- 8. Парфенов В.В., Башкиров Ш.Ш., Валиуллин и др. Электрические и магнитные свойства свинец-замещенных ферриманганитов лантана // ФТТ. 2000. Т. 42, № 7. С. 1272.
- 9. Горьков Л.П. Решеточные и магнитные эффекты в легированных манганитах // УФН. -1998. Т. 168, № 6. С. 665.
- 10. Солин Н.И., Наумов С.В., Самохвалов А.А. Межграничные поверхностные явления и микроволновое магнитосопротивление в поликристаллических манганитах лантана $La_{1-x}Ca_xMnO_3$ // ΦTT . − 2000. −T. 42, № 6. − С. 899.
- 11. Нейфельд Э.А., Архипов В.Е., Тумалевич Н.А., Муковский Я.М. Прыжковая полярная проводимость в монокристаллическом $La_{0..85}Sr_{0.15}MnO_3$ // Письма в ЖЭТФ. 2001. Т. 74, № 11. С. 630.
- 12. Ицкевич Е.С., Крайденов В.Ф. Термо-ЭДС и электросопротивление $La_{0,875}Sr_{0,125}MnO_3$ под гидростатическим давлением // ФТТ.–2001. Т. 43, № 7. С. 1220.
- 13. Михалев К.Н., Лекомцев С.А., Геращенко А.П. и др. Макроскопическое фазовое расслоение в монокристалле $La_{0.9}MnO_3$ по данным ЯМР ¹³⁹La, ⁵⁵Mn и магнитной восприимчивости // Письма в ЖЭТФ. − 2000. − Т. 72, № 12. − С. 867.
- 14. Бебенин Н.Г., Зайнуллина Р.И., Машкауцан В.В. и др. Гигантский температурный гистерезис скорости звука и внутреннего трения в монокристалле $La_{0,8}Sr_{0,2}MnO_3$ // Φ TT. − 2001. − T. 74, № 3. − C. 482.
- 15. Mott N.F., Davis E.A. Electron processes in non-crystalline materials. Oxford: Claredon Press, 1979.

УДК 536.7

И.М. Жарский, профессор; А.И. Волков, доцент; О.Н. Комшилова, доцент

ОПРЕДЕЛЕНИЕ ЭНТАЛЬПИИ ОБРАЗОВАНИЯ ФОСФАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Established experimentally heat of formation for scandium phosphate and other phosphates d-elements.

Имеющиеся в литературе данные показывают, что для фосфатов редкоземельных элементов в качестве растворителя используется концентрированная соляная кислота или другие минеральные кислоты [1-3].

Нами проведено изучение растворимости в модельной системе на основе фосфата скандия.

Экспериментальные исследования показали, что равновесие между твердой фазой и раствором достигается по истечении 120–140 ч.

Результаты анализа на содержание скандия и фосфора (в форме P_2O_5) в соляной кислоте приведены в табл. 1.

Растворимость ScPO₄ в растворе HCI

2 M HCI

 $C_{s_{\alpha}}$ моль/л

0.0008

 2 4 M HCI 2 Моль/л 2 2 Моль/л 2 2 Моль/л 2 2 2 Моль/л 2 0.0150 0.0016 0.0211

Таблица 1

Приведенные данные свидетельствуют о том, что в растворе существует нестехиометрическое соотношение между ионами Sc^{3+} и $\mathrm{PO_4}^{3-}$: ионов Sc^{3+} значительно меньше, чем брутто-количества фосфатных форм. Это может быть связано с образованием хлоридных комплексов скандия, литературные данные по которым отсутствуют, но существование которых можно предположить в связи с обнаружением подобных комплексов у аналога скандия – иттрия.

Расчет величины произведения растворимости ScPO₄ осуществлялся с учетом всех возможных фосфатных форм в растворе, которые связаны между собой равновесиями:

$$H_3PO_4 \Leftrightarrow H_2PO_4^- + H^+$$
 $K_1 = 7.60 \ 10^{-3}$
 $H_2PO_4^- \Leftrightarrow HPO_4^{2-} + H^+$
 $K_2 = 6.20 \ 10^{-8}$
 $K_3 = 4.2 \ 10^{-13}$
(1)

Используя величины констант диссоциации этих процессов и зная pH раствора, можно определить концентрацию фосфат-иона:

$$C_{PO_{1}^{1}} = K1 K2 K3 / (C_{H^{+}}^{3} + C_{H^{+}}^{2} K1 + C_{H^{+}} K1 K2 + K1 K2 K3) C0,$$
 (2)

где C_0 – брутто-концентрация фосфорной кислоты.

В данном случае K_1 K_2 K_3 + C_{H^*} K_1 K_2 << $C_{H^*}^2$ K_1 + $C_{H^*}^3$, и поэтому этими слагаемыми можно пренебречь без заметного влияния на результат вычислений. Тогда

$$C_{PO_{H}^{3}} = K1 K2 K3 / (C_{H}^{3} + C_{H}^{2} K1) C0.$$
 (3)

Результаты расчета концентрации фосфат-ионов приведены в табл. 2.

Расхождения в значениях ПР для разных величин pH незначительны и позволяют получить величину произведения $\Pi P_{SePO_s} = 1.1 \ 10^{-27}$.

Произведение растворимости

Таблица 2

C _{HCI}	C _{PO}	∏P ScPO₄
2M	$0.2 \cdot 10^{-23}$	1.63 10 ⁻²⁷
4M	$0.03 \ 10^{-23}$	$0.56 \cdot 10^{-27}$

Следует отметить, что близкое значение произведения растворимости $ScPO_4$ получается, если исходить из предположения, что в растворах с такой большой концентрацией ионов водорода почти вся фосфорная кислота находится в недиссоциированном состоянии. Тогда процесс растворения $ScPO_4$ можно изобразить следующим образом:

$$ScPO_4 + 3H^+ = Sc^{3+} + H_3PO_4$$
 (4)

Константу равновесия этого процесса можно записать в форме

$$K = C_{S_{0}^{3+}} (C_{H_{3}PO_{4}} / C_{H^{*}}^{3}) \cdot (C_{PO_{3}^{3-}} / C_{PO_{3}^{3-}}) = \Pi P_{S_{0}PO_{4}} / K_{H_{3}PO_{4}}.$$
 (5)

Отсюда

$$\Pi P_{ScPO_4} = K \cdot K_{H_1PO_4}$$
 (6)

Константу равновесия К этого процесса можно вычислить из экспериментальных значений концентрации иона скандия и брутто-концентрации фосфорной кислоты с использованием значений констант диссоциации фосфорной кислоты по трем ступеням. Вычисленное таким образом произведение растворимости

$$\Pi P_{ScPO_4} = 3.8 \cdot 10^{-27}$$

хорошо согласуется с расчетными данными (табл. 2).

Исследовались три метода приближенного расчета.

1. Расчет $\Delta H^0_{ScPO_4}$ исходя из теплот образования ионов в водных растворах, полагая теплоту растворения равной нулю. Образование фосфата скандия из ионов в водном растворе можно представить по схеме

$$\left\{ Sc^{3+} \right\}_{aq} + \left\{ PO_4^{3-} \right\}_{aq} = \left[ScPO_4 \right]$$
 (7)

Растворение фосфатов типа $LnPO_4$ сопровождается небольшим тепловым эффектом, поэтому в первом приближении им можно пренебречь и оценить теплоту образования $ScPO_4$ из уравнения

$$\Delta H^0_{ScPO_4} = \Delta H^0_{Sc^{3+}} + \Delta H^0_{FO_4}$$

Известны следующие табличные значения:

$$\langle SC^{3+} \rangle_{aq}$$
: $\Delta H^0_{298} = -622.6 \text{ Кдж/моль};$

$$\left. \left\langle PO_{4}^{3-} \right\rangle_{aq} : \Delta H^{0}_{298} = -1284.1 \text{ Кдж/моль.} \right.$$

Отсюда, согласно принятой схеме, ΔH^0_{298} [ScPO₄]= -1907,9 кДж/моль.

2. Расчет ΔH^0_{298} ScPO₄ по реакции образования из оксидов, предполагая , что тепловой эффект является постоянным для сходных соединений.

Тепловой эффект процесса

$$^{1}/_{2}[Ln_{2}O_{3}] + ^{1}/_{2}[P_{2}O_{5}] = [LnPO_{4}]$$
 (8)

в первом приближении величина постоянная для ряда лантаноидов. Исходя из литературных данных по теплотам образования фосфатов некоторых редкоземельных элементов (см. табл. 3) рассчитано среднее значение теплового эффекта этой реакции:

$$\Delta H^0_{cp} = -317,3 кДж.$$

Таблица 3 Энтальпии образования оксидов и фосфатов некоторых редкоземельных металлов

Ln .	ΔH ⁰ _{f, 298} [Ln ₂ O ₃], кДж/моль	ΔH ⁰ _{f, 298} [P ₂ O ₅], кДж/моль	ΔH ⁰ _{f, 298} [Ln PO ₄], кДж/моль	ΔH ⁰ ₂₉₈ реакции, кДж
La	-1793.3 [1]	-1491.6 [1]	-1953.9°	-311.3
Се	-1797.4 [1]	-1491.6 [1]	-1943.5 [1]	-299.2
Sm	-1815.9 [1]	-1491.6 [1]	-1979	-325.1
Nd	-1807.5 [1]	-1491.6 [1]	-1983.2	-333.5

^{*} Рассчитанное из уравнения $\Delta G^0 = \Delta H^0 - T\Delta S^0$ по значению $\Delta G^0_{298} = -1836.8$ кДж/моль.

Теплоту образования ScPO₄ можно вычислить из уравнения баланса:

$$\Delta H^{0}_{[ScPO_{4}]} = \Delta H^{0}_{peakluu} + 1/2 \Delta H^{0}_{[Sc_{2}O_{3}]} + 1/2 \Delta H^{0}_{[P_{2}O_{3}]}$$
(9)

С учетом среднего теплового эффекта реакции (8) находим

$$\Delta H^0_{[ScPO_A]} = -2000 \kappa Дж/моль.$$

3. Расчет теплоты образования ScPO₄ путем сравнения теплот образования в сходных рядах соединений.

Для обнаружения корреляции между теплотами образования в сходных рядах соединений скандия и лантана использовались литературные данные [4, 5], которые представлены в табл. 4.

Энтальпии образования соединений лантана и скандия

Таблица 4

	Me ₂ O ₃	Me (OH) ₃	Me Cl ₃	Me I ₃	Me Br ₃	Me F ₃
La	-1793.3	-1443.5	-1070.7	-656.9	-924.7	-1694.5
Sc	-1870.2	-1372.4	-942.2	-535.6	-711.3	-1548.1

Зависимость между теплотами образования соединений скандия и лантана может быть представлена аналитически в виде уравнения

$$\Delta \text{Hof, Sc} = 1,011 \ \Delta \text{Hof, La} - 16.$$
 (10)

Исходя из этой зависимости может быть вычислена $\Delta H^0_{[ScPO_4]}$ по известному значению $\Delta H^0_{[LoPO_4]}$.

Из полученного значения $\Delta H^0_{[ScPO_4]} = -1887$ кДж/моль может быть рассчитана теплота образования гидрата с использованием значения теплоты дегидратации $\Delta H^0_{298} = 143.9$ кДж, полученного тензиметрическим методом:

$$\Delta H^0_{[ScPO_4g2H_2O]} = -2514.6$$
 кДж/моль.

ЛИТЕРАТУРА

- 1. Афанасьев А.Д., Старостин А.Д. // Изв. СО АН СССР. Сер. хим. –1967. № 10.– С. 12.
 - 2. Тананаев И.В., Васильева В.И. // Журн. неорг. химии. –1968. –№ 8. –С. 1070.
- 3. Чухланцев В.Г., Аламовская К.В. // Изв. вузов. Хим. и хим. технол. –1961. № 4. С. 359.
- 4. Наумов Н.Б., Рыженко Б.Н., Ходаковский И.А. Справочник термодинамических величин. –М.: Атомиздат, 1971.
- 5. Карапетьянц М.Х., Карапетьянц М.Л. Основные термодинамические константы неорганических и органических веществ. –М.: Химия, 1968.