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of the critical force. 

These deductions have been obtained ~de~ndently of the properties of the plate 
material, and refer equally to both isotropic, and transversely isotropic materials with 

small shear stiffness, and to both nonlinearly elastic and elastoplastic materials if the 
concept of a tangent modulus is assumed in the latter cases. 
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An expression for the tensor of viscosity coefficients in the terms of the autocorrelation 
functions is obtained under the assumptions of the Kubo theory [l] of the linear reaction 
of a system subjected to a mechanical ~rt~bation, These coefficients are obtained as 
components of a fourth rank tensor for an arbitrary homogeneous anisotropic medium 
using the framework of the Gibbs formalism without, however, employing the well-known 
additional representations. Coefficient of the shear viscosity of an isotropic medium is 

determined to illustrate the proposed method of computing the integrals of autocorrela- 
tion functions. This method uses the concept of statistical averaging in the state of equi- 
librium and utilizes mean relaxation times. Double index correlative dis~ibution func- 
tions are used to obtain, by statistical methods, the relaxation times for the impulse- 

dependent quantities and for the spatial coordinate-dependent magnitudes. Numerical 
estimates for simple fluids show, that the impulse relaxation time is of the order of lO_l’l 
set, while the coordinate relaxation time is of the order of IO-l2 sec. 
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Let an isolated system be acted upon by a small mechanical perturbation causing its 
Hamiltonian H to change by the amount AH = - A F(t). Then by the Kubo theory, the 
mean value AS(f) of the variation of the dynamic variable B(t) is given by 

M __ 
AD(r)=--$S < A(0) B’ (s)) F (t - s) dr ft=kT, B’=t$ (I) 

IJ 
where the symbol 0 denotes averaging over the stable canonical ensemble. 

To investigate the viscous properties of the medium, we shall study its behavior under 
a small strain 

=n+ sun 
=x”+m=m 

a4 (4 
Here. z,, denotes a component of the radius vector r = qa- q1 connecting two particles 

prior to deformation and a+,+ - after the deformation ; un is a component of the diiplace- 

ment vector of the particle and the impulses of the particles transform according to the 
Lagrangian formalism 

Summation is performed over like indices. n (3) 

Solving the system (3) for the impulse components of the particle after the deforma- 
tion, we can write aI/ 

+- 
Pi -pi --$Pk+ * * * (4) 

where the dots denote the second and higher’order terms &L{ / aqe, 

For a system of IV particles interacting pairwise and described by the intermolecular 
potential Q(r), the Hamiltonian has the form 

where m is the mass of a particle ; v and p denote the v&h and p th particle. 

Then AH = HN+- ~~ is given, with the second and higher order terms neglected,by 

(6) 

(7) 

Taking into account the symmetry of the tensor lImn+ we can obtain AH in the form 

AH = Il&pmn, U 
mn 

Thus, A - - l$,,,+ and F = u,,,. Putting 
1 

B 5 
c &;+ (1) dt 

we obtain, by (1). -‘oo 
co 

Let us now suppose that thedeformation is cyclic 

Umn (s) = umn(0) eiur (if) 
Then co 

AB= ’ 
[ c -ir; 

fiWs (nir+ (0) l-f,,,; (r)>ds 1 u,,,~ (t) (12) 
Let us now compare (12) with the following well known phenomenological relation 
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where aik re 'likmn untn v at, being the viscous stress tensor which is assumed to tend to 

zero as t-t - 00, This yields the following expression for the tensor of viscosity coeffi- 

cients : 

9. 
loo 

cLmn =- c 
s 

Tl 

-'w (~~(O)~m~(s)~ ds W) 

It should be noted that the flux TJ (,,+ is defined with the accuracy of up to any quantity 

of zero divergence. 
To remove this lack of definiteness, we can rewrite @] Expression (14) as follows (the 

canonical ensemble is used for averaging): 

Here aiko denotes the mean equilibrium stress tensor and B is the mean value of the 
total energy a 

!! 
of the system. 

The above expressions agree with the results obtained in [3 and 47 where the concept 
of local Gibbs’ distribution was used. 

For an isotropic fluid, the general expression (15) yields the already known result for 
shear viscosity (in [S] it is based on the Feinman’s concept of constructing a viscous flow 
by altering the dimensions of the vessel containing the set of particles) 

co 9(QG=$S e -*“‘<&s+(O) l&s+ (t)} dt 
0 

(W 

Expression (15) can also yield a relation for the volume viscosity (the volume viscosity 

was obtained in [6] using the Feinman’s concept). The case of low energy loading corre- 
sponds to the condition o = 6. 

The familiar difficulties encountered in computing the integrals of the aut~o~elation 
functions can be overcome by the use of approximate methods based on the concept of 
the mean relaxation times for the dynamic quantities appearing in the autocorrelation 

functions, We note that the relaxation times for the impulses and coordinates are. gene- 
rally speaking, different. Therefore, separate relaxation times mnst be introduced for the 
impulse (r+dependent and the coordinate (Q-dependent quantities. 

Let us use this point of view to consider the computation of the integral in (16). The 
dynamic quantity HI,+ consists, according to (7), of two terms, the impulse function C(p) 
and the coordinate function, II (cl) . Then the integral with respect to time of.<l’In+ (0)&a+ 
+ (I)) can be written, when .(I) =.: 0 , as the sum of four terms 

<C(p)> ?$I + <C(p)D’ (s)> 7s + (C’(PP @I)> rp + @(@J-J’(q)> 7s 

The factors accompanying these terms refer not to a single instant of time, while the 
quantities with and without a prime, have different summation indices. 

Averaging we find, that the second and third term both vanish. No difficulty is expe- 
rienced in averaging the first term. 

We shall use the following identity [7] to simplify the term (D(q)D’(q)): 



958 V.S. Vlkhrenko. V. 6. Nemow and L. A.Rott 

<K,A) = - kT(8A / i3q”> 

where A denotes any function of the coordinates and K, is the force exerted on the Y th 
molecule by all the remaining molecules. Double index distribution functions are then 

used (method of conditional distributions [8 and 91) to perform the statistical averaging, 
with the following final result: 

where 11 is the molecular volume, ~II is the radius of the molecular cell and (p (r) is a 

statistical distribution function to which we shall return later. 
We note that the integral appearing in (17) defines the shear modulus of the fluid sub- 

jected to a cyclic loading at the upper frequency limit [lo]. 
Thus, in place of a single problem of viscosity determination, we have two separate 

problems, one of which is concerned with the necessity of carrying out the statistical 
averaging process when the system is in equilibrium, and the other with the determination 

of the relaxation time of the system. 
A statistical method for determining the relaxation time TC, (for simple fluids it has 

the order of IO-r2 sec. ) was given in [8]. 
The values of TV agree with the thermal estimates [9], therefore we shall limit our- 

selves to the determination of T[,. 

Following the general scheme of Kirkwood [ll] but using the double index distribution 

functions mentioned above, we can repeat the statistical derivation of the Langevin equa- 

tion dddt = - % / m p + I (18) 
where D is the impulse of a particle of mass m, and G(t) is a random force acting on a 

particle and averaging over the Gibbs distribution to zero.The coefficient of friction % 

of a particle is equal to the following integral of the autocorrelation function: 
co 

where K(S) is the force exerted on the given particle at the instant s by all the remain- 

ing particles of the system. Expression (19) can be approximately represented by 
1 

5=~kl’(KW, (20) 
or in accordance with [9], by /Int LO 

E= & \ [CD’ (r)]2 ‘p (r) r2 dr, ‘p(r) = u “1$,~~:9,‘,‘j q”) (21) 

7.0 

We recall that, in the statistical scheme used by us, F,,(l) denotes the probability 

density that two molecular volumes ~9~ and r’: surrounding, respectively, the coordinates 

q’ C P, and q” C 1’2 contain any two molecules, the remaining cells also containing 

a single molecule each (we call this approximation I,‘,,). Determining similarly the 

probability density for a single particle F,,(q’) we see, that v .lv(,.) plays the part of the 

conditional distribution function J’,,(q” i 9’). In a number of specific applications, the 

fixed point is chosen at the center of a sphere of volume u,. 

Using (18) we obtain the characteristic impulse relaxation time 

711 ;z ,,T,‘C (“2) 

There is a difference of about two orders of magnitude between Tp and r4. For example, 
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for Hydrogen we have ‘cp= 3.8~10-~~sec. at T = 14.89”Ii and TV= 5.39~10‘~~ sec. at 
T = 19,92”li, while for Argon we have T,,= 4.798~10-*~ sec. at T = 90.03 ‘Ii. 

Combining (20) and (22) we obtain an inverse relationship between ‘sp and t,] , given 

bY mkl’ 

r =<Kz> P 
(3) 
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Construction of the defining equations for the critical equilibrium state of an incompres- 
sible, continuous, free-running medium with dry friction [l], presents certain fundamental 
difficulties. As we know, the lines (areas) of the critical equilibrium state (along the tan., 
gents up to which the Coulomb’s condition holds),are situated symmetrically, at an angle 
a to the direction of the highest normal stress and only when the angle of internal fric- 
tion is equal to zero CD = 0 (the case of the perfectly plastic body), then the lines of the 


