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The processes of charge separation, transport, and recombination in dye-sensitized nanocrystalline TiO2 solar
cells are characterized by certain time constants. These are measured by small perturbation kinetic techniques,
such as intensity modulated photocurrent spectroscopy (IMPS), intensity modulated photovoltage spectroscopy
(IMVS), and electrochemical impedance spectroscopy (EIS). The electron diffusion coefficient,Dn, and electron
lifetime, τn, obtained by these techniques are usually found to depend on steady-state Fermi level or,
alternatively, on the carrier concentration. We investigate the physical origin of such dependence, using a
general approach that consists on reducing the general multiple trapping kinetic-transport formalism, to a
simpler diffusion formalism, which is valid in quasi-static conditions. We describe in detail a simple kinetic
model for diffusion, trapping, and interfacial charge transfer of electrons, and we demonstrate the compensation
of trap-dependent factors when forming steady-state quantities such as the diffusion length,Ln, or the electron
conductivity,σn.

1. Introduction

Spatially heterogeneous mixtures of nanometer-scale con-
stituents form new classes of solar cells. These solar cells,
consisting on a combination of semiconductor nanoparticles,
redox electrolytes, conducting polymers and photoactive organic
molecules, are quite appealing due to easy processability of the
materials in a large scale, showing promise for cheap and
versatile photovoltaic devices.1 The dye-sensitized solar cell
(DSSC) is a heterogeneous solar cell where the carriers
transferring the chemical energy created in an excited dye are
electrons in nanocrystalline TiO2 and redox species in a liquid
electrolyte. Besides being highly efficient for light to electrical
energy conversion, the DSSC is a good model system for the
heterogeneous photovoltaic converters because the different
phases in it are continuously connected and physically separated.

In general, the heterogeneous configuration is widely inves-
tigated because it has the advantage of providing a huge internal
area where charge separation can be realized following excita-
tion of the light absorber. It is also essential for the conversion
efficiency to maintain the separated carriers in their respective
nanoscaled independent channels until they are collected at the
contacts. Therefore, the determination of quantities such as the
diffusion coefficient and the lifetime of the different carriers
becomes a central issue in the investigation of these devices.
These time constants are obtained by small perturbation kinetic
measurements that do not modify the steady state over which
they are measured. Examples of the techniques are intensity
modulated photocurrent spectroscopy (IMPS), intensity modu-
lated photovoltage spectroscopy (IMVS), electrochemical im-
pedance spectroscopy (EIS), and small amplitude time transients.

The results of these techniques in nanostructured semicon-
ductors and DSSCs indicate the dependence of the electron

diffusion coefficient on the electrochemical potential of elec-
trons,µjn (also denoted quasi-Fermi level,EFn).2-9 For DSSCs,
a large variation of the electron lifetime with increasing light
intensity has been reported as well.5,10,11From these observa-
tions, it is often inferred that trapping mechanisms mediate
transport and recombination in nanostructured semiconductors
permeated with a conductive phase.2,5,6,12-14 A major research
effort has been aimed toward measuring the “effective” variable
diffusion coefficient,Dn, and the “effective” variable lifetime,
τn, observed in DSSCs in different conditions. In this paper,
we aim at a better physical understanding of these effective
parameters.

An interesting observation on the effectiveDn andτn has been
indicated by Peter and co-workers. They found that in some
cases the product of these quantities compensates to a large
extent, forming a nearly constant electron diffusion length,Ln.5,15

On another hand, recent measurements16 of the electronic
conductivity,σn, of nanostructured TiO2 in aqueous electrolyte
show an increase of nearly 60 mV/decade over a wide range of
Fermi level positions with respect to the conduction band
potential. This dependence can be explained by an expression
of the type

wherenc is the density of free electrons in the conduction band,
D0 is the constant diffusion coefficient for free electrons,e is
the positive elementary charge andkBT is the thermal energy.
Thus, it appears that quantities that can be measured at steady-
state, such asLn and σn, do not contain the information on
trapping and detrapping effects that is obtained whenDn is
measured directly by kinetic techniques.

From these and other results, it appears relevant to clarify
the interpretation of photophysical quantities measured in
nanostructured semiconductors and DSSCs, considering both
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the time constants obtained from kinetic measurements and the
steady-state quantities such as the electron diffusion length, the
electron conductivity, and the incident photon-to-current conver-
sion efficiency (IPCE). Indeed, both classes of parameters
indicate a different kind of information. The former refer to
the time for recovery of equilibrium, either by transport or
recombination, i.e., they correspond to a switching time, whereas
the latter refer to stationary operation and determine the
photovoltaic efficiency of the device.

It is important, therefore, to examine the relationship of time
constantsDn and τn, obtained from macroscopic evolution of
carrier densities, to the microscopic assumptions on electronic
transitions and distribution of states, to see how these constants,
describing in principle different phenomena in the solar cell,
relate to each other and how they behave when they are
combined to form other important quantities such as the IPCE.
To analyze these questions, we outline a relatively simple kinetic
model for diffusion, trapping and interfacial charge transfer of
electron carriers in a nanostructured semiconductor permeated
with a redox electrolyte. We will use the multiple trapping (MT)
model for transport and charge transfer illustrated in Figure 1.
This model is adapted to nanostructured semiconductors from
a wide experience on disordered semiconductors. The MT
transport, is summarized by Shmidlin17 and Tiedje and Rose,18

and was applied first by Vanmaeckelbergh2 for nanoporous
semiconductors, and extended by many workers in the DSSC
area.2,5,6,9,12 The key feature of the MT framework is the
restriction that only free electrons contribute to the diffusion
current.17 Diffusion by direct hopping between localized states
is also possible in materials with a wide distribution of traps,
but this mechanism will not be considered in this paper. For
trapping and recombination, the ideas formulated by Rose19 can
be adapted to DSSC as indicated in ref 11. Here we combine
both aspects, MT transport and recombination, in a single model
that may be considered a working model that gives an overall
view of the more relevant phenomena in the DSSC and shows
clearly the interconnection between measured quantities. The
meaning of the Fermi-level dependence ofDn and τn will
become transparent in terms of trapping factors and we will
show the compensation of these trapping factors when we form
the steady-state quantitiesLn and IPCE.

2. Chemical Diffusion Coefficient

2.1. Kinetic-Transport Formalism. We state the kinetic-
transport equations in the MT model for a single kind of trap,
consisting on the equations of conservation for free and trapped
electrons and Fick’s law for the free electrons:17

HereNL is the total density of localized sites (per unit volume),
fL is the fractional occupancy (nL ) NLfL), andJ is the diffusive
flux of conduction band electrons. The rate constant for electron
capture is determined by the thermal velocity of free electrons,
V, the electron capture cross section of the trap,sn, and the
density of traps,NL

The rate constant for electron thermal release from the trap to
the conduction band is related toâ by Shockley-Read-Hall
statistics20

Here,Ec is the lower band edge energy,EL is the energy of the
localized state in the band gap, andNc is the effective density
of conduction band states. Equations 2-4 can be readily
extended to a distribution of localized levels. We have omitted
in these equations the rate of interfacial charge transfer
(recombination) which will be considered in section 3.

From eq 3 in steady state,∂fL/∂t ) 0, it follows that the
electrons in the free and localized states maintain an equilibrium
with a common value of the Fermi level,µjn. The occupancies
in the two kinds of states are given explicitly by

Note that, in eqs 7 and 8, the Fermi levelµjn can be maintained
at a different value than the redox potential in solution,Eredox

(assuming that the exchange of electrons at the oxide/solution
interface is slow). This is aconstrainedequilibrium21 of the
system formed by the electrons in extended and localized states
in the nanoporous semiconductor in contact with redox elec-
trolyte. If the constraint (bias potential or illumination) is
removed, then the system equilibrates all of the electrons at the
same electrochemical potential, and in this case,µjn has the
unique valueEredox.

We now define the conditions that enable the reduction of
the MT framework of eqs 2-4 to the conventional diffusion
equations, consisting in the ordinary conservation equation and
Fick’s law.

2.2. Quasiequilibrium Condition. In general the quasi-static
condition applies in thermodynamic processes that are suf-
ficiently slow for the change to consist in a succession of

Figure 1. Schematics of the steps involved in transport of the
photoinjected electron and the recombination with the oxidized species
in the electrolyte in a dye-sensitized solar cell. (EF0) shows the position
of the Fermi level in the dark, equilibrated with the redox potential
(Eredox) of the acceptor species in solution. (EFn) is the (quasi)Fermi
level of electrons under illumination andEc is the conduction band
energy. The following steps are indicated: (A) Electron transport
through extended states; (B) electron capture and thermal release at an
exponential distribution of band gap localized states; (C) electron
transfer through conduction band to the fluctuating energy levels of
oxidized species in solution indicated in the right; (D) capture by and
(F) charge transfer through surface states.

∂nc

∂t
) - ∂J

∂x
- ânc[1 - fL] + εNLfL (2)

∂fL
∂t

) â
nc

NL
[1 - fL] - εfL (3)

J ) -D0

∂nc

∂x
(4)

â ) NLVsn (5)

ε )
Nc

NL
â exp[-(Ec - EL)/kBT] (6)

nc ) Nce
(µjn-Ec)/kBT (7)

fL ) 1

1 + e(EL-µjn)/kBT
(8)

2314 J. Phys. Chem. B, Vol. 108, No. 7, 2004 Bisquert and Vikhrenko



equilibrium states. In our case, we are considering a system
composed by two classes of electronic states, initially at
(constrained) equilibrium indicated by the common value of the
temperature and the electrochemical potential in eqs 7 and 8.

When equilibrium atµjn is perturbed by some external cause
(for example, injecting∆nc electrons to the conduction band),
the subsequent variations (∂nc/∂t) and (∂nL/∂t) are ruled by the
instantaneous occupancies and transition rates described in eqs
2-4. We define a particular kind of evolution as that which
obeys the quasistatic condition

so that free and trapped electrons maintain a common equilib-
rium even when the system is displaced away from equilibrium.
In practice, this implies that trap relaxation is much faster that
the frequency/times of interest in the measured phenomena, for
instance, faster than the transit time through the film while
measuring diffusion coefficient. Equation 9 may be written
alternatively in terms of kinetic factors for trapping and
detrapping,∂nL/∂nc ) â/ε. However, normally the principle of
detailed balance (that states that for a system in thermal
equilibrium, the rates of a process and of its inverse are equal
and balance in detail) is taken as a representation of microscopic
reversibility.22 Given the rate constantâ, detailed balance gives
ε in eq 6 through the equilibrium occupancies.20 So the factor
∂nL/∂nc between equilibrium occupancies in eq 9 appears more
fundamental in order to assert that the proportion of the rates
of change of populations of localized and free electrons, (∂nL/
∂t)/(∂nc/∂t), maintains those populations at the common equi-
librium values.

We remark that the factor (∂nL/∂nc) is not the proportion of
number of carriers, but rather the relation of variations induced
during the small perturbation that leaves invariant the steady
state. Incidentally, it is found that∂nL/∂nc ∝ nL/nc in some cases
(as in exponential distribution of traps), but this is not generally
true.

It is generally possible to establish the time scale of the
trapping-detrapping phenomena, and the time constant of the
process under consideration must be considerably longer to
guarantee the possibility of using the quasi-equilibrium relation
betweennc and fL. In the limit of long waves the relaxation
time for trapping-detrapping is determined by the expression
τt

-1 ) â(1 - fL + nc/NL) + ε. Long waves mean thatk2 ,
(D0τ)-1, wherek is the wave vector determining the character-
istic spatial nonhomogeneities.nc and fL correspond to some
quasiequilibrium value of the chemical potential. In frequency
methods, the characteristic patterns of relaxation functions show
the onset of traps relaxation atω ≈ τt

-1, see, for example, refs
23 and 24. There are conditions in which eq 9 is not satisfied
in the frequency window of the measurement, for instance if
the transit time is, τt; or else, if charge injection to the
electrolyte is rather fast.

2.3. Reduction of Multiple Trapping to Ordinary Diffu-
sion. Hereafter, we assume, unless otherwise stated, that the
measurement operates in quasistatic conditions. From eqs 2, 3,
and 9, it follows that

Equation 10 suggests to form a new particle flux,Ĵ, as

whereDn is defined as

and then, provided thatDn is approximately independent of
position (homogeneous Fermi level), eq 2 can be expressed as

The new coefficientDn obtained in eq 12 will be interpreted
more generally in another paper25 as thechemical diffusion
coefficientof electrons.

Clearly, the reduction of MT to fickean diffusion of free
carriers is achieved in eqs 11-13. The simplification involves
the removal of some internal degrees of freedom in the system
(the occupancy of localized states) that are not explicitly
resolved in the quasistatic measurement but contribute to the
chemical diffusion coefficientDn, which henceforth becomes a
function of the concentration,Dn(nc), or Fermi level,Dn(µjn).
Therefore, the experimental results of small perturbation qua-
sistatic measurements consist on an ordinary diffusion process
that takes place with the chemical diffusion coefficient,Dn. In
other words, the transport-kinetic equations that describe the
measured transients or frequency spectra can be considerably
simplified by checking that quasiequilibrium of trapping is
obeyed. In practice, this type of interpretation has been often
adopted, as pointed out in the Introduction, and explained, for
instance, in Appendix C of ref 26. Our analysis shows a quite
general justification for this approach to the analysis of the data.

The general significance of the result in eq 12 is confirmed
in particular cases found in the literature, for instance from the
complete solution of the single trap model in EIS23 and also in
IMPS.27 In these papers, eq 12 is obtained in the low-frequency
limit of the solution of eqs 2-4 for a small perturbation in the
frequency domain.

The effect of trapping in the chemical diffusion coefficient
is important only insofar as∂nL/∂nc . 1, as discussed further
below. Therefore, normally it is justified to reduce eq 12 to the
expression

It is worth to emphasize that in generalDn(nc) and∂/∂x do not
commute, so that in conditions of nonhomogeneous steady-state
Fermi level (as in IMPS) eq 13 is not valid. The correct quasi-
equilibrium transport equation can be formulated using eqs 4
and 10, which give

2.4. Chemical Diffusion Coefficient in Traps Distributions.
In the quasistatic approximation the factor (∂nL/∂nc)-1 can be
calculated for any distribution of localized levels, with abun-
dancyg(E) (the density of localized states, DOLS, at the energy
E in the band gap) and occupanciesfL(E - µjn), using the
equilibrium distribution of free and trapped carriers indicated
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in eqs 7 and 8. In the approximation of the zero temperature
limit of the Fermi function, i.e., a step function atE ) µjn

separating occupied from unoccupied states, a change of Fermi
level implies a change of localized charge corresponding to the
DOLS

On another hand, for free electrons, the Boltzmann statistics of
eq 7 gives

therefore

From eqs 14 and 18 a general expression is found of the
chemical diffusion coefficient:

We illustrate this general expression with the derivation of two
cases obtained in previous works.5,8,9,12

For the box distribution of widthεL

one gets

hence

which explains the phenomenological generalized diffusion
equations (withDn ∝ nc) used in ref 3 for analyzing transient
photocurrents.

For the exponential distribution with tailing parameterT0

(with R ) T/T0)

we obtain from eqs 7 and 18

and it follows that

The resultDn ∝ I0
1-R, derived in equation A.11 of ref 26 for the

effective diffusion coefficient dependence on light intensity,I0,
is similar to eq 25, assuming thatnc ∝ I0. Experimental
observations do show the power-law dependence of the mea-

sured, chemical diffusion coefficient on concentration or light
intensity,5,28 so that MT with the exponential tail of band gap
states indicated in eq 23 seems a plausible model for the DSSC.

Taking into account that

and using eq 7, it follows that

In multiple trapping conditionsnL . nc, i.e., the total charge
ntot ≈ nL; therefore, eq 25 can be written in terms of total
electron density in the following way

It should be remarked that a continuous trap distribution usually
causes specific patterns of anomalous diffusion. An analysis of
frequency features for multiple trapping diffusion in the presence
of an exponential DOLS is presented in ref 29. The time domain
equations for fractional time diffusion in MT are discussed in
ref 30.

3. Electron Lifetime (Response Time)

The analysis of the time constant for recombination in
nanostructured semiconductors requires to consider two essential
factors represented in the scheme of Figure 1.

First, the bulk of a nanoparticle may contain a large density
of traps, e.g., with the exponential form of eq 23, where trapping
and detrapping phenomena take place, identical to those
analyzed before in relation with diffusion (process B).

On another hand, recombination is an interfacial charge-
transfer event and occurs in the surface only. Charge transfer
may involve a variety of interfacial mechanisms (conduction
band and surface states, as indicated in Figure 1).31 Let us
assume for the moment that recombination occurs preferentially
through the conduction band (process C), at a rate

so thatτn0 is the constant free carrier lifetime; that is, the lifetime
with respect to injection to the electrolyte, in the absence of
trapping.

The measurement of the electron lifetime consists of deter-
mining the time for the system to recover equilibrium under a
small perturbation of the steady state, by removal of the excess
carriers by recombination.11 In DSSC, the lifetime can be
determined by monitoring directly the variation of the position
of the Fermi level with time (open-circuit photovoltage decay
technique, OCVD).11 To describe this evolution, one can solve
the kinetic eqs 2-4, where eq 29 is an additional term in eq 2.
However, this is not necessary provided that certain conditions
are satisfied. The effect of trapping and detrapping in the bulk
is simplified by the quasi-equilibrium condition of eq 9, provided
that the rate constants for trapping and detrapping are much
faster thanτn0. Therefore, the displacement of the Fermi level
involves the recombination by interfacial charge transfer of both
the trapped and free charge, and the observed time constant is
considerably longer thanτn0.19 Furthermore, the process of
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conduction band transport (A) is assumed to be also fast so
that no relevant inhomogeneities of charge exist (this point is
further discussed in the Appendix). Then the time constant for
the decay takes the form

as shown in detail in a recent paper.11 Equation 30 was
formulated for amorphous semiconductors by Rose,19 and the
observed recombination time,τn, is denoted the response time.
In the case∂nL/∂nc . 1, in which trapping and detrapping
governs the response time, eq 30 can be simplified

Equation 31 implies a Fermi-level dependence ofτn as we have
seen above forDn. Using the exponential distribution of eq 23
in eq 31, we obtain with eq 24 the power law form on free
electron concentration (exponential dependence on illumination
intensity) that is usually found in measurements11

Besides injection from the conduction band, another important
recombination channel is a two-step process involving trapping
at band-gap surface states (D) and subsequent isoenergetic
transfer to electrolyte levels (F). In addition, there may exist a
distribution of surface states that participate in charge transfer.10

The different possibilities have been analyzed theoretically in
ref 31, but experimentally, the details about the relevant levels
for charge transfer have not yet been clarified, and the subject
lies outside the scope of the present work. However, it is
important to realize that the result of eq 31 is valid generally in
the quasiequilibrium conditions stated above.11 Indeed, the
previous argumentation is the same when the quantityτn0 of eq
31 involves a combination of interfacial mechanisms. In this
case, however,τn0 may acquire its own dependence on the steady
state, as discussed in ref 11. In this paper, it was shown that eq
31 describes correctly the major features of the response time
in DSSC, but more work is necessary in order to establish the
details ofτn dependence on Fermi level.

The analysis of transient decays in ref 32 in terms of
microscopic models for electrons transitions provides more
detailed insight into the temporal evolution of recombination
mechanisms. Nelson et al.32 pointed out that recombination in
the multiple trapping regime is governed by carriers redistribu-
tion in the energy levels, and ref 33 confirmed this idea, which
supports our simpler, quasiequilibrium approach. However, these
papers did not calculate the steady-state time constants consid-
ered here.

4. Electron Diffusion Length

We now turn our attention to the measurements that are
realized in steady-state conditions, for instance by measuring
the photocurrent in the solar cell at a constant incident
illumination. In those cases, imposing∂nc/∂t ) 0 and∂nL/∂t )
0, eqs 2-4 reduce to

The remaining transport equation is equivalent to the standard
diffusion model for DSSC34 and contains no information on
trapping. This is because in the steady state the traps simply
adjust their occupancy to the Fermi level. Accordingly the
diffusion length is given by a constant,Ln ) x(D0τn0). The
IPCE, which depends only onLn and geometrical factors,34 is
also constant. BothLn and IPCE can be measured from the
steady-state photocurrent.

On the other hand, determinations of the diffusion coefficient
and lifetime by kinetic measurements provideDn and τn, as
discussed in the previous sections. However, from eqs 12 and
31, we realize that the factors (∂nL/∂nc) in Dn andτn compensate
when forming the diffusion length from measured quantities.
The result is a constant consistent with eq 33

The meaning of the compensation is clear when we note that
the origin of the factor (∂nL/∂nc) lies in carrier equilibration in
the energy space (process B in Figure 1), both for chemical
diffusion coefficient in MT (Dn), and for response time (τn).
Peter and co-workers5,15 and also Nakade et al.28 have reported
for DSSCs the compensating behavior indicated in eq 34.

5. Chemical Capacitance

In the previous sections, the DOLS of electrons was seen to
exert a considerable influence over the measured time constants.
Fortunately, the DOLS can be determined quite directly in
nanostructured semiconductors, by measurements of capacitance.
It is convenient to emphasize the direct relationship between
the measured capacitance and thermodynamic function (chemi-
cal potential) of electrons, otherwise one may loose valuable
information by attempting to describe the capacitance in terms
of conventional ideas of dielectric constant and space-charge
regions. Therefore, we try to clarify the point in the following
discussion.

5.1. Electrostatic and Chemical Capacitors.The capaci-
tance of nanoporous semiconductor films can be determined in
several ways: EIS,35,36cyclic voltammetry,37 or integrating the
current at differential voltage steps.38 There are several physical
effects contributing to the measured capacitance, as indicated
in Figure 2. The process (B) indicates polarization at the
interface between the transparent conducting substrate (TCS)
and the electrolyte, and (C) indicates the Helmholtz layer at
the oxide/electrolyte interface. The former effect is important
when the electron density is low in the semiconductor39 and

Figure 2. Schematics of the capacitive contributions in a dye-sensitized
solar cell: (A) Chemical capacitance due to increasing chemical
potential (concentration) of electrons in the TiO2 phase, obtained when
the electrode potential,V, displaces the electron Fermi level,EFn, with
respect to the lower edge of the conduction band,Ec, in the
semiconductor nanoparticles. (B) Electrostatic capacitance of the
Helmholtz layer (and semiconductor bandbending) at the interface
between the exposed surface of the transparent conducting oxide
substrate and the electrolyte. (C) Electrostatic capacitance at Helmholtz
layer at the oxide/electrolyte interface.
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the latter when the density is very high and the semiconductor
enters the state of band unpinning. Both these contributions can
be thought of as ordinary electrostatic capacitors, where the
charges in two highly conducting plates sustain an electrical
field in between.

In the intermediate range of Fermi level variation, a different
kind of capacitive effect is found (A). The semiconductor bands
are pinned, and the charge accumulation is related to the
displacement of the Fermi level position with respect to the
conduction band edge, i.e., to a variation of chemical potential
of electrons,∆µjn ) ∆µn. Hence, the increment of charge
(electronic and ionic) occurs in the volume of the nanostructured
electrode with no concomitant electrical field variation in the
volume, because the electrical field is shielded near the TCS.40

Therefore, (free) energy storage in the capacitor is by chemical,
not electrostatic, energy. As a consequence, it is a chemical
capacitor, and not an electrostatic capacitor.

To appreciate the physical basis for this new concept, we
remind that the impedance function can be defined generally
for any thermodynamic system, and characterizes the linear
response of the system to an applied force.41 Indeed, the
fluctuation-dissipation theorem41 shows that the admittance is
related directly to the equilibrium fluctuations of the system,
and although the conductivity characterizes the irreversible
response of the system, a lossless element that indicates the
reversible response constitutes a capacitance.42 In particular, for
a volume element that stores chemical energy due to a
thermodynamic displacement, the chemical capacitance per unit
volume is defined as43

So the chemical capacitance reflects the capability of a system
to accept or release additional carriers with densityNi due to a
change in their chemical potential,µi.43

The general physical meaning of eq 35 has been explained
recently using another route.44 In mesoscopic capacitors,44 the
electrical field related to the electrochemical potential difference
between the leads is partially shielded and it cannot propagate
toward the surface of the plates of the capacitor, which causes
a displacement of the Fermi level with respect to the conduction
band. Büttiker et al.44 have shown that this effect introduces a
factor proportional todn/dµn in the electrochemical capacitance,
in agreement with eq 35.

5.2. Chemical Capacitance in Nanostructured Semicon-
ductors. The chemical capacitance (A in Figure 2) is a major
feature in TiO2 nanostructured electrodes. For instance, in
measurements of these electrodes in aqueous solution, this effect
causes an exponential increase of the capacitance by 3 orders
of magnitude in an interval of potentials of 0.8 V.37 Similar
results are obtained in DSSC.35 Besides, the chemical capaci-
tance is a concept of crucial significance for solar cell applica-
tions, because it describes properly the splitting of Fermi levels
caused by excitation of carriers in the light absorber material.45

Considering the variation of the electron density upon a
change of the local chemical potential in a DSSC, we obtain
for the total chemical capacitance

One may distinguish the two components in eq 36.46 The first
is related to the free conduction band electrons. Using eq 17,

we find

The second component of eq 36 is related to localized states in
the band gap. From eq 16, it is seen readily that this component
is just proportional to the DOLS at the Fermi level

In the case of the exponential distribution given in eq 23, eq 38
provides the form

We may also express eq 39 in terms of the free electron density,
in which case we obtain

The two chemical capacitors in eq 36 are connected in parallel.
If it is Cch

(trap) . Cch
(cb), as required in the trapping models,

resolving Cch
(cb) is not possible by simply measuring thelow

frequencycapacitance, which isCch
(tot) ) Cch

(trap) + Cch
(cb) ≈

Cch
(trap).47 Note that both eq 37 and 39 show an exponential

dependence with the bias, although with different slopes. The
ideal statistics of eq 37 give a slope (d logC/dV) ) -e/
(2.30kBT), i.e., 60 mV/decade at room temperature. This is not
normally found in nanostructured TiO2. The exponential ca-
pacitance is observed with a much less steep rise, of about 300
mV/decade. This has been interpreted in terms of eq 39, i.e.,
the manifestation of the exponential distribution of band gap
states which gives (d logC/dV) ) -e/(2.30kBT0),35,37 with T0

≈ 1400 K. For instance, measurements of capacitance of
nanostructured TiO2 electrodes in aqueous solution at pH 3 yield
a value ofR ) 0.25 and a total trap density ofNL ≈ 1019 cm
- 3.37 The exponential DOLS and mentioned (d logC/dV) values
are also supported by the results of a stepping charge-extraction
method.48

It must be remarked, however, that the exponential distribu-
tion that describes well different pieces of experimental data
(such as the chemical diffusion coefficient and lifetime) is so
far a phenomenological formula the origin of which is not well
understood. So we choose to use in Figure 1 the simplest
approach to describe this feature, which is a stationary distribu-
tion of electron sites related to intrinsic disorder, usually found
in amorphous semiconductors. However, in doped crystalline
semiconductors, the spread of conduction band states is caused
by local distortion of energies near the dopant atoms. In
crystalline nanoparticles surrounded by electrolyte, interaction
effects between the electrons and ionic species that modify the
electrons energy levels cannot be discarded to account partially
for the tailing distribution.

As mentioned before, surface charging changes the potential
difference in the Helmholtz layer, producing an upward shift
of the semiconductor energy levels,VH ) ∆φH. The combined
effect of electron accumulation and partial band unpinning
implies that the Helmholtz capacitance,CH, is connected in
series37 to the chemical capacitance,Cch, so that the position of
the bands will remain pinned insofar asCch , CH.

C ) e2
∂Ni

∂µi
(35)

Cch
(tot) ) e2

∂(nc + nL)

∂µn
(36)

Cch
(cb) ) e2

∂nc

∂µn
) e2

nc

kBT
(37)

Cch
(trap) ) e2

∂nL

∂µn
) e2g(µjn) (38)

Cch
(trap) ) e2

RNL

kBT
e(µjn-Ec)/kBT0 (39)

Cch
(trap) ) e2

RNL

kBTNc
Rnc

R (40)
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5.3. Resolution of Free Carrier Time Constants.We have
commented that the chemical capacitance provides direct
information on the density of states in the nanostructured
semiconductor. It is important therefore to emphasize that the
measurements of capacitance indicate an exponential DOLS with
much higher capacitance than the conduction band component,
Cch

(trap) . Ccb
(cb), i.e.,∂nL/∂nc . 1, as this is a necessary requisite

for the interpretation of time constants in terms of trapping
models that we have exposed in the previous sections.

This point can be expressed in quantitative form, leading to
interesting consequences. Indeed note that the chemical diffusion
coefficient of eq 14 for MT model may be written, alternatively,
in terms of the chemical capacitances of eqs 37 and 38, as12

So MT transport occurs whenCch
(trap) . Cch

(cb), giving the result

which is identical to eq 14. Also eq 25 for the exponential DOLS
can be obtained from eqs 37, 40, and 42. Similar identifications
can be made with the response time of eq 31, i.e.

In the previous sections, we have remarked that the time
constants measured in kinetic techniques are Fermi-level de-
pendent,Dn(µjn) and τn(µjn), as indicated in eqs 42 and 43.
However, this is when the trapping degrees of freedom are
obscured in the quasi-equilibrium measurement, as explained
in section 2. Now eqs 42 and 43 show that it is really possible
to measure the free electrons diffusion coefficient and lifetime,
D0 andτn0, which are determining the diffusion length, eq 30,
but for this, it is necessary to resolve separately the free and
trapped charge through the correspondent chemical capacitances.

As mentioned before, the low frequency capacitance gives
only Cch

(tot) ≈ Cch
(trap). The EIS technique, for example, permits

the observation of relaxation of the charge in extended states
at high frequencies (cf. Figures 1 and 4 in ref. 23), where traps
do not respond anymore (i.e., breaking quasi-equilibrium at short
times). In this way,Cch

(cb) would be determined from high-
frequency data. Note that this procedure requires resorting to
the complete impedance model including the traps relax-
ation.23,47,49

In a similar way, it should be possible to separate free and
trap components of the chemical capacitance by light absorption
techniques, and this is discussed in ref 46.

5.4. Relationship of Chemical Capacitance to Diffusion.
Although the manifestation of traps in the chemical capacitance
is a necessary condition for MT diffusion, as already remarked,
it must also be pointed out that the measurements of capacitance
do not give detailed information on the diffusion process itself.
Chemical capacitance indicates the equilibrium distribution of
electrons in the available states of the system or, more generally,
the chemical potential of electrons, but not the process of
transport between those states. The capacitance does not indicate
whether the localized states belong to the surface or interior of
nanoparticles, which is an important issue for recombination
models.

Traditionally, the chemical capacitance associated to the
storage of conduction band electrons, eq 37, was observed in
solid-state pn junctions at a forward bias and was termed a
diffusion capacitance. This denomination, adopted recently in
some papers in the DSSC area50,51 (and also used by us
sometimes), is not very fortunate because diffusion is an
irreversible energy loss process, whereas the capacitance is a
reversible energy storage element. It is well-known that diffusion
is caused by a local difference of chemical potentials. The
chemical capacitance, distributed in space, is the element that
provides a chemical potential that depends on the position. So
the chemical capacitance is a prerequisite for diffusion (and this
is the reason the chemical capacitance is always a component
of diffusion impedance,43 either in DSSCs or solid-state pn
junctions52,53). However, the converse is not true, the capacitance
of eq 37 is not diffusional in origin.53

6. Electron Conductivity

Another important quantity for many applications is the
electron conductivity, which can be measured in the steady state
as reported elsewhere.16 In the context of the MT model, the
electron transport is carried by a single kind of state, the
extended states of the conduction band. Carriers trapped in
localized states do not contribute to the dc conductivity until
they are released again. The conductivity related to the electron
diffusion process can be obtained from the generalized Einstein
relation

whereµn is the chemical potential of electrons. From eq 37,
we can write eq 44 as

and the standard expression of eq 1 is obtained with the second
equality of eq 37.

Let us analyze the conditions required for determining the
free carrier difusion coefficient from the conductivity. From eq
42, we can write the conductivity also as

The first equality of eq 46 shows that the quotient of quantities
σn/Cch, which can be measured at low frequency, gives the
chemical diffusion coefficientDn, so again we needCch

(cb) for
obtainingD0. From eq 1, we can obtainD0 from σn if nc(Ec -
µjn) is known, but this also requires to resolve the free electrons
component of the chemical capacitance.

7. Final Remarks and Conclusion

In this paper, we have discussed the interpretation of
photoelectrochemical techniques in nanoporous semiconductor
electrodes in terms of the model for electron diffusion, trapping
in the bulk and recombination indicated in Figure 1. We argued
that the effects of trapping appear in transient and kinetic
quantities but not in steady-state quantities. Time constants such
as the chemical diffusion coefficient,Dn, and electron response
time, τn, are measured by means of small perturbation of the
steady state. These time constants acquire dependencies on the
steady-state Fermi level due the presence of internal degrees of
freedom corresponding to trapping and detrapping of electrons
that are not observed separately. In contrast, the free carrier

Dn )
Cch

(cb)

Cch
(cb) + Cch

(trap)
D0 (41)

Dn )
Cch

(cb)

Cch
(trap)

D0 (42)

τn )
Cch

(trap)

Cch
(cb)

τn0 (43)
σn ) e2

∂nc

∂µn
D0 (44)

σn ) Cch
(cb)D0 (45)

σn ) Cch
(trap)Dn(µjn) ) e2g(µjn)Dn(µjn) (46)
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diffusion coefficient,D0, and the free carrier lifetime,τn0, cannot
be measured separately using techniques at quasi-equilibrium
conditions. However, the free carrier time constants can be
inferred fromDn, τn, and total charge relaxationCch

(tot), all of
which can be measured at low frequencies, provided that
additional information onfree carrier densityis available. In
addition, quantities such asLn, σn, and IPCE can be measured
directly in the steady state. Kinetic effects of the multiple
trapping disappear inLn, σn, and IPCE, because in the steady
state the trap occupancy remains stationary.

Illustrations of our interpretation of measured time constants
with impedance23 and optoelectrical techniques (IMPS)27 have
been mentioned. Another example of this is found in the model
of Vanmaekelbergh et al.4 that considers a combination of
processes in nanoporous TiO2 electrodes in aqueous solution.
It can be seen form their results of the optoelectrical transfer
function (IMPS) (see eqs 15 and 20 in ref 4) that the
low-frequency limit,∆in/eΦ(0), corresponding to steady-state
photocurrent quantum yield, is independent of internal traps
parameters. On the contrary, the IMPS frequencyωmin, related
to the transit time asτd ) 2.5/ωmin,4 is mainly determined by
trapping factors.

Having introduced different diffusion coefficients, i.e., the
chemical and free carrier diffusion coefficients, we may ask
which is their relative significance.Dn provides the time for
restoring equilibrium by transport when an excess of carriers is
injected, whereasD0 determines (with the carrier density) the
carrier flux at the steady state. So one may be more interested
in one or the other depending on the particular device and
application. For instance in photocopiers the transient behavior
of excess carriers generated by a flash of light, indicated by
Dn, is crucial, and this led H. Scher and others to identify the
anomalous transient-time dispersion.54 In contrast, for solar cells,
the main issue is the collection efficiency at steady state.
According to the model illustrated in Figure 1, the compensation
of the density-dependence of both chemical diffusion coefficient
and response time (lifetime) is absolute, giving a strictly constant
diffusion length, hence,D0, and the free carrier lifetime,τn0,
appear to be the central physical parameters determining the
solar cell operation. Nonetheless, we remark that frequency or
time transient methods remain essential for the characterization
of heterogeneous solar cells such as DSSC. Clearly, information
on quantities such asDn andτn is necessary in order to obtain
a picture of the dynamic behavior of the solar cell, and to clarify
the transport and recombination phenomena that are relevant
for steady-state operation.

The model outlined in Figure 1, based on the contributions
of many workers, provides a description of disorder in nano-
structured TiO2, through the traps distribution, and shows good
agreement with the main features of the measured chemical
diffusion coefficient of electrons, ranging from 10-4 to 10-8

cm2/s depending on light intensity8,27and also with the electron
lifetime dependence on open-circuit photovoltage.11 To inquire
further which is the degree of reality of this simple model, and
how it should be improved, let us emphasize the main physical
assumption behind the model: it is that there are many electron
traps that do not act as recombination centers. For nanostructured
TiO2 the obvious realization of this feature is that there are both
internal traps and surface states in the nanoparticles, as suggested
in the scheme of Figure 1. Further evidence for the distinction
between internal traps and surface states remains important for
establishing this picture.

One way to approach this question is to change the size of
particles in the electrodes, thus modifying the surface-to-volume

ratio. Recent results of Nakade et al.55 using this method show
that modification of the particles surface (by dye adsorption)
enhances the chemical diffusion coefficient significantly, while
maintaining the light-intensity dependence ofDn. The authors55

remarked that these results indicate the presence of electron traps
located inside the nanoparticles. Indeed, in terms of Figure 1,
when traps near the surface are removed, the total densityNL

decreases, and∂nc/∂nL in eq 14 increases by a constant value
while the dependence ofDn on EFn persists.

In relation to this question, we comment in the Appendix on
the very interesting results of Kopidakis et al.56 that were
published when this paper was nearly completed.

We have emphasized in this report that the factor (∂nL/∂nc)
imparts a Fermi level-dependence to the time constants measured
in quasistatic conditions such asD(µjn) andτ(µjn). Considering
for instanceDn(µjn) in eq 14, it is appreciated that the kinetic
characteristics of transport appear through the conduction band
diffusion coefficient, D0, which is a constant, whereas the
variable factor (∂nL/∂nc) is related to local redistribution of
charge in the energy axis when the Fermi level is modified.
Similar remarks can be made aboutτ(µjn) in eq 27. So the “time
constants”Dn(µjn) andτn(µjn) contain different components that
are either kinetic or thermodynamic in origin. It is interesting
to carry out this distinction precisely, as one may be able to
extract relevant consequences from models without having to
solve them completely. This question is investigated specifically
in a separate report for the chemical diffusion coefficient.25
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Appendix: Diffusion-Limited Recombination

The authors of ref 56 have measured the time constants of
DSSCs with careful consideration to maintaining a homogeneous
steady state and applying small perturbation, so the results
reported are the chemical diffusion coefficient,Dn, and lifetime
(response time),τn, that we have discussed above. We first
comment the many common aspects of their explanation and
ours, based on their observation of the features of time constants
under modification of the thermodynamic function of electrons
by lithium intercalation. Thereafter, we consider a point of
contrast concerning the interpretation of the measured lifetime,
τn.

In ref 56, lithium ions were intercalated into TiO2 in DSSCs
to substantial levels, either potentiostatically or illuminating the
solar cells for a long time. This modified the shape of the
exponential distribution for electrons, indicated by a large
change of the tailing parameterR that is determined fromDn(ntot)
in eq 28, which is similar to eq 4c of ref 56. Furthermore, a
linear model for recombination is formulated in ref 56 to obtain
τn(ntot). In common with previous reports,5,15,28 Kopidakis et
al. find the conjugate tendencies inDn andτn dependence on
electron concentration that leads to their compensation inLn,
as we have also discussed, and this is maintained even under
variation ofR. The authors also confirm that these huge changes
in the distribution of electron traps have only a small effect on
the collection efficiency of the solar cell, and they remark on
the significance of this point, which we have discussed also.
So the results of this report,56 and the explanation suggested by
its authors, are much in agreement and provide strong support
for the general approach to the interpretation of time constant
presented here.

We also wish to comment on a point of contrast between the
interpretation of the recombination mechanism in ref 56 and
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our approach presented in section 3. The other report56 bases
the interpretation of the response timeτn on a diffusion-limited
(or transport-limited) recombination process. The Fermi level-
dependence of the response time is obtained in their eq 12 from
the measured diffusion coefficient in the formτn ∝ 1/Dn (our
notation). This follows also from our eqs 14 and 31; however,
it should be noted that our expression forτn in eq 3111 obtains
the factor (∂nL/∂nc) directly from arguments of quasiequilibrium
of free and trapped electron density, so that eq 31 does not
contain diffusion parameters, in contrast to eq 12 of ref 56.
Therefore, our model explains all the experimental results of
ref 56 without assuming a diffusion-limited recombination
mechanism.

This difference of interpretation raises an interesting point.
The meaning of macroscopic time constants becomes a critical
issue for discerning microscopic mechanisms, as the observed
dependencies can be understood in different ways. So we should
like to make a precision on the model of ref 56, and by the
way, we clarify also one of the aspects of our model of section
3. The relationshipτn ∝ 1/Dn indicated in ref 56 could be
misleading, because the measuredDn is the chemical diffusion
coefficient that describes diffusion under a macroscopic gradient
of concentration.25 That is,Dn governs the flux that is measured
in the transients of photocurrent of Figure 1a of ref 56. However,
during the open-circuit photovoltage decays of Figure 1b of ref
56 for measuringτn, there are no such macroscopic fluxes,
because the electron distribution is basically homogeneous at
each time. The only option for gradients to occur seems to be
from the center to the surface of individual particles. For the
measured chemical diffusion coefficient of electrons on the order
of Dn ) 10-5 cm2 s-1 and particles of radiusa ) 10 nm, the
time of equilibration of concentration gradients into TiO2

nanoparticles isτdif ≈ a2/Dn ) 10-7 s, whereas the OCVD takes
a much larger time, on the order ofτn ) 10-1 s. This is why
the electron density can be assumedhomogeneousduring the
measurement ofτn, as argued in section 3, so that the diffusion
coefficient does not appear in our eq 31. In comparison, the
circumstances are very different for the lithium intercalation
process that is considered by Kopidakis et al., because the
chemical diffusion coefficient of lithium ions in metal oxides
can be as low asDch(Li) ) 10-12 cm2 s-1,57 so that the time for
equilibration of gradients isτdif ≈ a2/Dch(Li) ) 1 s, and may
dominate the intercalation phenomena.58

Indeed, the former point is clear to Kopidakis et al., as their
argument does not involve any concentration gradients of
electrons during OCVD but a scarcity of acceptor species that
obliges the electron to effect a long random displacement over
thousands of nanoparticles before it can recombine. So the
relationship assumed in ref 56 for diffusion-limited recombina-
tion should beτn ∝ 1/DJ, where DJ is the jump (or tracer)
diffusion coefficient that describes the random walk of elec-
trons.25 This comes to no importance for their argument, because
in the case of the exponential distribution of traps the thermo-
dynamic factor,øT, that relates both diffusion coefficients,Dn

) øTDJ, is a constant,øT ) 1/R, as we show in another report,25

so indeed the random walk of an electron, governed byDJ, is
affected by the total electron concentration in the same way as
by the measuredDn. That is,DJ ∝ nc/nL becomes larger when
the Fermi level is higher, so that diffusion-limited recombination
becomes faster.

In DSSC, the I-/I3
- couple provides two electron acceptors:

I3
- and I2-. Recently it was shown that the recombination path

depends on the illumination intensity.59 The electron reaction
with I2

- becomes kinetically favorable only at high light

intensities. It is believed that under normal solar conditions the
recombination with I3- dominates which makes it the only
relevant process from the practical point of view.59,60According
to our understanding, Kopidakis et al.56 base the characteristics
of the response time on the relationshipτn ∝ 1/DJ, and this leads
them to select the much rarer I2 as the dominant acceptor,
because for this low-concentration species the time for the
electron to find a target for recombination would govern the
τn.

However, the initial assumption,τn ∝ 1/DJ, is not necessary
to explain the variations ofτn. In our model,τn0 is the rate
constant for charge transfer, for any kind or concentration of
the acceptor species. However the measuredτn ) (∂nL/∂nc)τn0

is much longer thanτn0, because the Fermi level cannot decay
but with equilibration of free and trapped electron density. The
results of refs 32 and 33 also suggest that recombination is not
governed by diffusion in configurational space but rather in
energy space (energy redistribution). Here, we reached this
conclusion on the assumption of the existence of a large density
of traps in the bulk of particles. The results of Kopidakis et al.
would also seem to support this idea of internal traps, because
the intercalation of lithium into nanoparticles is affecting
markedly the tailing parameterR observed in the transport
parameter,Dn. However, as remarked in section 5.2, the exact
effect that produces the marked departure from Boltzmann
statistics is not clear yet.

In summary, the results of ref 56 do not prove the diffusion-
limited recombination mechanism, that requires a scarcity of
acceptor species. The experimental results can be explained more
simply on the basis of the normal electron charge-transfer
mechanisms in DSSC and a common origin of the Fermi-level
dependence of both measuredDn and τn, which originates in
an exponential distribution of traps in the bulk of particles. This
last idea describes major features, bot not so far the details, of
recombination in DSSC, and it is likely that it should be
improved with a more elaborated microscopic picture. In this
sense, the model suggested in ref 56 is a rather interesting idea
that shows the need for determining the relationship of
macroscopic, steady-state time constants, to microscopic models.
In particular, the connection between long-range electron
transport, energy redistribution, and interfacial charge transfer
requires further studies.
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