УДК 541.1 + 621.785.36 + 621.78.011

Е. К. ЮХНО¹, Л. А. БАШКИРОВ¹, П. П. ПЕРШУКЕВИЧ², Н. А. МИРОНОВА-УЛМАНЕ³, А. Г. ШАРАКОВСКИЙ³

СПЕКТРЫ ВОЗБУЖДЕНИЯ И ФОТОЛЮМИНЕСЦЕНЦИИ ТВЕРДЫХ РАСТВОРОВ НА ОСНОВЕ ИНДАТА ЛАНТАНА LaInO₃ СО СТРУКТУРОЙ ПЕРОВСКИТА, ЛЕГИРОВАННОГО ИОНАМИ Pr³⁺, Sm³⁺, Sb³⁺

¹Белорусский государственный технологический университет, ²Институт физики им. Б. И. Степанова Национальной академии наук Беларуси, ³Институт физики твердого тела Латвийского университета, Рига, Латвия

(Поступила в редакцию 24.12.2015)

Исследованы спектры возбуждения и фотолюминесценции твердых растворов $La_{0.997}Pr_{0.003}InO_3$, $La_{0.98}Sm_{0.02}InO_3$, $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$, $LaIn_{0.98}Sb_{0.02}O_3$, $La_{0.98}Sm_{0.02}O_3$, $La_{0.977}Pr_{0.003}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$. Показано, что на спектрах фотолюминесценции твердого раствора $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$ присутствуют полосы фотолюминесценции как ионов Pr^{3+} , так и ионов Sm^{3+} , которые наблюдаются при различных длинах волн возбуждения. Установлено, что ионы Sb^{3+} являются хорошим сенсибилизатором фотолюминесценции как ионов Sm^{3+} , так и ионов Pr^{3+} , что подтверждается значительным усилением интенсивности полос фотолюминесценции $(\lambda_{6036} = 320, 405, 470, 500$ нм) твердого раствора $La_{0.977}Pr_{0.003}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$ по сравнению с интенсивностью полос фотолюминесценции твердого раствора $La_{0.977}Pr_{0.003}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$.

Введение. В последнее десятилетие значительно повысился интерес к исследованиям спектров возбуждения люминесценции, спектров фотолюминесценции твердых растворов на основе LaInO₃ с кристаллической структурой орторомбически искаженного перовскита, легированного ионами редкоземельных элементов Pr^{3+} , Sm^{3+} , Eu^{3+} , Tb^{3+} и ионами Bi^{3+} , излучающих свет в видимой области [1–4]. В работе [3] показано, что ионы висмута Bi^{3+} , введенные в подрешетку ионов La³⁺ индата LaInO₃, легированного ионами Eu^{3+} , являются сенсибилизаторами фотолюминесцентных свойств ионов Eu^{3+} . Ионы Sb^{3+} имеют электронную конфигурацию $5s^2$, т. е. подобную как у ионов Bi^{3+} ($6s^2$). Поэтому можно ожидать, что ионы Sb^{3+} также будут хорошими сенсибилизаторами фотолюминесцентных свойств некоторых ионов редкоземельных элементов. Работы [5–9] посвящены изучению люминесцентных свойств ионов Bi^{3+} , Sb^{3+} в ортоборатах $LnBO_3$ (Ln - Sc, Y, La, Gd, Lu), в которых ионы Bi^{3+} , Sb^{3+} расположены в подрешетке ионов Ln^{3^+} . Установлено [6; 7], что ионы Bi^{3^+} являются сенсибилизаторами фотолюминесценции ионов Eu^{3^+} в матрице (Y, Gd) BO_3 , и передача поглощенной энергии от иона Bi^{3^+} к иону Eu^{3^+} происходит через ион Gd^{3^+} по цепочке $Bi^{3^+} \rightarrow Gd^{3^+} \dots Gd^{3^+} \rightarrow Eu^{3^+}$. Однако в [8] установлено, что в твердом растворе на основе YBO₃, легированного ионами Eu^{3^+} , Sb³⁺, поглощенная ионами Sb³⁺ энергия не передается ионам Eu^{3^+} , т. е. ионы Sb³⁺ в данном случае не являются сенсибилизаторами, а играют наряду с ионами Eu^{3^+} роль второго активатора. В литературе отсутствуют публикации, посвященные изучению люминесцентных свойств ионов Sb³⁺, введенных в подрешетку ионов In³⁺ индата лантана LaInO₃, ионный радиус которого лишь на 0,02 Å меньше ионного радиуса In³⁺ ($r_{In3^+} = 0,92$ Å [10]) и на 0,14 Å меньше ионного радиуса La³⁺ ($r_{La3^+} = 1,04$ Å [10]).

В настоящей работе твердофазным методом проведен синтез твердых растворов на основе индата лантана со структурой перовскита $La_{0,997}Pr_{0,003}InO_3$, $La_{0,98}Sm_{0,02}InO_3, La_{0,977}Pr_{0,003}Sm_{0,02}InO_3, LaIn_{0,98}Sb_{0,02}O_3, La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, получены и проанализированы их спектры возбуждения люминесценции и спектры фотолюминесценции в области длин волн 230–750 нм.

Материалы и методы исследования. Синтез керамических образцов твердых растворов на основе индата лантана LaInO3 со структурой перовскита $La_{0,997}Pr_{0,003}InO_3$, $La_{0,98}Sm_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}InO_3$, $LaIn_{0,98}Sb_{0,02}O_3$, $La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$ проведен твердофазным методом из смесей оксидов лантана (La_2O_3), празеодима (Pr_6O_{11}), самария (Sm_2O_3), индия (In₂O₃), сурьмы (Sb₂O₃). Все реактивы имели квалификацию «х. ч.». Оксиды лантана и самария были предварительно обожжены на воздухе при температуре 1273 К в течение 1 ч. Исходные оксиды, взятые в заданном молярном соотношении, смешивали и мололи в планетарной мельнице Pulverizette фирмы Fritch с добавлением этанола в стаканчиках с шарами из диоксида циркония. Полученную шихту прессовали в таблетки диаметром 25 мм и высотой 5-7 мм и затем обжигали на воздухе при температуре 1523 К в течение 6 ч. После предварительного обжига таблетки дробили, перемалывали, прессовали в бруски длиной 30 мм и сечением $5 \times 5 \text{ мм}^2$, которые обжигали при температуре 1523 К на воздухе в течение 6 ч. Полученные керамические образцы в форме параллелепипедов длиной 30 мм были использованы для исследования теплового расширения синтезированных твердых растворов. Затем от этих брусков откалывали образцы длиной ≈5-7 мм для исследования их фотолюминесцентных и магнитных свойств. Рентгеновские дифрактограммы образцов индатов получены на дифрактометре Bruker D8 Advance (излучение CuK_a) при комнатной температуре. Параметры элементарной ячейки кристаллической решетки рассчитаны с помощью рентгеноструктурного табличного процессора RTP с погрешностью ±0,001 Å. Измерения спектров возбуждения люминесценции и спектров фотолюминесценции керамических образцов проводили при 300 К на автоматизированном спектрофлуориметре СДЛ-2, состоящем из светосильного монохроматора возбуждения МДР-12 и монохроматора регистрации МДР-23 в Институте физики им. Б. И. Степанова НАН Беларуси. В качестве источника возбуждения использовали ксеноновую лампу ДКсШ-120.

Результаты и их обсуждение. Анализ рентгеновских дифрактограмм полученных образцов твердых растворов $La_{0,997}Pr_{0,003}InO_3$, $La_{0,98}Sm_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}InO_3$ (рис. 1, кривые 1-3) показал, что они являются однофазными и имеют кристаллическую структуру орторомбически искаженного перовскита типа GdFeO₃ ($a < c/\sqrt{2} < b$ [11]). На рентгеновских дифрактограммах образцов валового состава $LaIn_{0,98}Sb_{0,02}O_3$, $La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$ (рис. 1, кривые 4-6) кроме рефлексов основной фазы со структурой перовскита присутствовал небольшой интенсивности рефлекс ($2\Theta = 28,76^\circ$, d = 3,104 Å) примесной фазы, который без изменения интенсивности присутствовал и на рентгеновской дифрактограмме образца $LaIn_{0,98}Sb_{0,02}O_3$ (рис. 1, кривая 7), дополнительно обожженного при температуре 1523 K в течение 6 ч. Вероятно, этот рефлекс относится к фазе соединения LaSbO₃, образовавшегося в ходе синтеза твердых растворов $LaIn_{0,98}Sb_{0,02}O_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, для которого согласно [12] межплоскостное расстояние (d) для самого интенсивного рентгеновского рефлекса равно 3,196 Å.

На рис. 2, *a*, *б* приведены спектры возбуждения твердых растворов $La_{0,997}Pr_{0,003}InO_3$, $La_{0,98}Sm_{0,02}InO_3$, которые согласно литературным [1] и нашим

Рис. 1. Рентгеновские дифрактограммы индатов $La_{0,997}Pr_{0.003}InO_3$ (1), $La_{0,98}Sm_{0.02}InO_3$ (2), $La_{0.977}Pr_{0,003}Sm_{0.02}InO_3$ (3), $LaIn_{0.98}Sb_{0.02}O_3$ (4), $La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$ (5), $La_{0.977}Pr_{0,003}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$ (6), $LaIn_{0.98}Sb_{0.02}O_3$ (дополнительный обжиг) (7)

Рис. 2. Спектры возбуждения твердых растворов La_{0,997}Pr_{0,003}InO₃ при $\lambda_{per} = 655$ нм (*a*), La_{0,98}Sm_{0,02}InO₃ при $\lambda_{per} = 602$ нм (*б*), La_{0,977}Pr_{0,003}Sm_{0,02}InO₃ (*b*, *l*) и La_{0,977}Pr_{0,003}Sm_{0,02}InO₃ (*b*, *l*) при $\lambda_{per} = 654$ нм, LaIn_{0,98}Sb_{0,02}O₃ при $\lambda_{per} = 450$ нм (*c*)

данным в ряду твердых растворов La_{1-x}Pr_xInO₃, La_{1-x}Sm_xInO₃ имеют наибольшую интенсивность полос возбуждения и полос фотолюминесценции. В интервале длин волн 230-600 нм на спектре возбуждения люминесценции ($\lambda_{per} = 655$ нм) твердого раствора La_{0,997}Pr_{0,003}InO₃ (рис. 2, *a*) присутствуют две полосы возбуждения. Согласно [1], наиболее интенсивная полоса возбуждения с максимумом при длине волны $\lambda = 247$ нм обусловлена переходом $4f^2 \rightarrow 4f5d$ электронов ионов Pr³⁺. В области длин волн 430-520 нм присутствует менее интенсивная полоса возбуждения с тремя близкорасположенными максимумами при длинах волн 448, 470, 488 нм. В интервале длин волн 230-500 нм на спектре возбужде-

ния люминесценции ($\lambda_{per} = 602$ нм) твердого раствора La_{0,98}Sm_{0,02}InO₃ (рис. 2, б) самой интенсивной является полоса возбуждения с максимумом при длине волны $\lambda = 265$ нм, обусловленной, согласно [1], переносом заряда с подуровня 2*p* ионов O^{2-} на подуровень 4*f* ионов Sm³⁺ ($O^{2-} \rightarrow Sm^{3+}$). Менее интенсивные полосы возбуждения ионов Sm³⁺ с максимумами при 364, 377, 408 нм обусловлены переходами 4*f*-электронов ионов Sm³⁺ с основного уровня ${}^{6}H_{5/2}$ на возбужденные уровни ${}^{4}D_{15/2}$, ${}^{4}L_{17/2}$, ${}^{4}K_{11/2}$ соответственно [1]. Полоса возбуждения твердого раствора La_{0.98}Sm_{0.02}InO₃ с максимумом при $\lambda = 322$ нм на спектре возбуждения выражена четко (рис. 2, б), но каким переходом она обусловлена не установлено. На спектре возбуждения люминесценции ($\lambda_{per} = 654$ нм) твердого раствора $La_{0,977}Pr_{0,003}Sm_{0,02}InO_3$ (рис. 2, *в*, кривая *I*), в котором одновременно присутствуют ионы Pr^{3+} (0,3 %) и ионы Sm^{3+} (2 %), наблюдается самая интенсивная полоса возбуждения с максимумом длины волны при λ = 260 нм, состоящая из двух перекрывающихся полос возбуждения ионов Pr^{3+} ($\lambda_{makc} = 247$ нм) и Sm³⁺ ($\lambda_{makc} = 265$ нм). В интервалах длин волн 320–420 и 430–510 нм спектра возбуждения этого твердого раствора La_{0.977}Pr_{0.003}Sm_{0.02}InO₃ присутствуют полосы возбуждения небольшой интенсивности ионов Sm³⁺ с максимумами длин волн при 363, 377, 408 нм и ионов Pr³⁺ с максимумами длин волн при 447, 470, 487 нм (табл. 1). Спектр возбуждения люминесценции ($\lambda_{per} = 450$ нм) в интервале длин волн 240–500 нм твердого раствора $LaIn_{0.98}Sb_{0.02}O_3$ (рис. 2, *г*), в котором 2 % ионов In³⁺ индата LaInO₃ замещено ионами Sb³⁺, содержит лишь одну интенсивную полосу возбуждения с максимумом длины волны при $\lambda = 324$ нм (v = 30864 см⁻¹), величина которой отличается незначительно от длины волны максимума полосы возбуждения твердого раствора $La_{0.98}Sm_{0.02}InO_3$ (λ = 322 нм). При этом следует отметить, что в интервале длин волн 240-300 нм на спектре возбуждения твердого раствора LaIno 98Sb0 02O3 отсутствует интенсивная полоса возбуждения, которая присутствует на спектрах возбуждения твердого раствора $La_{0,997}Pr_{0,003}InO_3$ ($\lambda_{\text{макс}} = 247$ нм) и твердого раствора $La_{0,98}Sm_{0,02}InO_3$ ($\lambda_{\text{макс}} = 265$ нм). В интервале длин волн 290-370 нм единственная полоса возбуждения фотолюминесценции твердого раствора LaIn_{0.98}Sb_{0.02}O₃ (рис. 2, г) имеет почти симметричную форму. Это указывает на присутствие в этом интервале длин волн лишь одной полосы возбуждения люминесценции. Согласно [9], основным состоянием ионов Sb³⁺ с электронной конфигурацией $5s^2$ является ${}^{1}S_0$. При поглощении света определенной длины волны электроны $5s^2$ ионов Sb³⁺ переходят на возбужденные орбитали 5s5p (${}^{3}P_0$, ${}^{3}P_1$, ${}^{3}P_2$, ${}^{1}P_1$) [9]. На основании схемы энергетических уровней ионов Sb³⁺, расположенных в подрешетке ионов иттрия Y^{3+} кристаллической решетки бората иттрия YBO3, приведенной в работе [9], можно предположить, что полоса возбуждения ионов Sb³⁺ твердого раствора LaIn_{0.98}Sb_{0.02}O₃ с максимумом длины волны при $\lambda = 324$ нм (v = 30864 см⁻¹) обусловлена переходом ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$.

$\lambda_{\rm per} = 655 \ \rm HM$		$\lambda_{per} = 602 \text{ HM}$		$\lambda_{\rm per} = 654 \ \rm HM$					
La _{0,997} Pr _{0,003} InO ₃		La _{0,98} Sm _{0,02} InO ₃		La _{0,977} Pr _{0,00}	₃ Sm _{0,02} InO ₃	$La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_{3}$			
λ, нм	v, cm ⁻¹	λ, нм	V, CM ⁻¹	λ, нм	ν, см ⁻¹	λ, нм	ν, см ^{−1}		
247	40486	_	-		-	-	_		
_	_	265	37736	260	38462	267	37453		
-	-	322	31056	-	-	327	30581		
_	_	364	27473	363	27548	361	27701		
_	-	377	26525	377	26525	377	26525		
	_	408	24510	408	24510	408	24510		
448	22321	_	-	447	22371	448	22321		
470	21277	475	21053	470	21277	471	21231		
488	20492	-	_	487	20534	488	20492		

Таблица 1. Максимумы длин волн полос возбуждения (λ) и их обратных значений (v) для твердых растворов La_{0,997}Pr_{0,003}InO₃, La_{0,98}Sm_{0,02}InO₃, La_{0,977}Pr_{0,003}Sm_{0,02}InO₃, La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O₃

На спектре фотолюминесценции ($\lambda_{возб}$ = 260 нм) твердого раствора La_{0.997}Pr_{0.003}InO₃ (рис. 3, *a*) в интервале длин волн 400-750 нм (сине-красная область спектра видимого света) наблюдаются три интенсивные полосы фотолюминесценции, состоящие из трех близкорасположенных максимумов с длинами волн первого максимума каждой полосы при 490, 616, 694 нм, и две полосы фотолюминесценции небольшой интенсивности с максимумами длин волн при 430 и 539 нм (табл. 2). Спектры фотолюминесценции твердого раствора La_{0.98}Sm_{0.02}InO₃ получены для длин волн возбуждения (λ_{BO26}) 275 нм (рис. 3, 6) и 320 нм (рис. 3, е). В зелено-красной области видимого света (550-750 нм) на этих спектрах фотолюминесценции присутствуют четыре полосы фотолюминесценции, максимумы длин волн которых приведены в табл. 2. На спектре фотолюминесценции, полученном для длины волны возбуждения $\lambda_{возб} = 320$ нм твердого раствора La_{0.98}Sm_{0.02}InO₃ (рис. 3, в), в области длин волн 400-500 нм присутствует интенсивная полоса фотолюминесценции с максимумом длины волны при 435 нм (синяя область видимого света). Однако на спектре фотолюминесценции полученного при $\lambda_{B030} = 275$ нм твердого раствора La_{0.98}Sm_{0.02}InO₃, интенсивность этой полосы фотолюминесценции с максимумом при длине волны 435 нм очень незначительная (рис. 3, б, вставка). Согласно [1; 13], полосы фотолюминесценции твердого раствора La_{0 98}Sm_{0.02}InO₃ с максимумами при длинах волн 564, 601, 648, 716 нм (табл. 2) обусловлены переходами 4*f*-электронов ионов Sm³⁺ с возбужденного уровня ${}^{4}G_{5/2}$ на нижние уровни ${}^{6}H_{5/2}$, ${}^{6}H_{7/2}$, ${}^{6}H_{9/2}$ и ${}^{6}H_{11/2}$ соответственно. Каким переходом обусловлена полоса фотолюминесценции с максимумом при длине волны 435 нм (v_{люм} = 22989 см⁻¹), не установлено. Возможно, эта полоса фотолюминесценции с максимумом при фотолюминесценции определяется переходом 4*f*-электронов ионов Sm³⁺ с возбужденного уровня ${}^{4}F_{5/2}$ на основной уровень ${}^{6}H_{5/2}$. Согласно схеме энергетических уровней ионов Sm³⁺ [14], переходу ${}^{4}F_{5/2} \rightarrow {}^{6}H_{5/2}$ соответствует энергетический интервал ≈ 22000 см⁻¹, который отличается на 989 см⁻¹ от экспериментально полученной в настоящей работе величины $v_{\text{пом}} = 22989 \text{ см}^{-1}$.

Таблица 2. Максимумы длин волн полос фотолюминесценции ($\lambda_{люм}$), их обратные значения ($v_{люм}$) для твердых растворов La_{0,997}Pr_{0,003}InO₃ при $\lambda_{возб} = 260$ нм, La_{0,98}Sm_{0,02}InO₃, La_{0,977}Pr_{0,003}Sm_{0,02}InO₃, Ca_{0,977}Pr_{0,003}Sm_{0,02}InO₃ при $\lambda_{возб} = 320$ нм

$\lambda_{B036} = 260$ нм La _{0.997} Pr _{0.003} InO ₃		λ _{b030} = 320 hm							
		La _{0,98} Sm _{0,02} InO ₃		La _{0.977} Pr _{0,003} Sm _{0.02} InO ₃		La _{0,977} Pr _{0,003} Sm _{0,02} In _{0,98} Sb _{0.02} O ₃			
λ _{люм} , нм	ν _{люм} , см ⁻¹	λ _{люм} , нм	v _{люм} , см ⁻¹	λ _{люм} , нм	V _{люм} , см ⁻¹	λ _{люм} , нм	v _{люм} , см ^{−1}		
430	23256	435	22989	430	23256	429	23310		
490	20408	_		489	20450	489	20450		
496	20161	-	_	495	20202	495	20202		
503	19881		_	~504	~19841	503	19881		

$\lambda_{B036} = 260 \text{ HM}$		$\lambda_{\text{bogg}} = 320 \text{ Hm}$							
La _{0,997} P	r _{0,003} InO ₃	La _{0.98} Sr	n _{0,02} InO ₃	La _{0,977} Pr _{0,00}	₃ Sm _{0,02} InO ₃	La _{0,977} Pr _{0,003} Sm _{0,02} In _{0,98} Sb _{0,02} O ₃			
λ _{люм} , нм	ν _{люм} , см ⁻¹	λ _{люм} , нм	v _{люм} , см ⁻¹	λ , нм	v_{300}, cm^{-1}	λ _{люм} , нм	v _{люм} , см ⁻¹		
531	18832	-	_		-	-	_		
539	18553	_	-		-	_	-		
545	18349	-	_	<u> </u>		_	_		
	_	564	17730	564	17730	564	17730		
	_	~568	~17606	~568	~17606	~568	~17606		
		601	16639	601	16639	601	16639		
616	16234	~613	~16313	613	16313	613	16313		
623	16051	_	_	-	-	_	-		
636	15723	~643	~15552	~643	~15552	~644	~15528		
	-	648	15432	648	15432	648	15432		
655	15267	~658	~15198	658	15198	658	15198		
694	14409	-	-	-	-	_	-		
717	13947	716	13966	716	13966	716	13966		
741	13495	_	-	~745	~13423	~741	~13495		

Окончание табл. 2

На спектре фотолюминесценции твердого раствора La_{0.977}Pr_{0.003}Sm_{0.02}InO₃ при длине волны $\lambda_{B036} = 320$ нм (рис. 4, *a*), которая соответствует длине волны максимума интенсивной полосы возбуждения ионов Sm³⁺ твердого раствора La_{0,98}Sm_{0,02}InO₃, в интервале длин волн 350-730 нм наблюдаются три интенсивные и две небольшой интенсивности полосы фотолюминесценции ионов Sm³⁺, величины максимумов длин волн которых отличаются незначительно от величин максимумов длин волн полос фотолюминесценции ионов Sm³⁺ твердого раствора La_{0.98}Sm_{0.02}InO₃ (табл. 2) и отсутствуют полосы фотолюминесценции ионов Pr³⁺. Это вызвано тем, что этот спектр фотолюминесценции (рис. 4, *a*) получен при длине волны возбуждения $\lambda_{BO30} = 320$ нм, которая не благоприятна для возбуждения ионов Pr³⁺ (длина волны максимума интенсивности ближайшей полосы возбуждения ионов Pr³⁺ равна 448 нм). Однако длина волны возбуждения $\lambda_{возб} = 320$ нм благоприятна для возбуждения ионов Sm³⁺, которые имеют полосу возбуждения с максимумом интенсивности длины волны 322 нм (табл. 1). При этом самая интенсивная полоса фотолюминесценции ионов Pr³⁺ с максимумами длин волн при $\lambda = 490, 496, 503$ нм (рис. 3, *a*, табл. 2) перекрывается с хвостом интенсивной полосы фотолюминесценции ионов Sm³⁺ с максимумом длины волны при 435 нм (рис. 3, в). В результате такого перекрывания полос фотолюминесценции ионов Sm³⁺ и ионов Pr³⁺ на ниспадающей ветви полосы фотолюминесценции с максимумом длины волны при λ = 489 нм наблюдается аномалия, которая на рис. 4, а отмечена стрелкой. На спектре фотолюминесценции твердого раствора La_{0,977}Pr_{0,003}Sm_{0,02}InO₃ (рис. 4, δ), полученном при длине волны возбуждения $\lambda_{B036} = 405$ нм, которая соответствует длине волны максимума полосы возбуждения ионов Sm³⁺ (408 нм) твердого раствора La_{0,98}Sm_{0,02}InO₃ (рис. 2, δ , табл. 1), в интервале длин волн 500–750 нм наблюдаются только полосы фотолюминесценции ионов Sm³⁺ и по причине, изложенной выше, не наблюдаются полосы фотолюминесценции твердого раствора La_{0,977}Pr_{0,003}Sm_{0,02}InO₃, полученного при длине волны возбуждения 320 нм (рис. 4, a), на спектре фотолюминесценции, полученном при длине волны возбуждения 405 нм, отсутствует интенсивная полоса

Рис. 4. Спектры фотолюминесценции твердого раствора $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$ при $\lambda_{воз\delta} = 320$ нм (*a*). 405 нм (*b*), 470 нм (*b*) и 500 нм (*c*)

фотолюминесценции ионов Sm³⁺ с максимумом длины волны при 435 нм. На спектре фотолюминесценции твердого раствора La_{0 977}Pr_{0.003}Sm_{0.02}InO₃ при $\lambda_{B035} = 470$ нм (рис. 4, *в*) наблюдаются как полосы фотолюминесценции ионов Pr^{3+} , так и ионов Sm^{3+} (табл. 3). Это вызвано тем, что длина волны возбуждения $\lambda_{возб} = 470$ нм соответствует максимумам интенсивной полосы возбуждения ионов Pr^{3+} при длинах волн 448, 470, 488 нм (табл. 1, рис. 2, *a*) и практически равна длине волны максимума при $\lambda = 475$ нм полосы возбуждения очень небольшой интенсивности ионов Sm³⁺ (рис. 2, б, вставка). Однако длина волны возбуждения λ_{возб} = 470 нм значительно отличается от длины волны максимума ближайшей полосы возбуждения средней интенсивности ионов Sm³⁺ при $\lambda = 408$ нм (рис. 2, б). На спектре фотолюминесценции при длине волны возбуждения $\lambda_{BO36} = 500$ нм, также как и при $\lambda_{BO36} = 470$ нм, благоприятной для возбуждения ионов Pr^{3+} твердого раствора $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$, в интервале длин волн 550-740 нм (рис. 4, г) наблюдаются две интенсивные полосы фотолюминесценции ионов Pr³⁺, максимумы длин волн которых (655 и 741 нм, табл. 3) не отличаются от величин максимумов длин волн полос фотолюминесценции ионов Pr³⁺ (655, 741 нм) твердого раствора La_{0 997}Pr_{0 003}InO₃ (табл. 2). Две полосы фотолюминесценции небольшой интенсивности на спектре фотолюминесценции твердого раствора La_{0 977}Pr_{0.003}Sm_{0.02}InO₃ при $\lambda_{B030} = 500$ нм (рис. 4, г) с максимумами длин волн 623, 693 нм (табл. 3) также практически не отличаются от величин максимумов длин волн полос фотолюминесценции ионов Pr³⁺ (623, 694 нм, табл. 2, рис. 3, а) твердого раствора La_{0,997}Pr_{0,003}InO₃. Однако на спектре фотолюминесценции при длине волны возбуждения 500 нм (рис. 4, *г*) наблюдается полоса фотолюминесценции с максимумом длины волны 603 нм (табл. 3), которая отличается незначительно от длины волны 601 нм максимума интенсивной полосы фотолюминесценции ионов Sm³⁺ твердого раствора $La_{0.98}Sm_{0.02}InO_3$ (рис. 3, δ , ϵ , табл. 2). Такой вид спектра фотолюминесценции твердого раствора La_{0.977}Pr_{0.003}Sm_{0.02}InO₃ при $\lambda_{BO36} = 500$ нм, вероятно, обусловлен тем, что при возбуждении этого твердого раствора светом с длиной волны $\lambda_{воз 6} = 500$ нм происходит преимущественное поглощение энергии ионами Pr^{3+} и в меньшей степени ионами Sm³⁺. Это следует из того, что на спектре возбуждения твердого раствора La_{0.997}Pr_{0.003}InO₃ присутствует интенсивная полоса возбуждения с максимумом длины волны $\lambda = 488$ нм, которая лишь на 12 нм меньше длины волны 500 нм. Длина волны 475 нм максимума полосы возбуждения ионов ${\rm Sm}^{3+}$ твердого раствора ${\rm La}_{0.98}{\rm Sm}_{0.02}{\rm InO}_3$ также незначительно отличается от $\lambda_{BO30} = 500$ нм, но она имеет очень небольшую интенсивность. Длина волны максимума полосы возбуждения средней интенсивности ионов Sm³⁺ твердого раствора $La_{0.98}Sm_{0.02}InO_3$ (рис. 2, б) равна 408 нм, т. е. она значительно меньше длины волны $\lambda_{возб} = 500$ нм и является неблагоприятной для возбуждения ионов Sm³⁺.

$La_{0,977}Pr_{0,003}Sm_{0,02}InO_3$						$La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_{3}$					
λ _{возб} = 405 нм		λ _{возб} = 470 нм		λ _{возб} = 500 нм		$\lambda_{B036} = 405 \text{ HM}$		λ _{возб} = 470 нм		$\lambda_{\rm bogg} = 500 \ \rm Hm$	
λ _{люм} , нм	ν _{люм} , см ^{~1}	λ _{люм} , нм	v _{люм} , см ⁻¹	$\lambda_{\rm arom}$, hm	V _{люм} , см ⁻¹	λ _{люм} , нм	v _{люм} , см ⁻¹	λ _{люм} , нм	ν _{люм} , см ⁻¹	λ _{люм} , нм	ν _{люм} , см ⁻¹
	_	488	20492	-	-	_	-	488	20492	-	-
		494	20243		-	-	—	494	20243	-	-
		502	19920		-	_	-	502	19920	-	-
_	_	530	18868	-	-	_	-	530	18868	—	-
_		537	18622		-	-	-	538	18587	-	—
	-	544	18382		-		-	544	18382	-	_
564	17730	564	17730	-	-	564	17730	564	17730	_	-
569	17575	568	17606	-	-	569	17575	568	17606	-	-
602	16611	602	16611	603	16584	602	16611	602	16611	603	16584
613	16313	615	16260	615	16260	613	16313	614	16287	615	16260
-	_	622	16077	623	16051	-		621	16103	623	16051
643	15552	~643	~15552	~638	~15674	642	15576	643	15552	~638	~15674
648	15432	650	15385	650	15385	648	15432	648	15432	~652	~15337
658	15198	655	15268	655	15268	658	15198	655	15267	656	15243
	-	692	14451	693	14430	-	-	693	14430	694	14409
717	13947	717	13947	718	13928	716	13966	716	13966	718	13928
-	-	741	13495	741	13495	-		740	13514	742	13477

Таблица 3. Максимумы длин волн полос фотолюминесценции ($\lambda_{люм}$), их обратные значения ($v_{люм}$) для твердых растворов La_{0.977}Pr_{0.003}Sm_{0.02}InO₃, La_{0.977}Pr_{0.003}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ при $\lambda_{возб}$ = 405, 470, 500 нм

Спектр фотолюминесценции ($\lambda_{BO30} = 320$ нм) твердого раствора LaIn_{0.98}Sb_{0.02}O₃ (рис. 5, δ) в интервале длин волн 350–750 нм содержит лишь одну полосу фотолюминесценции почти симметричной формы с максимумом при длине волны $\lambda = 430$ нм (v = 23256 см⁻¹). Эта полоса фотолюминесценции ионов Sb³⁺ твердого раствора LaIn_{0.98}Sb_{0.02}O₃ перекрывается с полосой фотолюминесценции твердого раствора La_{0,98}Sm_{0,02}InO₃ ($\lambda_{возб} = 320$ нм) с максимумом при длине волны 435 нм (рис. 3, 6). Сдвиг Стокса полосы фотолюминесценции ионов Sb³⁺ с $\lambda_{\text{макс}} = 320$ нм, рассчитанный по величинам волновых чисел 30864 и 23256 см⁻¹ полос возбуждения и фотолюминесценции соответственно, равен 7608 см⁻¹ и он отличается незначительно от величины сдвига Стокса полосы фотолюминесценции с максимумом при $\lambda_{\text{макс}} = 435$ нм ионов Sb³⁺, расположенных в подрешетке ионов Sc³⁺ кри-сталлической решетки бората скандия ScBO₃ (7900 см⁻¹) [5]. На рис. 5, *a*, *b*-*e* сопоставлены спектры фотолюминесценции твердых растворов La_{0,98}Sm_{0,02}InO₃ $(\lambda_{B030} = 320$ нм), La_{0.977}Pr_{0.003}Sm_{0.02}InO₃ ($\lambda_{B030} = 320, 405, 470, 500$ нм, рис. 5, кривые 1) и твердых растворов $La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$ (рис. 5, кривые 2), в которых проведено замещение 2 % ионов In³⁺ ионами Sb³⁺. Анализ спектров фотолюминесценции, приведенных на рис. 5, показывает, что интенсивность полос фотолюминесценции ионов Sm³⁺, Pr³⁺ твердых растворов, содержащих ионы Sb³⁺ (рис. 5, кривые 2), значительно больше, чем интенсивность соответствующих полос фотолюминесценции ионов Sm³⁺, Pr³⁺ тверлых

Рис. 5. Спектры фотолюминесценции твердых растворов $La_{0,98}Sm_{0.02}InO_3$ (*a*, *1*), $La_{0,98}Sm_{0.02}In_{0,98}Sb_{0,02}O_3$ (*a*, *2*), $LaIn_{0,98}Sb_{0,02}O_3$ (*b*) при $\lambda_{B036} = 320$ нм; твердых растворов $La_{0,977}Pr_{0,003}Sm_{0,02}InO_3$ (*1*), $La_{0,977}Pr_{0,003}Sm_{0,02}InO_3$ (*2*) при $\lambda_{B036} = 320$ нм (*b*), 405 нм (*c*), 470 нм (*d*) и 500 нм (*e*)

растворов, не содержащих ионов Sb³⁺ (рис. 5, кривые 1). Это показывает, что ионы Sb³⁺, расположенные в подрешетке ионов In³⁺ соответствующего твердого раствора на основе LaInO₃, являются хорошим сенсибилизатором фотолюминесценции как ионов Sm³⁺, так и ионов Pr³⁺, расположенных в редкоземельной подрешетке этих твердых растворов. Согласно [15], передача сенсибилизатором поглощенной энергии ионам активатора может происходить в том случае, когда полоса фотолюминесценции ионов сенсибилизатора перекрывается с полосой поглощения (возбуждения) ионов активатора. Это условие выполняется для твердых растворов на основе LaInO₃, легированных одновременно ионами Sb³⁺, Sm³⁺ (рис. 5, *a*). Установлено, что длина волны максимума интенсивной полосы фото-

люминесценции ионов Sb³⁺ ($\lambda_{возб}$ = 320 нм) твердого раствора LaIn_{0.98}Sb_{0.02}O₃ (рис. 5, б) равна 430 нм, а длины волн максимумов полос возбуждения средней интенсивности ионов Sm³⁺ на спектрах возбуждения люминесценции твердых растворов $La_{0,98}Sm_{0,02}InO_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}InO_3$ равны 408 нм (табл. 1). Следовательно, для ионов Sb³⁺, Sm³⁺, содержащихся в твердых растворах $La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, $La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O_3$, выполняется основное условие существования эффекта сенсибилизации и при воздействии на твердый раствор на основе LaInO₃, содержащего ионы Sb³⁺, Sm³⁺, светом с длиной волны 320, 405 нм поглощенная ионами Sb³⁺ энергия передается ионам Sm³⁺, что и приводит к увеличению интенсивности полос фотолюминесценции ионов Sm³⁺. На спектрах фотолюминесценции твердых растворов La_{0.977}Pr_{0.003}Sm_{0.02}InO₃ (рис. 4, *e*, *e*), $La_{0.977}Pr_{0.003}Sm_{0.02}In_{0.98}Sb_{0.02}O_3$ (рис. 5, *d*, *e*), полученных при $\lambda_{B035} = 470,500$ нм, присутствуют преимущественно полосы фотолюминесценции ионов Pr³⁺ и некоторые полосы фотолюминесценции ионов Sm³⁺. Анализ этих спектров фотолюминесценции, приведенных на рис. 5, д, е, показывает, что ионы Sb³⁺ являются хорошим сенсибилизатором фотолюминесценции не только ионов Sm³⁺, но и ионов Pr³⁺, содержащихся в твердом растворе La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O₃. Это возможно, так как и для ионов Sb³⁺, Pr³⁺ этого твердого раствора на основе LaInO₃ также выполняется основное условие сенсибилизационного воздействия ионов Sb³⁺, приводящее к увеличению ин-тенсивности полос фотолюминесценции ионов Pr³⁺. Такое увеличение интенсивности фотолюминесценции ионов Pr³⁺ ионами Sb³⁺ возможно, так как полоса фотолюминесценции ионов Sb³⁺ твердого раствора $LaIn_{0.98}Sb_{0.02}O_3$ имеет максимум интенсивности при 430 нм, а интенсивная полоса возбуждения ионов Pr³⁺ в твердых растворах La_{0 997}Pr_{0 003}InO₃, La_{0 977}Pr_{0 003}Sm_{0 02}InO₃ имеет максимум интенсивности при $\lambda = 448$ нм. Следовательно, и в данном случае выполняется условие сенсибилизации фотолюминесценции ионов Pr³⁺ ионами Sb³⁺.

Заключение. Установлено, что длина волны максимума интенсивности полосы фотолюминесценции ионов Sb³⁺ ($\lambda_{B036} = 320$ нм) твердого раствора LaIn_{0,98}Sb_{0,02}O₃ равна 430 нм, а длина волны максимума полосы возбуждения небольшой интенсивности ионов Sm³⁺ твердого раствора La_{0,98}Sm_{0,02}InO₃ равна 408 нм. Отсюда следует, что усиление фотолюминесценции ионов Sm³⁺ твердого раствора La_{0,98}Sm_{0,02}InO₃ равна 408 нм. Отсюда следует, что усиление фотолюминесценции ионов Sm³⁺ твердого раствора La_{0,98}Sm_{0,02}In_{0,98}Sb_{0,02}O₃ ионами Sb³⁺ наблюдается благодаря выполнению условия передачи поглощенной энергии ионами сенсибилизатора (Sb³⁺) ионам активатора (Sm³⁺), согласно которому полоса фотолюминесценции сенсибилизатора должна перекрываться с полосой возбуждения активатора. Это условие также выполняется и для ионов Pr³⁺, Sb³⁺ твердого раствора La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O₃, так как полоса фотолюминесценции ионов Sb³⁺ этого твердого раствора имеет максимум интенсивности при длине волны 430 нм, а длина волны максимума интенсивности полосы возбуждения нонов Pr³⁺ твердого раствора La_{0,997}Pr_{0,003}InO₃ равна 448 нм. Экспериментально сенсания ионов Sm³⁺ твердого раствора La_{0,997}Pr_{0,003}InO₃ равна 448 нм. Экспериментально сенсания ионов Sm³⁺ твердого раствора La_{0,997}Pr_{0,003}InO₃ равна 448 нм. Экспериментально сенсания ионов Sm³⁺ твердого раствора La_{0,997}Pr_{0,003}InO₃ равна 448 нм. Экспериментально сенсания ионов Sm³⁺ твердого раствора La_{0,997}Pr_{0,003}InO₃ равна 448 нм. Экспериментально сенсания ионов Sm³⁺ твердого раствора La_{0,997}Pr_{0,003}InO₃ равна 448 нм.

подтверждено значительным усилением интенсивности полос фотолюминесценции ионов Sm³⁺, Pr³⁺ на спектрах фотолюминесценции ($\lambda_{B036} = 320, 405, 470, 500$ нм) твердого раствора La_{0,977}Pr_{0,003}Sm_{0,02}In_{0,98}Sb_{0,02}O₃ по сравнению с интенсивностью полос фотолюминесценции твердого раствора La_{0,977}Pr_{0,003}Sm_{0,02}InO₃.

Работа выполнена при финансовой поддержке Государственного комитета по науке и технологиям Республики Беларусь и Белорусского республиканского фонда фундаментальных исследований (грант X14ЛАТ-074).

Литература

1. Liu X., Lin J. // Solid State Sci. 2009. Vol. 11. P. 2030-2036.

2. Laksminarasimhan N., Varadaraju U.V. // Mater. Res. Bull. 2006. Vol. 41. P. 724-731.

3. Tang An, Zhang D., Yang L., Wang X. // Optoelec. Adv. Mater. 2011. Vol. 5, N 10. P. 1031-1034.

4. Van Steensel L. I., Bokhove S. G., Van de Craats A.M. et al. // Mater. Res. Bull. 1995. Vol. 30, Issue 11. P. 1359–1362.

5. Oomen E. W. J. L., Van Gorkom L. C. G., Smit W. M. A., Blasse G. // J. Solid State Chem. 1986. Vol. 65. P. 156-167.

6. Chen L., Yang G., Liu J. et al. // J. Appl. Phys. 2009. Vol. 105. P. 013513.

7. Chen L., Jiang Y., Chen S. et al. // J. Lumin. 2008. Vol. 128. P. 2048–2052.

8. Chen L., Deng X., Xue S. et al. // J. Lumin. 2014. Vol. 149. P. 144-149.

9. Chen L., Luo A. Q., Zhang Y. et al. // J. Solid State Chem. 2013. Vol. 201. P. 229-236.

10. Шаскольская М. П. Кристаллография. М.: Высш. шк., 1976. С. 138-139.

11. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standart: Card № 00-047-0067.

12. Курбанов Х. М., Цейтлин М. Н., Турчанинов А. М. и др. // Кристаллография. 1978. Т. 23, вып. 6. С. 1286–1287.

13. Кандидатова И. Н. Физико-химические свойства твердых растворов на основе галлатов, индатов редкоземельных элементов со структурой перовскита: автореф. дис. ... канд. хим. наук. М., 2014. С. 16.

14. Тейлор К., Дарби М. Физика редкоземельных элементов. М.: Мир, 1974. С. 23.

15. Blasse G. // Materials Chemistry and Physics. 1987. Vol. 16. P. 201-236.

E. K. YUKHNO, L. A. BASHKIROV, P. P. PERSHUKEVICH, N. A. MIRONOVA-ULMANE, A. G. SARAKOVSKIS

EXCITATION AND EMISSION SPECTRA OF SOLID SOLUTIONS BASED ON LANTHANUM INDATE DOPED BY Pr³⁺, Sm³⁺, Sb³⁺ IONS

Summary

Excitation and emission spectra of $La_{0.997}Pr_{0.003}InO_3$, $La_{0.98}Sm_{0.02}InO_3$, $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$, $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$, $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$, $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$, $Solid solutions were investigated. It was established that both <math>Pr^{3+}$ and Sm^{3+} ions emission bands were presented at $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$ solid solution emission spectra but they were observed under different excitation wavelengths. It was found that Sb^{3+} ions were good sensitizer of Pr^{3+} and Sm^{3+} ions photoluminescence and that was confirmed by significant amplification of emission bands in $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3Sm_{0.02}O_3$ in comparison with $La_{0.977}Pr_{0.003}Sm_{0.02}InO_3$ under 320, 405, 470, 500 nm excitation wavelengths.