ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2009, том 54, № 7, с. 1077–1080

СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 54-31:546.66:536.413:537.31/.32

СТРУКТУРА И ЭЛЕКТРОТРАНСПОРТНЫЕ СВОЙСТВА КУПРОКОБАЛЬТИТОВ LnBaCuCoO_{5 + δ} (Ln = Y, Dy)

© 2009 г. А.И.Клындюк

Белорусский государственный технологический университет, Минск Поступила в редакцию 25.03.2008 г.

Получены купрокобальтиты LnBaCuCoO_{5 + δ} (Ln = Y, Dy), определены параметры их кристаллической структуры, на воздухе в интервале температур 300–1100 К изучены их термическое расширение, электропроводность и термоэлектродвижущая сила. Соединения кристаллизуются в тетрагональной сингонии (пр. гр. *P4/mmm*) с параметрами элементарной ячейки *a* = 0.3867(2), *c* = 0.7550(7) нм, *V* = 112.9(2) × $\times 10^{-3}$ нм³ для YBaCuCoO_{4.98} и *a* = 0.3872(2), *c* = 0.7562(7) нм, *V* = 113.4(2) × 10⁻³ нм³ для DyBaCuCoO_{5.01} и являются полупроводниками *p*-типа. Величина электропроводности DyBaCuCoO_{5 + δ} несколько ниже, а коэффициента термо-ЭДС в 1.5–2 раза выше, чем для YBaCuCoO_{5 + δ} катионов P3Э (4*d*⁰ для Y³⁺ и 4*f*⁹ для Dy³⁺). Согласно дилатометрическим данным, в интервале температур 300–1100 K фазы LnBaCuCoO_{5 + δ} не претерпевают структурных фазовых превращений, а величина их коэффициента линейного термического расширения составляет 14.3 × 10⁻⁶ K⁻¹ для Ln = Y и 14.7 × 10⁻⁶ K⁻¹ для Ln = Dy.

Кислорододефицитные перовскиты являются ламеллярными оксидами с сильной корреляцией между структурой, магнитными и электротранспортными свойствами. Сильное перекрывание незаполненных 3*d*-электронных орбиталей катионов переходных металлов и 2*p*-орбиталей анионов кислорода играет ключевую роль в поведении этих оксидов, представителями которых являются сверхпроводящие купраты LnBa₂Cu₃O_{7- δ} (Ln = P3Э) [1], магнеторезистивные манганиты LnBaMn₂O_{6-*g*} [2], а также кобальтиты LnBaCo₂O_{5 + δ} [3], ферриты LnBaFe₂O_{5 + δ} [4], феррокупраты LnBaCuFeO_{5 + δ} (Ln = Y [7], La [8]).

Соединение YBaCuCoO₅ относится к тетрагональной сингонии (пр. гр. *P4/mmm*) с параметрами a = 0.38679(1), c = 0.75674(2) нм [7] и является антиферромагнетиком, температура Нееля которого составляет 536 [7], 515 К [9]. Купрокобальтит лантана-бария LaBaCuCoO_{5.6} имеет орторомбическую структуру (пр. гр. *Pmmm*) с параметрами ячейки a = 0.39223(3), b = 0.39360(3), c = 1.17073(8) нм [8]. Антиферромагнитное упорядочение магнитных моментов катионов меди и кобальта в фазе LaBaCuCoO_{5.6} наблюдается ниже 205 К [8].

Цель настоящей работы – исследование кристаллической структуры, термического расширения, электропроводности и термоэлектродвижущей силы слоистых купрокобальтитов LnBaCuCoO_{5 + δ} (Ln = Y, Dy).

МЕТОДИКА ЭКСПЕРИМЕНТА

Порошки купрокобальтитов LnBaCuCoO_{5 + δ} (Ln = Y, Dy) получали керамическим методом из Y₂O₃ (Ит-OB), Dy₂O₃ (ДиО-3), BaCO₃ (ч.), Co₃O₄ (ч.д.а.) и CuO (ос.ч. 9-2) на воздухе при 1173 К в течение 40 ч. Для изучения физико-химических свойств из полученных порошков прессовали таблетки диаметром 10 мм и толщиной 3–5 мм и бруски размером $5 \times 5 \times 30$ мм, которые затем спекали на воздухе при 1223–1233 К в течение 5–10 ч.

Рентгенофазовый анализ (**РФА**) образцов проводили на дифрактометре Bruker D8 XRD (Cu K_{α} -излучение). Содержание в образцах избыточного кислорода (δ) контролировали при помощи иодометрии ($\Delta \delta = \pm 0.01$). Инфракрасные спектры поглощения порошков записывали в таблетированных смесях с KBr (х.ч.) на Фурье-спектрометре Nexus фирмы ThermoNicolet в интервале частот 300–1500 см⁻¹. Погрешность определения частот колебаний не превышала ± 2 см⁻¹.

Термическое расширение, электропроводность (σ) и термоэлектродвижущую силу (S) спеченных образцов исследовали на воздухе в интервале температур 300–1100 К по методикам [6, 10]. Полученные экспериментально значения электропроводности пересчитывали на нулевую пористость [10, 11]. Значения энергии активации электропроводности (E_{σ}) и термо-ЭДС (E_{S}) образцов находили из линейных участков зависимостей соответственно $\ln(\sigma T) = f(1/T)$ и S = f(1/T) (коэффициент корреляции $R \ge 0.999$). Погрешность определения коэффи-

Рис. 1. Порошковая рентгенограмма DyBaCuCoO_{5.01} (*1*) (Си K_{α} -излучение), рефлексы (200) и (004) (2, 3) и ИК-спектры поглощения (4, 5) фаз DyBaCuCoO_{5.01} (2, 4) и YBaCuCoO_{4.98} (3, 5).

циента линейного термического расширения (**КЛТР**, α) образцов не превышала 5%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

После заключительной стадии отжига при 1233 К образцы купрокобальтитов были в пределах погрешности РФА однофазными и имели тетрагональную структуру (пр. гр. *P4/mmm* (рис. 1)), параметры которой увеличивались (табл. 1) с ростом ионного радиуса РЗЭ ($R_{Y^{3+}} = 0.1015$ нм, $R_{Dy^{3+}} = 0.103$ нм для КЧ = 8 [12]). Найденные нами значения параметров элементарной ячейки купрокобальтита иттрия-

Таблица 1. Значения параметров (a, c), объема (V) и степени тетрагонального искажения элементарной ячейки $(\eta = c/2a)$ для купрокобальтитов LnBaCuCoO_{5 + δ}

Образец	а, нм	С, НМ	$10^3 \times V$, нм ³	η
DyBaCuCuO _{5.01}	0.3872(2)	0.7562(7)	113.4(2)	0.9765
YBaCuCoO _{4.98}	0.3867(2)	0.7550(7)	112.9(2)	0.9762

бария находятся в хорошем согласии с литературными данными [7].

Согласно данным иодометрии, содержание кислорода в фазах LnBaCuCoO_{5 + δ} составило 5 + δ = 4.98 для Ln = Y и 5 + δ = 5.01 для Ln = Dy. В [9] было установлено, что медь в YBaCuCoO₅ находится в виде Cu^{2+} , а кобальт – в виде Co^{2+} (в высокоспиновом (**BC**) состоянии $(t_{2g}^5 e_g^2))$ и Со³⁺ (в промежуточноспиновом (ПС) состоянии ($t_{2g}^5 e_g^1$)). Сопоставляя наши данные с результатами [8], можно заключить, что степень кобальта окисления составляет +2.96для YBaCuCoO_{4.98} и +3.02 для DyBaCuCoO_{5.01}, а кобальт в этих фазах находится в основном в виде Со³⁺ (ПС) и частично в виде Со²⁺ (ВС) и Со⁴⁺ (ПС) (в YBaCuCoO_{4.98} и DyBaCuCoO_{5.01} соответственно).

В ИК-спектрах поглощения купрокобальтитов (рис. 1) наблюдаются три полосы поглощения с максимумами при 372–378 (v₁), 565–569 (v₂) и 663–665 (v₃) см⁻¹, отвечающие валентным (v₂) и деформационным (v₁) колебаниям связей металлкислород в плоскостях [Cu(Co)O₂], а также валентным колебаниям апикального кислорода Cu–O–Co связей (v₃) в структуре этих фаз [6, 13]. Как видно (рис. 1), значения (v₁–v₃) для фаз LnBaCuCoO_{5 + 8}

Образец	$\alpha \times 10^6$, K ⁻¹	<i>Е</i> _о , эВ	<i>Е_S</i> , эВ	<i>Е</i> _m , эВ
DyBaCuCoO _{5 + δ}	14.7	0.285	0.133 (<i>T</i> < 775 K)	0.152 (<i>T</i> < 775 K)
			0.282 (T > 775 K)	0.003 (T > 775 K)
$YBaCuCoO_{5+\delta}$	14.3	0.352	0.168	0.184

Таблица 2. Величины КЛТР (α) и энергий активации процессов электропереноса ($E_{\sigma}, E_{S} = E_{p}, E_{m}$) для слоистых купро-кобальтитов LnBaCuCoO_{5 + δ}

(Ln = Y, Dy) близки, из чего следует, что близки также величины энергии металл-кислородных взаимодействий в структуре этих фаз.

Зависимости $\Delta l/l_0 = f(T)$ для купрокобальтитов иттрия(диспрозия)-бария были линейными, что указывает на отсутствие структурных фазовых переходов у этих фаз в исследованном интервале температур. Гистерезис на зависимостях $\Delta l/l_0 = f(T)$ (а также $\sigma = f(T)$, S = f(T)), полученных в режимах нагревания—охлаждения, практически отсутствовал, а результаты, полученные в результате неоднократного термоциклирования образцов, воспроизводились в пределах погрешности эксперимента, что указывает на обратимость процессов, протекающих в образцах. Значения КЛТР (α) соединений LnBaCuCoO_{5+ δ} (Ln = Y, Dy) представлены в табл. 2.

Как видно из рис. 2, фазы LnBaCuCoO_{5+δ} (Ln = Y, Dy) являются полупроводниками *p*-типа, величина электропроводности DyBaCuCoO_{5+δ} несколько ниже, а коэффициент термо-ЭДС значительно (в 1.5–2 раза) выше, чем для YBaCuCoO_{5+δ}, при этом последнее, вероятно, обусловлено различиями в электронной конфигурации входящих в состав LnBaCuCoO_{5+δ} катионов P3Э (4*d*⁰ для Y³⁺ и 4*f*⁹для Dy³⁺). Максимум на зависимостях S = f(T) вблизи 500 К (рис. 2, а) для исследованных купрокобальтитов вызван, видимо, изменением спинового состояния входящих в состав этих фаз катионов кобальта аналогично спиновым переходам Co³⁺ в RCoO₃ [14].

Для веществ с поляронным характером переноса заряда температурные зависимости электропроводности и термо-ЭДС описываются соотношениями

$$\sigma = \frac{A}{T} \exp\left(-\frac{E_{\sigma}}{kT}\right), \ S = \frac{k}{e} \left(-\frac{E_{S}}{kT} + B\right),$$

где $E_{\sigma} = (E_S + E_m)$ и E_S – соответственно энергии активации электропроводности и термо-ЭДС [15]. Величина E_S соответствует энергии возбуждения полярона, а параметр E_m – энергии его переноса (при безактивационном переносе заряда поляронами большого радиуса (ПБР) $E_m \approx 0$; если $E_m > 0$, то перенос заряда термически активирован и осуществляется поляронами малого радиуса (ПМР) по прыжковому механизму).

Значения параметров E_{σ} , E_{S} и E_{m} оксидов LnBaCuCoO_{5+ δ} (Ln = Y, Dy), определенные из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$ и S = f(1/T), приведены в табл. 2. Как видно, повышение температуры приводит к изменению механизма переноса заряда в DyBaCuCoO_{5+ δ}: при T < 775 K электротранспорт в этой фазе осуществляется переносом ПМР, а при T > 775 К – ПБР ($E_{\rm m} \approx 0$). Энергия возбуждения и переноса ПМР в YBaCuCoO₅ приблизительно на 20% выше, чем в DyBaCuCoO_{5 + δ} (табл. 2), что, вероятно, обусловлено размерным фактором (величина ячейки YBaCuCoO₅ несколько меньше, чем DyBaCuCoO_{5 + δ}), различиями в зарядовом состоянии ионов кобальта в этих фазах (Со²⁺/Со³⁺ для УВаСиСоО_{4.98} и Со³⁺/Со⁴⁺ для DyBaCuCoO_{5.01}), а также тем, что в формировании транспортных свойств

Рис. 2. Температурные зависимости термо-ЭДС (а) и электропроводности (б) купрокобальтитов DyBaCuCoO_{5 + δ} (l), YBaCuCoO_{5 + δ} (2).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 54 № 7 2009

купрокобальтита диспрозия-бария могут принимать участие 4*f*-электроны катиона Dy³⁺.

Работа выполнена при поддержке ГКПНИ "Кристаллические и молекулярные структуры" (задание 33).

СПИСОК ЛИТЕРАТУРЫ

- 1. Третьяков Ю.Д., Гудилин Е.А. // Успехи химии. 2000. Т. 69. № 1. С. 3.
- Beales T.P., Möllg M., Jutson J., Friend C.M. // Phys. Stat. Sol. (a). 1997. V. 161. P. 271.
- Roy S., Dubenko I.S., Khan M. et al. // Phys. Rev. B. 2005. V. 71. P. 024419.
- 4. Karen P. // J. Solid State Chem. 2004. V. 177. P. 281.
- 5. *Linden J., Kochi M., Lehmus K. et al.* // J. Solid State Chem. 2002. V. 166. P. 118.
- 6. *Клындюк А.И., Чижова Е.А.* // Неорган. материалы. 2006. Т. 42. № 5. С. 611.

- Huang Q., Karen P., Karen V.L. et al. // J. Solid State Chem. 1994. V. 108. P. 80.
- Suescun L., Jones C.Y., Cardoso C.A. et al. // Phys. Rev. B. 2005. V. 71. P. 144405.
- Barbey L., Nguyen N., Caignaert V. et al. // J. Solid State Chem. 1994. V. 112. P. 148.
- 10. *Клындюк А.И., Чижова Е.А.* // Весці НАН Беларусі. Сер. хім. навук. 2007. № 4. С. 11.
- *Tripathi A.K., Lal H.B.* // Mater. Res. Bull. 1980. V. 15. № 2. P. 233.
- 12. *Shannon R.D., Prewitt C.T. //* Acta Crystallogr. B. 1969. V. 25. Pt. 5. P. 946.
- 13. Atanassova Y.K., Popov V.N., Bogachev G.G. et al. // Phys. Rev. B. 1993. V. 47. № 22. P. 15201.
- Itoh M., Hashimoto J., Yamaguchi S., Tokura Y. // Physica B. 2000. V. 281&282. P. 510.
- Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. В 2-х т. Т. 1. М.: Мир, 1982. 368 с.

1080