевич И. В.* Синтез, структура и свойства слоистых термоэлектриков Ca₃Co_{3,85}*M*_{0,15}O_{9+δ} (*M* − Ni−Zn, Mo, W, Pb, Bi) // Неорган. материалы. 2015. Т. 51, № 9. С. 1025–1031.

12. *Carvillo P., Chen Y., Boyle C.* [et al.]. Thermoelectric Performance Enhancement of Calcium Cobaltite through Barium Grain Boundary Segregation // Inorg. Chem. 2015. Vol. 54. P. 9027–9032.

13. Song Y., Sun Q., Zhao L. [et al.]. Synthesis and thermoelectric power factor of $(Ca_{0.95}Bi_{0.05})_3Co_4O_9/Ag$ composites // Mat. Chem. Phys. 2009. Vol. 113. P. 645–649.

14. *Rasekh Sh., Ferreira N. M., Costa F. M.* [et al.]. Development of a new thermoelectric $Bi_2Ca_2Co_{1.7}O_x + Ca_3Co_4O_9$ composite // Scripta Mater. 2014. Vol. 80. P. 1–4.

15. *Мацукевич И. В., Клындюк А. И., Тугова Е. А.* [и др.]. Синтез и свойства материалов на основе слоистых кобальтитов кальция и висмута // Журн. прикл. химии. 2015. Т. 88, № 8. С. 1117–1123.

16. *Delorme F., Diaz-Chao P., Guilmeau E., Giovannelli F.* Thermoelectric properties of Ca₃Co₄O₉−Co₃O₄ composites // Ceram. Int. 2015. Vol. 41, № 8. P. 10038–10043.

17. *Gupta R. K., Sharma R., Mahapatro A. K., Tandon R. P.* The effect of ZrO_2 dispersion on the thermoelectric power factor of $Ca_3Co_4O_9$ // Physica B. 2016. Vol. 483. P. 48–53.

18. *Zhou X.-D., Pederson L. R., Thomsen E.* [et al.]. Nonstoichiometry and Transport Properties of Ca₃Co_{4±x}O_{9+ δ} (*x* = 0−0.4) // Electrochem. Solid-State Lett. 2009. Vol. 12, N $^{\circ}$ 2. P. F1−F3.

19. Sedmidubsky D., Jakes V., Jankovsky O. [et al.]. Phase equilibria in Ca–Co–O system // J. Solid State Chem. 2012. Vol. 194. P. 199–205.

20. *Madre M. A., Costa F. M., Ferreira N. M.* [et al.]. Preparation of high-performance $Ca_3Co_4O_9$ thermoelectric ceramics produced by a new two-step method // J. Eur. Ceram. Soc. 2013. Vol. 33. P. 1747–1754.

21. *Klyndyuk A. I., Chizhova Ye. A.* Thermoelectric properties of the layered oxides $LnBaCu(Co)FeO_{5+\delta}$ (Ln = La, Nd, Sm, Gd) // Funct. Mater. 2009. Vol. 16, № 1. P. 17–22.

22. *Masset A. C., Michel C., Maignan A.* [et al.]. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: $Ca_3Co_4O_9$ // Phys. Rev. B. 2000-I. Vol. 62, No 1. P. 166–175.

Поступила в редакцию 14.10.2019.