УДК 54-165+621.785.36+537.31

СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ Nd_{1-x}Gd_xCoO₃

© 2004 г. С. В. Курган, Г. С. Петров, Л. А. Башкиров, А. И. Клындюк

Белорусский государственный технологический университет, Минск Поступила в редакцию 27.02.2004 г.

Керамическим методом получены NdCoO₃, GdCoO₃ и твердые растворы Nd_{1-x}Gd_xCoO₃ (x = 0.1-0.9). Определены параметры их кристаллической решетки. В интервале температур 300–1110 К на воздухе изучены их электропроводность и термическое расширение. Установлено, что все исследованные твердые растворы имеют структуру орторомбически искаженного перовскита. Для всех твердых растворов обнаружены аномалии электропроводности и термического расширения, соответствующие фазовому переходу полупроводник–металл.

ВВЕДЕНИЕ

Кобальтиты АСоО3 (А – редкоземельный или щелочноземельный элемент) и их твердые растворы со структурой перовскита известны достаточно давно и исследованы относительно полно [1-3]. Интерес к данным объектам обусловлен их высокой электропроводностью [4], особыми магнитными свойствами [5] и заметной электрохимической и каталитической активностью [6]. Установлено, что в кобальтитах лантана, неодима и гадолиния в интервале температур 320-860 К наблюдается фазовый переход типа полупроводник-металл, обусловленный переходом ионов кобальта из низкоспинового состояния $Co^{3+}(t_{2g}^6 e_g^0)$ в промежуточноспиновое Со³⁺ $(t_{2g}^5 \sigma^{*1})$ [7–10]. Есть основания предполагать, что данные кобальтиты могут образовывать непрерывный ряд твердых растворов Ln'_{1-x}Ln["]_xCoO₃, где Ln', Ln" – La, Nd, Gd. Однако в литературе отсутствуют сведения по систематическому комплексному исследованию двойных и тройных твердых растворов кобальтитов этих элементов. Известна единственная работа [11], в которой получены твердые растворы La_{1-x}Ln'_xCoO₃ $(Ln' - Sm, Ho), Sm_{1-r}Ln''_{r}$ (Ln" – Er, Yb) и определены их параметры кристаллической решетки.

Цель настоящей работы – определение параметров кристаллической решетки, исследование электропроводности и термического расширения образцов Nd_{1-x}Gd_xCoO₃ (x = 0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00) в интервале температур 300–1100 К.

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы синтезировали по керамической технологии из оксидов неодима, гадолиния, кобальта высокой чистоты. После первоначального обжига на воздухе при 1470 К в течение 10 ч полученные таблетки перемалывали в порошок. Для изучения электропроводности и дилатометрических измерений из полученного порошка под давлением 150 МПа прессовали таблетки диаметром 10 и толщиной 3 мм и бруски размером $5 \times 5 \times 30$ мм, которые затем спекали на воздухе в течение 5 ч при 1470 К. РФА полученных образцов проводили на дифрактометре ДРОН-3 с использованием Cu K_{α} - или Co K_{α} -излучения. Точность определения параметров кристаллической решетки составляла ±0.0005 нм.

Электропроводность спеченных поликристаллических таблеток измеряли на воздухе в интервале температур 300–1100 К на постоянном токе с использованием четырехзондового метода [12]. Термическое расширение полученных образцов $Nd_{1-x}Gd_xCoO_3$ изучали на кварцевом дилатометре собственной конструкции, описанном в [12], при нагревании на воздухе в интервале температур 300–1100 К. Точность шкалы индикатора часового типа составляла 0.001 мм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Согласно результатам РФА, все синтезированные образцы были однофазными. Параметры кристаллической структуры определяли при помощи программы FullProf методом Ритвельда. Из полученных дифрактограмм видно, что кобальтиты NdCoO₃, GdCoO₃ имеют орторомбически искаженную структуру перовскита, причем для GdCoO₃ степень искажения выше, чем для NdCoO₃. Все твердые растворы Nd_{1-x}Gd_xCoO₃ также имели структуру орторомбически искаженного перовскита. При этом степень орторомбического искажения увеличивалась по мере повышения содержания в них гадолиния, что наглядно проявляется в постепенном увеличении расщепления рентгеновских линий и увеличении интенсивности линии при $2\theta = 26.4^{\circ}$ (рис. 1).

Рис. 1. Дифрактограммы Nd_{1-x}Gd_xCoO₃ при *x* = 0 (*1*), 0.1 (*2*), 0.25 (*3*), 0.5 (*4*), 0.75 (*5*), 0.9 (6), 1.0 (*7*).

Полученные данные (табл. 1) показывают, что замещение иона Nd³⁺ меньшим ионом Gd³⁺ приводит к нелинейному уменьшению параметров *a*, *c* и к увеличению параметра *b* и степени орторомбического искажения $\varepsilon = \frac{b-a}{a}$ элементарной ячейки твердых растворов Nd_{1-x}Gd_xCoO₃. Отметим, что рассчитанные параметры *a*, *b*, *c* (табл. 1) кристаллической структуры GdCoO₃ хорошо согласуются с данными [7], а значения параметров *a*, *b*, *c* для NdCoO₃ хорошо согласуются с данными [13].

Результаты измерения электропроводности образцов приведены на рис. 2. Видно, что для всех образцов в интервале температур 400-800 К наблюдается достаточно размытый фазовый переход полупроводник-металл.

При нагревании исследованных твердых растворов происходит постепенный переход от полупроводникового типа проводимости к металлическому, при котором электропроводность увеличивается на 2–6 порядков. Наибольшей (и примерно равной) электропроводностью во всем исследованном температурном интервале обладают образцы NdCoO₃ и твердого раствора Nd_{0.9}Gd_{0.1}CoO₃. Однако у них переход от полупроводниковой к металлической электропроводности приводит к значительно меньшему росту электропроводности, чем

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 40 № 11 2004

Состав	а, нм	<i>b</i> , нм	С, НМ	$\epsilon \times 10^2$
NdCoO ₃	0.5336	0.5328	0.7542	-0.150
Nd _{0.9} Gd _{0.1} CoO ₃	0.5330	0.5332	0.7540	0.038
Nd _{0.75} Gd _{0.25} CoO ₃	0.5334	0.5319	0.7527	-0.281
Nd _{0.5} Gd _{0.5} CoO ₃	0.5290	0.5350	0.7508	1.134
Nd _{0.25} Gd _{0.75} Co	0.5262	0.5369	0.7481	2.033
Nd _{0.1} Gd _{0.9} CoO ₃ O ₃	0.5232	0.5381	0.7462	2.848
GdCoO ₃	0.5218	0.5390	0.7445	3.296

Таблица 1. Параметры кристаллической решетки и степень орторомбического искажения (ε) NdCoO₃, GdCoO₃ и твердых растворов Nd_{1-x}Gd_xCoO₃

у других твердых растворов исследованной системы NdCoO₃-GdCoO₃.

На полученных нами температурных зависимостях удельной электропроводности (рис. 2), как и в других работах [4, 13, 14], сравнительно четко фиксируются температуры, при которых фазовый переход полупроводник–металл приближается к своему завершению, так как при этих температурах резко замедляется рост электропроводности. Для кобальтитов GdCoO₃, NdCoO₃ они соответственно равны 860 и 750 К.

Как видно из рис. 2, высокотемпературный фазовый переход полупроводник-металл у твердых растворов со структурой перовскита имеет место в сравнительно большом интервале температур (320-860 К) и протекает, вероятно, через ряд промежуточных стадий. Поскольку полученные зависимости $ln\sigma(1/T)$ не были линейными во всем исследованном интервале температур, они были разбиты на 3 прямолинейных участка, по которым определены энергии активации проводимости (табл. 2), соответствующие определенному электронному состоянию ионов кобальта. Первый – низкотемпературный (для исследованного интервала температур) линейный участок характеризует поведение электропроводности полупроводникового кобальтита $Nd_{1-x}Gd_xCoO_3$ ниже температуры начала интенсивного перехода ионов кобальта из низкоспинового состояния $(t_{2g}^6 e_g^0)$ в промежуточное $(t_{2g}^5 \sigma^{*1})$. К сожалению, для большинства исследованных нами кобальтитов Nd_{1-x}Gd_xCoO₃, за исключением NdCoO₃, Nd_{0.9}Gd_{0.1}CoO₃, этот участок выявляется не очень четко, так как расположен вблизи комнатной температуры и ему принадлежит лишь небольшое число экспериментально измеренных величин электропроводности. В табл. 2 энергия активации электропроводности, определенная в этой области температур, обозначена как E_{a_1} . Затем следует область температур фазового перехода полупроводник-металл. Энергия активации, определенная по прямой, проведенной через большинство экспериментальных точек в интервале температур фазового перехода полупроводник-металл, обозначена как E_{a_2} (табл. 2). Энер-

Рис. 2. Температурные зависимости удельной электропроводности $Nd_{1-x}Gd_xCoO_3$ при x = 0 (*1*), 0.1 (*2*), 0.25 (*3*), 0.5 (*4*), 0.75 (*5*), 0.9 (*6*), 1.0 (*7*).

Состав	<i>Т</i> ₁ , К	<i>T</i> ₂ , K	<i>Е</i> _{<i>a</i>} , эВ		
			E_{a_1}	E_{a_2}	E _{a3}
NdCoO ₃	340	750	0.039	0.840	0.048
$Nd_{0.9}Gd_{0.1}CoO_3$	325	735	0.085	0.800	0.023
Nd _{0.75} Gd _{0.25} CoO ₃	350	680	0.152	0.881	0.063
$Nd_{0.5}Gd_{0.5}CoO_3$	360	750	0.201	0.856	0.018
Nd _{0.25} Gd _{0.75} CoO ₃	365	830	0.261	0.916	0.076
$Nd_{0.1}Gd_{0.9}CoO_3$	345	750	0.339	0.810	0.061
GdCoO ₃	390	860	0.272	1.18	0.291

Таблица 2. Значения энергии активации электропроводности (E_a) в уравнении $\sigma = \sigma_0 \exp(-E_a/(RT))$ для NdCoO₃, GdCoO₃ и твердых растворов Nd_{1-x}Gd_xCoO₃

гия активации E_{a_3} рассчитана для области температур выше температуры T_2 , при которой начинается резкое замедление роста электропроводности, так как процесс перехода в металлическое состояние почти завершен (хотя и не полностью).

Рис. 3. Температурные зависимости относительного удлинения образцов $Nd_{1-x}Gd_xCoO_3$ при x = 0 (1), 0.1 (2), 0.25 (3), 0.5 (4), 0.75 (5), 0.9 (6), 1.0 (7).

Видно, что величины E_{a_1} , E_{a_2} , E_{a_3} возрастают незначительно с увеличением содержания Gd³⁺ в образцах Nd_{1-x}Gd_xCoO₃, при этом для GdCoO₃, NdCoO₃ они несколько больше, чем приведенные в [1].

Результаты измерения термического расширения приведены на рис. 3. На температурных зависимостях относительного удлинения образцов наблюдаются аномалии (изломы), связанные с фазовым переходом полупроводник-металл.

На основании дилатометрических данных рассчитаны величины среднего линейного коэффициента термического расширения (а) образцов для различных температурных интервалов, которые имеют такую же природу, как и интервалы температур на зависимостях $ln\sigma(1/T)$ (табл. 3). Коэффициенты $\alpha_1, \alpha_2, \alpha_3$, приведенные в табл. 3, отвечают состояниям соответственно до температуры Т₁ – начала фазового перехода полупроводник-металл; интервалу температур, в котором протекает этот фазовый переход, и выше температуры Т2, т.е. в металлическом состоянии. Коэффициенты α_1 твердых растворов с x > 0.5, в ~2 раза меньше, чем α_1 у твердых растворов, богатых неодимом. В металлическом состоянии все исследованные кобальтиты имеют приблизительно одинаковые коэффициенты термического расширения α_3 . Коэффициенты термического расширения (α_2) исследованных кобальтитов в интервале температур $T_1 - T_2$, т.е. в интервале температур фазового перехода полупроводник-металл, несколько выше величин α₁ и α₃, отвечающих соответственно состояниям до и после этого фазового перехода. Сравнение температур T_1 , определенных по зависимостям $\ln\sigma(1/T)$ (табл. 2) и $\Delta l/l_0(T)$ (табл. 3), показывает, что они для твердых растворов одинакового состава отличаются не более чем на 50 К. При этом для всех исследованных кобальтитов значения температур T_1 , определенные по элект-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 40 № 11 2004

Состав	$\alpha_1 \times 10^5, \mathrm{K}^{-1}$	<i>T</i> ₁ , K	$\alpha_2 \times 10^5$, K ⁻¹	<i>T</i> ₂ , K	$\alpha_3 \times 10^5, \mathrm{K}^{-1}$
NdCoO ₃	2.22	385	3.24	700	1.97
$Nd_{0.9}Gd_{0.1}CoO_3$	2.71	370	3.81	695	2.09
$Nd_{0.75}Gd_{0.25}CoO_3$	1.72	390	3.72	745	2.17
$Nd_{0.5}Gd_{0.5}CoO_3$	1.98	400	3.35	710	2.06
$Nd_{0.25}Gd_{0.75}CoO_3$	1.23	395	2.92	720	2.12
$Nd_{0.1}Gd_{0.9}CoO_3$	1.34	385	2.88	785	1.94
GdCoO ₃	1.07	400	2.70	790	2.04

Таблица 3. Средние значения коэффициентов линейного термического расширения (α_1 , α_2 , α_3) для NdCoO₃, GdCoO₃ и твердых растворов Nd_{1-x}Gd_xCoO₃

ропроводности, были ниже, чем определенные по тепловому расширению. Приблизительно на такую же величину отличаются и температуры T_2 , определенные по электропроводности и тепловому расширению для твердых растворов с x > 0.5. При этом для всех исследованных твердых растворов Nd_{1-x}Gd_xCoO₃ величины температур T_2 , определенные по тепловому расширению, постепенно увеличиваются при повышении содержания гадолиния. Такая же закономерность прослеживается и для значений T_2 , определенных по электропроводности, но с отдельными исключениями.

Меньшая величина α для GdCoO₃ по сравнению с NdCoO₃ может быть связана с упрочнением связи между ионами металла и кислорода за счет уменьшения межионного расстояния. По этой же причине удельная электропроводность GdCoO₃ на несколько порядков меньше электропроводности NdCoO₃.

ЗАКЛЮЧЕНИЕ

Керамическим методом получены NdCoO₃, GdCoO₃ и твердые растворы Nd_{1-x}Gd_xCoO₃ (x = 0.1-0.9), определены параметры их кристаллической решетки. В интервале температур 300–1110 К на воздухе изучены их термическое расширение и электропроводность.

Установлено, что все твердые растворы имеют структуру орторомбически искаженного перовскита. Для всех исследованных образцов обнаружены аномалии электропроводности и термического расширения, соответствующие фазовому переходу полупроводник-металл.

Значения температуры начала фазового перехода и энергии активации проводимости полупроводниковой фазы в области температур фазового перехода увеличиваются с ростом *x*.

Обнаружено значительное увеличение среднего термического коэффициента линейного расширения твердых растворов в области фазового перехода по сравнению с величинами для этих фаз до начала и после завершения фазового перехода.

Авторы благодарят И.О. Троянчука за помощь в обработке рентгеновских данных и обсуждении результатов.

Работа выполнена при финансовой поддержке МНТЦ (проект B-625).

СПИСОК ЛИТЕРАТУРЫ

- 1. Пальгуев С.Ф., Гильдерман В.К., Земцов В.И. Высокотемпературные оксидные электронные проводники для электрохимических устройств. М.: Наука, 1990. 198 с.
- 2. *Хартон В.В.* Дис. ... канд. хим. наук. Минск, 1993. 185 с.
- 3. *Вашук В.В.* Дис. ... докт. хим. наук. Минск, 2000. 310 с.
- Черепанов В.А., Петров А.Н., Кропанев А.Ю. и др. Электрические свойства двойных оксидов РЗЭ и кобальтита состава RCoO₃ // Журн. физ. химии. 1981. Т. 55. № 7. С. 1856–1857.
- Aso K., Miyahara S. The Crystal Structure and Magnetic Property of GdCoO₃ // J. Phys. Soc. Jpn. 1964. V. 19. № 4. P. 778–779.
- Хартон В.В., Наумович Е.Н., Жук П.П. и др. Физико-химические и электрохимические свойства электродных материалов Ln(Sr)CoO₃ // Электрохимия. 1992. Т. 28. № 12. С. 1693–1702.
- Bhide V.G., Rajoria D.S. Mossbauer Studies of the High-Spin-Low-Spin Equilibria and the Localized-Collective Electron Transition in LaCoO₃ // Phys. Rev. 1972. V. 6. № 3. P. 1021–1032.
- 8. Senaris-Rodriguez M.A., Goodenough J.B. Magnetic and Transport Properties of the System $La_{1-x}Sr_xCoO_{3-\delta}$ $(0 < x \le 0.5)$ // J. Solid State Chem. 1995. V. 118. No 2. P. 323–336.
- 9. *Itoh Masayuki, Hashimoto Junichi, Yamaguchi Shinya, Tokura Yoshiniri.* Spin State and Metal-Insulator Transition in LaCoO₃ and RCoO₃ (R = Nd, Sm and Eu) // Physica B. 2000. V. 281 & 282. P. 510–511.

1394

- Sudheendra L., Motin Seikh Md., Raju A.R., Narayana Chandrabhas. An Infrared Spectroscopic Study of the Low-Spin to Intermediate-Spin State (¹A₁ – ³T₁) Transition in Rare Earth Cobaltates, LnCoO₃ (Ln = La, Pr and Nd). // Chem. Phys. Lett. 2001. V. 340. P. 275–281.
- Sadaoka Y., Sakamoto M., Nunziante P., Gusmano G. Rare Earth Perovskite-Type Oxides Containing Three Metal Elements from the Decomposition of Heteronuclear Complexes // Proc. Int. Conf. on Electronic Ceramics and Application "Electroceramics V". Portugal: University of Aveiro, 1996. V. 2. P. 421–424.
- Petrov G.S., Clyndyuck A.I., Massyuck S.V. et al. Thermal Expansion and Electrical Conductivity of Some High-Temperature Superconductor Solid Solutions of Type 123 // High Temp. – High Pressures. 1998. V. 30. P. 483–488.
- Bahadur D. Spin-State Equilibrium in LuCoO₃ // Indian J. Chem., Sect. A. 1976. V. 14. P. 204–206.
- 14. *Rao C.N.R.*, *Parkash O.*, *Bahadur D.*, *Ganguly P*. Itinerant Electron Ferromagnetism in Sr²⁺-, Ca²⁺-, and Ba²⁺-Doped Rare-Earth Orthocobaltites (Ln³⁺_{1-x}M²⁺_xCoO₃) // J. Solid State Chem. 1977. V. 22. № 3. P. 353–360.