УДК 54-165.2:536.413:537.31/.32

А. И. КЛЫНДЮК

СТРУКТУРА И СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ Pr_{1-x}Nd_xBaCoFeO₅₊₆

Белорусский государственный технологический университет

(Поступила в редакцию 26.10.2010)

Слоистые кислороддефицитные оксиды семейства перовскита типа 0112 (двойные перовскиты) содержат в своей структуре слабосвязанный кислород и обладают уникальными электрофизическими свойствами, что позволяет рассматривать их как перспективные материалы для катодов среднетемпературных твердооксидных топливных элементов, термоэлектрических генераторов, химических сенсоров газов и т. д. [1–4]. Феррокобальтиты легких редкоземельных элементов (РЗЭ) и бария LnBaCoFeO_{5+ δ} (Ln – La, Pr, Nd) характеризуются высоким содержанием слабосвязанного кислорода (δ) и одновременно высокими значениями электропроводности и термо-ЭДС [3], в связи с чем эти соединения могут выступать в качестве перспективной основы для разработки новых функциональных оксидных материалов различного назначения. Функциональные свойства слоистых перовскитов можно значительно улучшить путем частичного замещения катионов в их структуре, поэтому исследование кристаллической структуры и физико-химических свойств твердых растворов в системах на основе двойных перовскитов представляет значительный научный и практический интерес.

В настоящей работе приведены результаты исследования структуры и свойств твердых растворов в системе PrBaCoFeO_{5+δ}–NdBaCoFeO_{5+δ}.

Порошки фаз $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ (x = 0,00; 0,25; 0,50; 0,75; 1,00) получали керамическим методом из Pr_6O_{11} (ч.), Nd_2O_3 (ч.), $BaCO_3$ (ч.), Co_3O_4 (ч.) и Fe_2O_3 (ос. ч.) на воздухе при температурах 1173–1473 К. Для исследования теплового расширения, электропроводности и термо-ЭДС из полученных порошков прессовали таблетки диаметром 10 мм и толщиной 3–5 мм и бруски размером 5×5×30 мм, которые спекали на воздухе при 1473 К. Плотность керамики после спекания составляла 85–92% от теоретического значения.

Рентгенофазовый анализ (РФА) полученных образцов проводили на дифрактометре Bruker D8 Advance XRD (Германия) при комнатной температуре. Содержание кислорода в образцах определяли путем иодометрического титрования. Инфракрасные спектры поглощения порошков записывали в таблетированных смесях с KBr (х. ч.), содержащих $\approx 0,5$ мас.% вещества, на Фурьеспектрометре Nexus фирмы «ThermoNicolet» в интервале частот 300–1500 см⁻¹. Тепловое расширение, электропроводность (четырехконтактный метод) и термо-ЭДС керамических образцов Pr_{1-x}Nd_xBaCoFeO₅₊₈ исследовали на воздухе в интервале температур 300–1100 К в динамическом режиме со скоростью нагрева–охлаждения 3–5 К·мин⁻¹. Для измерения электропроводности и термо-ЭДС на поверхности образцов формировали серебряные электроды вжиганием серебряной пасты (суспензия мелкодисперсного серебра в изоамилацетате) при 1073 К в течение 5 мин. Полученные экспериментально значения электропроводности образцов пересчитывали на нулевую пористость по методике [5]. Значения энергии активации электропроводности (E_A) и термо-ЭДС (E_S), а также коэффициента линейного теплового расширения (КЛТР, α) исследованных оксидов находили из линейных участков зависимостей ln(σT) = f(1/T), S = f(1/T) и $\Delta l/l_0 = f(T)$.

После завершения синтеза образцы $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ были однофазными в пределах погрешности РФА и имели тетрагонально искаженную структуру перовскита ($a \approx a_p$, $c \approx 2a_p$,

Рис. 1. Зависимости параметров (*a*, *c*) элементарной ячейки и индекса кислородной нестехиометрии (δ) твердых растворов Pr_{1-x}Nd_xBaCoFeO_{5+δ} от степени замещения празеодима неодимом (*x*)

c < 2a), параметр *a* элементарной ячейки которой практически не изменялся, а параметр *c* уменьшался с ростом *x* (рис. 1, кривые *l*, *2*), что обусловлено «лантанидным сжатием» (согласно [6], значения ионных радиусов Pr³⁺ и Nd³⁺ составляют для к. ч. 8 0,114 и 0,112 нм соответственно). Согласно результатам иодометрии, содержание слабосвязанного кислорода (δ) в образцах уменьшалось при замещении празеодима неодимом (рис. 1, кривая *3*) и составляло 0,79 и 0,65 для *x* = 0 и *x* = 1 соответственно; таким образом, средняя степень окисления катионов 3*d*-металлов (железа и кобальта) в феррокобальтитах празеодима(неодима)–бария изменялась в пределах от + 3,29 (для PrBaCoFeO_{5+ δ}) до + 3,15 (для NdBaCoFeO_{5+ δ}).

ИК спектр поглощения фазы PrBaCoFeO_{5.79} содержал три полосы поглощения с экстремумами при 372 (v₁), 586 (v₂) и 660 (v₃) см⁻¹, соответствующие деформационным (v₁) и валентным (v₂) колебаниям связей (Co/Fe)–O–(Co/Fe) в слоях [(Co/Fe)O₂] (в направлении, перпендикулярном оси *c*) и валентным колебаниям апикального кислорода (v₃) связей (Co/Fe)–O–(Co/Fe) (в направлении оси *c*) кристаллической структуры этой фазы [7, 8]. На ИК спектрах остальных оксидов $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ наблюдалось только две выраженных полосы поглощения с экстремумами при 366–382 и 582–596 см⁻¹, отвечающие со-

ответственно деформационным и валентным колебаниям (Co/Fe)–O–(Co/Fe) связей в их структуре. Однородность значений v_1 и v_2 для исследованных феррокобальтитов празеодима(неодима)–бария указывает на то, что интенсивность металлкислородных взаимодействий в слоях [(Co/Fe)O₂] их структуры и, следовательно, расстояния (Co/Fe)–O в базальной плоскости близки. Результаты ИК спектроскопии поглощения хорошо согласуются с данными РФА, согласно которым, замещение празеодима неодимом в $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ практически не влияет на величину параметра *a* кристаллической структуры этих двойных перовскитов (рис. 1).

Отсутствие полосы поглощения v₃ для неодимсодержащих фаз $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ указывает на то, что металлкислородные полиэдры (Co/Fe)O₆ в их структуре имеют форму неискаженного октаэдра (в отличие от полиэдров (Co/Fe)O₆ в PrBaCoFeO_{5+\delta}, которые имеют форму октаэдра, сплющенного в направлении оси *c*). Полученные результаты позволяют высказать предположение о том, что тетрагональное искажение перовскитной структуры фаз $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ (0,25 $\leq x \leq 1,00$) достигается за счет наклона октаэдров MO₆ (M = Fe, Co), а не за счет их искажения, как для большинства кислороддефицитных двойных перовскитов [8–10].

На температурных зависимостях относительного удлинения ($\Delta l/l_0 = f(T)$) образцов LnBaCoFeO_{5+δ} (Ln = Pr, Nd) наблюдался излом при температурах $T^* = 820$ K для Ln = Pr и $T^* = 650$ K для Ln = Nd, сопровождающийся возрастанием KЛTP образцов на 50–60% (таблица). Обнаруженная аномалия теплового расширения фаз LnBaCoFeO_{5+δ} связана с выделением из их структуры слабосвязанного кислорода (δ) [9], поэтому возрастание их КЛTP при температурах выше T^* можно связать с «химическим расширением» образцов. Отсутствие гистерезиса теплового расширения образцов при нагреве–охлаждении (рис. 2, *a*) указывает на то, что как обмен кислородом между образцами и окружающей средой, так и установление теплового равновесия в образцах происходят с высокой скоростью. На зависимостях $\Delta l/l_0 = f(T)$ для твердых растворов \Pr_{1-x} Nd_xBaCoFeO_{5+δ} (таблица). Наличие выраженного минимального значения для состава $\Pr_{0,50}$ Nd_{0,50}BaCoFeO_{5+δ} (таблица). Наличие выраженного минимума на зависимости $\alpha = f(x)$ для системы \Pr_{1-x} Nd_xBaCoFeO_{5+δ} при высоких температурах указывает на увеличение прочности кристаллической структуры слоистых перовскитов при увеличении степени разупорядочения А-подрешетки их кристаллической структуры.

Значения коэффициентов линейного теплового расширения (α) для различных температурных интервалов, а также параметров электропереноса (E_A, E_S, E_m) керамических образцов твердых растворов \Pr_{1-x} Nd_xBaCoFeO_{5+ δ}

x	$10^{6} \cdot \alpha, \mathrm{K}^{-1}$		T*V	E -D		<i>L</i> - D
	$T \leq T^*$	$T^* < T$	1 ", K	Е _А , ЭВ	<i>L_S</i> , 3B	Е _т , ЭВ
0,00	16,8	25,4	820	0,126	0,016 (<i>T</i> < 610 K)	0,110 (<i>T</i> < 610 K)
					0,053 (T > 610 K)	0,073 (T > 610 K)
0,25	20,6	20,6	—	0,199	0,038	0,161
0,50	19,2	19,2	—	0,202	0,079	0,123
0,75	22,2	22,2	-	0,206	0,099	0,107
1,00	16,6	26,5	650	0,118	0,007	0,111

Как видно из рис. 2, б, в и 3, слоистые оксиды $\Pr_{1-x} Nd_x BaCoFeO_{5+\delta}$ являются полупроводниками *p*-типа, характер электропроводности которых изменялся от полупроводникового $(\frac{\partial \sigma}{\partial T} > 0)$ к металлическому $(\frac{\partial \sigma}{\partial T} < 0)$, а термо-ЭДС резко возрастала при высоких температурах, что обусловлено выделением из образцов слабосвязанного кислорода [9]. При этом на зависимостях $\sigma = f(T)$ для твердых растворов $\Pr_{1-x} Nd_x BaCoFeO_{5+\delta}$ (0,25 $\leq x \leq$ 0,75) при нагреве–охлаждении наблюдался большой гистерезис (рис. 2, δ), который практически отсутствовал или был незначительным на кривых S = f(T) (рис. 2, ϵ).

Известно, что электропроводность поликристаллических (керамических) материалов зависит от состояния (состава) межзеренных границ и поверхности зерен, тогда как термо-ЭДС и тем более тепловое расширение определяются преимущественно состоянием объема зерен. Отсутствие гистерезиса на дилатометрических кривых (рис. 2, *a*) и слабовыраженный гистерезис на кривых S = f(T) (рис. 2, *в*) указывают на то, что в процессе нагрева–охлаждения со скоростью 3–5 К·мин⁻¹ образцы находятся в тепловом равновесии с окружающей средой, а содержание слабосвязанного кислорода в них (δ) отвечает равновесному.

Учитывая это, гистерезис электропроводности твердых растворов $\Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ (0,25 $\leq x \leq 0,75$) при нагреве–охлаждении в области 700–1100 К (рис. 2, δ) можно связать с неравномерным распределением кислорода по объему зерен керамики в процессе ее термоциклирования.

В работе [11] было показано, что поверхность зерен керамики на основе плюмбатов бариястронция со структурой перовскита может окисляться (восстанавливаться) по сравнению с объемом зерен за счет различия в потоках кислорода из объема образца к поверхности ($I_{0,1}$) и от по-

Рис. 2. Температурные зависимости относительного удлинения (Δl/l₀) (*a*), электропроводности (σ) (*б*) и термо-ЭДС (*S*) (*в*) феррокобальтита Pr_{0,50}Nd_{0,50}BaCoFeO_{5+δ}: *1* – нагрев, *2* – охлаждение

Рис. 3. Температурные зависимости электропроводности (σ) (a) и термо-ЭДС (S) (δ) твердых растворов $\Pr_{1-x}Nd_x$ BaCoFeO_{5+ δ}: x=0,00 (l), 0,25 (2), 0,50 (3), 0,75 (4), 1,00 (5)

верхности – в газовую фазу ($I_{O,2}$): если $I_{O,1} > I_{O,2}$, то поверхностный слой окисляется, если $I_{O,1} < I_{O,2}$, то восстанавливается. Таким образом, гистерезис проводимости керамики Pr_{1-x} Nd_xBaCoFeO_{5+δ} (0,25 $\leq x \leq 0,75$) при высоких температурах можно объяснить образованием на поверхности зерен слоя с повышенным содержанием кислорода за счет того, что диффузия ионов кислорода в керамике протекает более интенсивно, чем десорбция кислорода с поверхности образцов в газовую фазу($I_{O,1} > I_{O,2}$). При охлаждении сорбция кислорода поверхностным слоем зерен протекает с интенсивностью, близкой к интенсивности диффузии кислорода из поверхностного слоя керамики в ее объем; вследствие этого содержание кислорода в поверхностном слое керамики не достигает равновесного и слабо изменяется в интервале температур 700–1100 К.

Другой причиной гистерезиса электропроводности твердых растворов Pr_{1-x}Nd_xBaCoFeO_{5+δ} могут быть процессы разупорядочения—упорядочения их кислородной подрешетки в ходе нагрева—охлаждения, однако для однозначного установления механизма гистерезиса необходимо проведение дополнительных исследований.

Электропроводность керамики $\Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ немонотонно изменялась при замещении празеодима неодимом, достигая максимального значения – ~240 См·см⁻¹ в интервале температур 900–970 К – для твердого раствора $\Pr_{0.50}Nd_{0.50}BaCoFeO_{5+\delta}$ (рис. 3, *a*).

Возрастание термо-ЭДС твердых растворов $\Pr_{1-x}Nd_x$ Ва CoFeO_{5+δ} (0,25 $\leq x \leq$ 0,75) в области температур 300–430 K (рис. 3, δ) обусловлено, вероятно, изменением спинового состояния входящих в их состав катионов кобальта (Co³⁺, Co⁴⁺) аналогично спиновым переходам в перовскитных кобальтитах РЗЭ [12]. Максимальными значениями термо-ЭДС – \approx 85 мкВ-K⁻¹ в интервале температур 400–500 K – среди изученных оксидов характеризуются составы с x = 0,25, 0,50.

Для веществ с поляронным характером переноса заряда, к которым относятся слоистые феррокобальтиты празеодима (неодима) – бария, температурные зависимости электропроводности и термо-ЭДС описываются соотношениями

$$\sigma = \frac{A}{T} \exp\left(-\frac{E}{kT}\right), \qquad S = -\frac{k}{e} \left(-\frac{E}{kT} + B\right),$$

где $E_A = E_S + E_m$ и E_S – энергии активации соответственно электропроводности и термо-ЭДС, причем E_S характеризует энергию возбуждения полярона, а E_m – энергию переноса полярона (при безактивационном переносе заряда поляронами большого радиуса $E_m \approx 0$; при $E_m > 0$ перенос заряда термически активирован и осуществляется поляронами малого радиуса (ПМР) по прыжковому механизму) [13].

Значения параметров электропереноса фаз $\Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ (E_A , E_S и E_m) приведены в таблице. Как видно, энергия возбуждения и переноса ПМР ($E_m > 0$) в исследованных оксидах немонотонно изменяются с ростом x, проходя через максимумы: $E_S = 0,099$ эВ – для состава $\Pr_{0.25}Nd_{0.75}BaCoFeO_{5+\delta}$ и $E_m = 0,161$ эВ – для фазы $\Pr_{0.75}Nd_{0.25}BaCoFeO_{5+\delta}$. При этом значения E_S и E_m для твердых растворов $\Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ в целом выше, чем для незамещенных фаз LnBaCoFeO_{5+\delta} (Ln = Pr, Nd); таким образом, разупорядочение подрешетки катионов РЗЭ приводит к затруднению возбуждения и переноса носителей заряда в исследованных феррокобальтитах празеодима (неодима)–бария.

Таким образом, в работе изучено влияние замещения празеодима неодимом на кристаллическую структуру, тепловое расширение и электрофизические свойства слоистых перовскитных оксидов $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$, определены значения КЛТР и параметров электропереноса в этих фазах. Установлено, что замещение большего по размеру катиона Pr^{3+} меньшим по размеру катионом Nd^{3+} приводит к ожидаемому сжатию элементарной ячейки твердых растворов (в направлении оси *c*), в то время как физико-химические свойства исследованных оксидов немонотонно изменяются при изменении их катионного состава, что обусловлено конкуренцией размерного и химического (содержание слабосвязанного кислорода) факторов. Показано, что оптимальными для практического применения свойствами (высокие значения электропроводности и термо-ЭДС при низком значении КЛТР) характеризуется твердый раствор $Pr_{0,50}Nd_{0,50}BaCoFeO_{5+\delta}$. Обнаружен гистерезис электропроводности фаз $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$, связанный с затрудненностью обмена кислородом между объемом зерен керамики, их поверхностью и окружающей средой.

Работа выполнена в рамках ГКПНИ «Кристаллические и молекулярные структуры» (задание 33).

Литература

1. Zhou Q., He T., He Q., Ji Y. // Electrochem. Commun. 2009. Vol. 11. P. 80–83.

2. Zhou Q., Zhang Y., Shen Y., He T. // J. Electrochem. Soc. 2010. Vol. 157. N 5. P. B628–B632.

3. Клындюк А.И., Чижова Е.А., Сазанович Н.В., Красуцкая Н.С. // Термоэлектричество. 2009. № 3. С. 76-84.

4. Klyndziuk A., Petrov G., Kurhan S. et al. // Chem. Sensors. 2004. Vol. 20, Suppl. B. P. 854-855.

5. Tripathi A.K., Lal H.B. // Mater. Res. Bull. 1980. Vol. 15. N 2. P. 233–242.

6. Shannon R. D., Prewitt C. T. // Acta Cryst. 1969. Vol. B25. Pt. 5. P. 946–960.

7. Atanassova Y. K., Popov V. N., Bogachev G. G. et al. // Phys. Rev. B. 1993–II. Vol. 47. N 22. P. 15201–15207.

8. Клындюк А.И. // Неорган. материалы. 2009. Т. 45. № 8. С. 1013–1016.

9. Клындюк А.И., Чижова Е.А. // Неорган. материалы. 2006. Т. 42. № 5. С. 611–622.

10. Клындюк А.И., Чижова Е.А. // Журн. неорган. химии. 2009. Т. 54. № 7. С. 1072–1076.

11. Клындюк А.И., Петров Г.С., Башкиров Л.А. // Неорган. материалы. 2001. Т. 37. № 4. С. 482–488.

12. Itoh M., Hashimoto J., Yamaguch I S., Tokura Y. // Physica B. 2000. Vol. 281–282. P. 510–511.

13. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982.

A. I. KLYNDYUK

STRUCTURE AND PROPERTIES OF Pr1-rNdrBaCoFeO5+8 SOLID SOLUTIONS

Summary

A series of $Pr_{1-x}Nd_xBaCoFeO_{5+\delta}$ (0,00 $\le x \le 1,00$) double perovskites have been synthesized, their unit cell parameters have been determined and their thermal expansion, electrical conductivity and thermo-EMF in air within 300–1100 K have been studied. It has been found that all the compounds obtained are the *p*-type semiconductors. Linear expansion coefficients as well as electrotransport parameters in these phases for different temperature ranges have been calculated.