УДК 54-31:546.66:536.413:537.31/.32

СТРУКТУРА И СВОЙСТВА СЛОИСТОГО ОКСИДА GdBaFeNiO_{5 + δ}

© 2010 г. А. И. Клындюк

Белорусский государственный технологический университет, Минск Поступила в редакцию 20.08.2009 г.

Получен ферроникелат гадолиния-бария, изучены его кристаллическая структура, тепловое расширение и электрические свойства. Соединение кристаллизуется в тетрагональной сингонии (пр. гр. *P4/mmm*) с параметрами элементарной ячейки *a* = 0.3910(2) нм, *c* = 0.7582(6) нм, *V* = 115.9(2) × × 10⁻³ нм³ (δ = 0.53) и является полупроводником *p*-типа. Величина коэффициента линейного теплового расширения GdBaFeNiO_{5+ δ} составляет 1.32 × 10⁻⁵, 1.72 × 10⁻⁵ и 1.37 × 10⁻⁵ K⁻¹ для температур 340–655, 655–870 и 870–1080 К соответственно.

введение

типа Слоистые перовскитные оксиды RBaM'M"О_{5+δ} (R – Y, РЗЭ; М', М" – 3*d*-металл) обладают интересными электрофизическими характеристиками, которые позволяют рассматривать их как возможные материалы для катодов твердоэлектролитных топливных элементов [1], полупроводниковых химических сенсоров газов [2], а также термоэлектрических преобразователей [3, 4]. В литературе описаны слоистые феррокупраты RBaFeCuO_{5+\delta} [3-7], феррокобальтиты RBaFeCoO₅₊₆ [3, 4, 8, 9] и купрокобальтиты RBaCuCoO₅₊₆ [4, 8, 10–12]. Сведения о слоистых ферроникелатах RBaFeNiO₅₊₈ отсутствуют.

Цель данной работы — изучение кристаллической структуры полученного слоистого оксида GdBaFeNiO₅₊₈ и определение на воздухе в интервале температур 300—1100 К его свойств: теплового расширения, электропроводности и термо-ЭДС.

МЕТОДИКА ЭКСПЕРИМЕНТА

Ферроникелат гадолиния-бария GdBaFeNiO_{5+δ} синтезировали керамическим методом [5] из Gd₂O₃ ("х.ч."), BaCO₃ ("ч."), Fe₂O₃ (OCЧ 2-4) и NiO (OCЧ 10-2) на воздухе в интервале температур 1170–1470 К в течение 50 ч. На заключительной стадии керамику отжигали при 1170 К на воздухе в течение 5 ч для насыщения образцов кислородом.

РФА образца проводили на дифрактометре Brukег D8 XRD Advance (Си K_{α} -излучение). ИК-спектр поглощения порошка записывали в таблетированной смеси с KBr ("х.ч.") на Фурье-спектрометре Nexus фирмы ThermoNicolet в интервале частот 300–1500 см⁻¹ ($\Delta v \leq 2$ см⁻¹). Содержание в образце слабосвязанного кислорода (δ) определяли иодометрически ($\Delta \delta = \pm 0.01$). Тепловое расширение ($\Delta l/l_0$), электропроводность (σ) и термо–ЭДС (S) керамики измеряли на воздухе в интервале температур 300—1100 К в динамическом режиме со средней скоростью нагрева—охлаждения 3—5 К/мин по методикам, приведенным в [3, 5, 6]. Значения энергии активации электропроводности (E_a) и термо-ЭДС (E), а также величины коэффициента линейного теплового расширения (**КЛТР**) (α) ферроникелата GdBaFeNiO_{5+ δ} находили из линейных участков зависимостей

$$\ln(\sigma T) = f(1/T),$$
$$S = f(1/T),$$
$$\Delta l/l_0 = f(T)$$

(коэффициент корреляции $R \ge 0.999, \delta(E_a, E, \alpha) \le \le \pm 5\%$).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

После завершения синтеза образец GdBaFeNiO_{5+δ} был (в пределах погрешности РФА) однофазным и имел тетрагональную структуру, рефлексы которой были проиндицированы в рамках пр. гр. *P4/mmm* (рис. 1) с параметрами элементарной ячейки a = 0.3910(2) нм, c = 0.7582(6) нм, $V = 115.9(2) \times 10^{-3}$ нм³.

Согласно результатам иодометрии, содержание слабосвязанного кислорода в GdBaFeNiO_{5+δ} составило $\delta = 0.53$. Можно заключить, что средняя степень окисления катионов 3*d*-металлов в этом соединении равна 2.83+. Найденные нами значения параметров элементарной ячейки GdBaFeNiO_{5.53} хорошо согласуются с литературными данными для GdBaFeCuO_{5.08} (a = 0.3895 нм, c = 0.7993 нм [3, 5]) и GdBaFeCuO_{5.37} (a = 0.3908 нм, c = 0.7613 нм [3]). Как видно, параметр a для фаз GdBaFeMO_{5+δ} принимает близкие значения, что характерно для слоистых оксидов RBaM'M"O_{5+δ} [4], в то время как параметр c уменьшается в ряду М: Cu \rightarrow Co \rightarrow Ni (антибатно содержанию в образцах слабосвязанного кислорода δ).

Рис. 1. Дифрактограмма (1) и ИК-спектры поглощения (2, 3) фаз GdBaFeNiO_{5.53} (1, 2) и GdBaFeCuO_{5.08} (3) [5].

На ИК-спектре поглощения порошка состава GdBaFeNiO_{5 53} (рис. 1) наблюдаются три выраженные полосы поглощения с максимумами при 367 (v_1) , 544—577 (v_2) и 670 (v_3) см⁻¹, соответствующие валентным (v_2) и деформационным (v_1) колебаниям металл-кислородных связей плоскостях в $[(Fe,Ni)O_2]$, а также валентным колебаниям апикального кислорода (Fe,Ni)–O–(Fe,Ni) связей (v₃) в его структуре [5, 13]. Как видно, в структуре GdBaFeNiO_{5.53} энергия взаимодействия металлкислород в слоях $[(Fe,Ni)O_2]$ меньше, чем в направлении оси c ($v_2 < v_3$), что хорошо коррелирует с ре-PΦA зультатами (осевое отношение для

GdBaFeNiO_{5.53} составляет
$$\frac{c}{2a} = 0.9696$$
).

Сравнение спектров поглощения фаз $GdBaFeMO_{5+\delta}$ (M – Ni, Cu) (рис. 1) позволяет сделать два вывода:

1) энергия взаимодействий металл—кислород в слоях [(Fe, M)O₂] практически не зависит от $\delta(v_2(M - -Ni) = (544 + 577)/2 = 560.5 \text{ см}^{-1} \approx v_2 (M - Cu) = 560 \text{ см}^{-1}$), а в направлении оси *с* возрастает с ростом $\delta(v_3(M - Cu) = 560 \text{ см}^{-1} < v_3(M - Ni) = 570 \text{ см}^{-1}$);

2) расщепление синглета v_2 для GdBaFeCuO_{5.08} на дублет для GdBaFeNiO_{5.53} указывает на то, что энергия взаимодействий металл–кислород в слоях [(Fe, Ni)O₂] зависит от окружения в них кислорода и различается для связей Ni–O–Ni и Fe–O–Fe, которым, очевидно, соответствуют низко- (544 cm^{-1}) и высокочастотное (577 см⁻¹) плечи полосы поглощения v_2 .

На зависимости $\Delta l/l_0 = f(T)$ для GdBaFeNiO_{5+δ} наблюдаются два излома при температурах $T_1 = 655$ К и $T_2 = 870$ К, сопровождающиеся изменением КЛТР образца (рис. 2). Возрастание КЛТР GdBaFeNiO_{5+δ} в области температур 655–870 К ($T_1 < T < T_2$) обусловлено, по всей видимости, тем фактом, что именно в этом интервале температур происходит интенсивное выделение из образцов слабосвязанного кислорода [5, 8, 12]. Таким образом, в интервале температур 655–870 К расширение оксида GdBaFeNiO_{5+δ} имеет как тепловую (рост ангармонизма колебаний), так и химическую природу (увеличение концентраций кислородных вакансий).

Как видно из рис. 3, ферроникелат гадолиниябария является полупроводником *p*-типа, характер проводимости которого изменяется от полупроводникового ($\partial \sigma / \partial T > 0$) к металлическому ($\partial \sigma / \partial T < 0$) при $T_3 = 725$ К, а коэффициент термо-ЭДС начинает резко увеличиваться вблизи $T_4 = 690$ К, что обусловлено термической диссоциацией этого соединения [5, 8, 12].

Сравнив электрофизические свойства слоистых перовскитных оксидов GdBaM'M"O_{5+ δ} (M'M" – FeCu, FeCo, CuCo) [3–5, 12], можно сделать два заключения:

1) вид зависимостей $\sigma = f(T)$ для фаз GdBaM'M"O_{5+ δ} не зависит от природы входящих в их состав 3*d*-металлов, а величина проводимости ок-

КЛЫНДЮК

Рис. 2. Температурная зависимость относительного удлинения слоистого ферроникелата GdBaFeNiO₅₊₈.

2) величина термо-ЭДС и вид зависимостей S = f(T) фаз GdBaM'M"О_{5+ δ} сильно зависят от природы 3*d*-металлов в их составе. Иначе говоря, электропроводность слоистых перовскитных оксидов RBaM'M"О_{5+ δ} (при одном и том же R) зависит в основном от их кислородной стехиометрии, тогда как термо-ЭДС в значительной степени определяется природой 3*d*-металлов, входящих в состав этих оксидов.

Энергия активации электропроводности GdBaFeNiO_{5+δ} в исследованном интервале температур составила $E_a = 0.231$ эВ, а энергия активации термо-ЭДС E = 0.042 эВ. Для веществ с поляронным характером переноса заряда, к которым относятся слоистые перовскитные оксиды [4, 8, 9, 12], энергия активации термо-ЭДС отвечает энергии возбуждения полярона, а энергия переноса полярона (W) может быть найдена из выражения

$$W = E_a - E$$

(при переносе заряда поляронами большого радиуса $W \approx 0$; если W > 0, то перенос заряда осуществляется поляронами малого радиуса по прыжковому

Рис. 3. Температурные зависимости электропроводности (а) и термо-ЭДС (б) фаз GdBaFeNiO_{5+ δ} (*1*), GdBaFeCuO_{5+ δ} (*2*) [4], GdBaFeCuO_{5+ δ} (*3*) [4] и GdBaFeCoO_{5+ δ} (*4*) [4].

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 46 № 12 2010

механизму) [14]. Значение W = 0.189 эВ, из чего следует, что перенос заряда в GdBaFeNiO_{5+ δ} осуществляется поляронами малого радиуса.

ЗАКЛЮЧЕНИЕ

Синтезирован новый слоистый оксид GdBaFeNiO_{5.53}. Изучены его кристаллическая структура, тепловое расширение и электрофизические свойства. Соединение имеет тетрагональную структуру (пр. гр. *P4/mmm*) с параметрами элементарной ячейки a = 0.3910(2) нм, c = 0.7582(5) нм и является полупроводником *p*-типа.

Найдены параметры электропереноса (энергия возбуждения и переноса носителя заряда) в GdBaFeNiO₅₊₈, а также величина его КЛТР: 1.37×10^{-5} , 1.72×10^{-5} и 1.37×10^{-5} К⁻¹ для интервалов температур 340–655, 655–870 и 870–1080 К соответственно.

Работа выполнена при поддержке ГКПНИ "Кристаллические и молекулярные структуры" (задание 33).

СПИСОК ЛИТЕРАТУРЫ

- Zhou Q., He T., He Q., Ji Ya. Electrochemical Performances of LaBaFeCuO_{5+x} and LaBaFeCoO_{5+x} as Potential Cathode Materials for Intermediate–Temperature Solid Oxide Fuel Cells // Electrochem. Commun. 2009. V. 11. P. 80–83.
- Klyndziuk A., Petrov G., Kurhan S. et al. Sensor Properties of Some Perovskite-Like Metal Oxides // Chem. Sensors. 2004. V. 20. Suppl. B. P. 854–855.
- Klyndyuk A.I., Chizhova Ye.A. Thermoelectric Properties of the Layered Oxides LnBaCo(Cu)FeO_{5+δ} (Ln – La, Nd, Sm, Gd) // Funct. Mater. 2009. V. 16. № 1. P. 17–22.
- 4. Клындюк А.И., Чижова Е.А., Сазанович Н.В., Красуцкая Н.С. Термоэлектрические свойства не-

которых перовскитных оксидов // Термоэлектричество. 2009. № 3. С. 72–80.

- 5. *Клындюк А.И., Чижова Е.А.* Свойства фаз RBaCuFeO_{5+δ} (R − Y, La, Pr, Nd, Sm−Lu) // Неорган. материалы. 2006. Т. 42. № 5. С. 611–622.
- Pissas M., Mitros C., Kallias G. et al. Synthesis, Thermogravimetric and ⁵⁷Fe Moessbauer Studies of the Oxygen Deficient Perovskite REBaCuFeO_{5+x} Series (RE = Y, Nd, Sm, Gd, Dy, Tm, Lu) // Physica C. 1992. V. 192. P. 35–40.
- 7. *Linden J., Kochi M., Lehmus K. et al.* Interplay between Cu and Fe Valences in Ba $R(Cu_{0.5}Fe_{0.5})_2O_{5+\delta}$ Double Perovskites with R = Lu, Yb, Y, Eu, Sm, Nd, and Pr // J. Solid State Chem. 2002. V. 166. P. 118–127.
- Клындюк А.И. Новые перовскитные оксиды LaBaMCoO_{5+δ} (M = Fe, Cu): синтез, структура и свойства // ФТТ. 2009. Т. 51. Вып. 2. С. 26–260.
- Клындюк А.И., Чижова Е.А. Структура и электрофизические свойства феррокобальтитов LnBaFeCoO_{5+δ} (Ln = Tb, Dy, Ho, Y) // ФТТ. 2009. Т. 51. Вып. 4. С. 625-629.
- Barbey L., Nguyen N., Caignaert V. et al. Spin State and Variation of the Spin Orientation of Co(III) in the 112-Type Phase YBa(Co_{2-x}Cu_x)O₅ // J. Solid State Chem. 1994. V. 112. P. 148–156.
- Suescun L., Jones C.Y., Cardoso C.A. et al. Structural and Magnetic Study of LaBaCoCoO_{5+δ} // Phys. Rev. B. 2005. V. 71. P. 144405 (9 p.).
- Клындюк А.И., Чижова Е.А. Слоистые купрокобальтиты RBaCuCoO_{5+δ} (R = Nd, Sm, Gd): синтез, структура и свойства // Журн. неорган. химии. 2009. Т. 54. № 7. С. 1072–1076.
- Atanassova Y.K., Popov V.N., Bogachev G.G. et al. Raman- and Infrared-Active Phonons in YBaCuFeO₅: Experimental and Lattice Dynamics // Phys. Rev. B. 1993. V. 47. № 22. P. 15201–15207.
- 14. *Мотт Н., Дэвис Э.* Электронные процессы в некристаллических веществах. Т. 1. М.: Мир, 1982. 368 с.