УДК 54-165.2:536.21:536.413:537.31/.32:666.654

# ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ $Ca_{3-x}Bi_xCo_4O_{9+\delta}$ (0.0 $\leq x \leq 1.5$ )

© 2016 г. И. В. Мацукевич\*, А. И. Клындюк\*, Е. А. Тугова\*\*, А. Н. Коваленко\*\*, А. А. Марова\*\*\*, Н. С. Красуцкая\*

\*Белорусский государственный технологический университет, Минск

\*\*Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург

\*\*\*Санкт-Петербургский национальный исследовательский университет информационных технологий,

механики и оптики

*e-mail: matsukevich515@rambler.ru* Поступила в редакцию 28.09.2015 г.

Изучены тепло-, электрофизические и термоэлектрические свойства керамики  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$ ( $0.0 \le x \le 1.5$ ), синтезированной методом твердофазных реакций. Установлено, что однофазные твердые растворы  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  образуются при  $x \le 0.3$ , образцы с  $0.3 \le x \le 1.5$  являются трехфазными и состоят из  $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$ ,  $Bi_2Ca_2Co_{1,7}O_y$  и  $Co_3O_4$ , а образец состава  $Ca_{1,5}Bi_{1,5}Co_4O_{9+\delta}$  содержит две фазы –  $Bi_2Ca_2Co_{1,7}O_y$  и  $Co_3O_4$ . Полученные материалы являются полупроводниками *p*-типа, коэффициент линейного теплового расширения которых составляет (10.6-12.8)  $\times 10^{-6}$  K<sup>-1</sup>, электрои теплопроводность немонотонно изменяются, а коэффициент термо-ЭДС возрастает с ростом *x*. Показано, что неоднофазная керамика демонстрирует улучшенные термоэлектрические свойства: наибольшие значения фактора мощности наблюдаются у керамики с x = 0.9-1.0, содержащей фазы  $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$  и  $Bi_2Ca_2Co_{1,7}O_y$  в соотношении, близком к эквимолярному, –  $\approx 0.24$  мBT/(м K<sup>2</sup>) при *T* = 1100 K, что в 2.5 раза выше, чем для слоистого кобальтита кальция  $Ca_3Co_4O_{9+\delta}$  и твердых растворов на его основе – 0.094-0.098 мBT/(м K<sup>2</sup>) при той же температуре.

*Ключевые слова:* оксидные термоэлектрики, слоистый кобальтит кальция, электропроводность, теплопроводность, фактор мощности.

DOI: 10.7868/S0002337X16060099

# введение

Термоэлектрические материалы, согласно работам [1, 2], заложившим теоретические и практические основы развития современной термоэлектрической энергетики, должны обладать одновременно высокими электропроводностью и термо-ЭДС и низкой теплопроводностью. Традиционными термоэлектриками являются халькогениды висмута, сурьмы, свинца и олова, а также твердые растворы на их основе [1-4], которые находят широкое применение в термоэлектрических устройствах различного назначения. Наряду с неоспоримыми достоинствами (высокие значения фактора мощности и показателя термоэлектрической добротности) эти материалы имеют ряд недостатков, основными из которых являются высокое содержание токсичных и дорогостоящих компонентов, а также низкая устойчивость к окислению атмосферным кислородом при повышенных температурах. Указанных недостатков лишены термоэлектрические материалы на основе оксидов металлов, которые в последнее время рассматриваются в качестве перспективной основы для разработки высокотемпературных термоэлектрогенераторов нового поколения.

Перспективными материалами для *p*-ветвей высокотемпературных термоэлектрогенераторов являются слоистые кобальтиты (Na<sub>x</sub>CoO<sub>2</sub>, Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+ $\delta$ </sub> и Bi<sub>2</sub>Ca<sub>2</sub>Co<sub>1.7</sub>O<sub>y</sub>), поскольку они характеризуются высокими термоэлектрическими показателями, относительно низкой стоимостью и устойчивостью к воздействию атмосферного кислорода при повышенных температурах [5–8].

Функциональные характеристики керамики на основе  $Ca_3Co_4O_{9+\delta}$  могут быть улучшены путем частичного замещения в ней кобальта переходными или тяжелыми металлами [5, 6, 9, 10] и кальция редкоземельными металлами [6, 11, 12] или висмутом [5, 13–17]. В работах [12, 16, 17] показано, что для керамики  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  ( $0.0 \le x \le 0.75$ ) наилучшими термоэлектрическими свойствами обладают неоднофазные образцы, содержащие помимо основной фазы (твердого раствора ( $Ca_3Bi_3Co_4O_{9+\delta}$ ) дополнительную – слоистый кобальтит кальция висмута  $Bi_2Ca_2Co_{1,7}O_v$ , причем, по данным [17],

значения фактора мощности неоднофазной керамики в интервале составов  $0.3 < x \le 0.7$  увеличиваются с ростом *x*.

Учитывая это, целью настоящей работы явилось получение висмутсодержащей керамики на основе слоистого кобальтита кальция  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  в более широком диапазоне составов ( $0.0 \le x \le 1.5$ ) и изучение влияния химического и фазового состава керамики на ее микроструктуру, физико-химические свойства и функциональные характеристики.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и подготовка образцов. Порошки состава Ca<sub>3 – x</sub>Bi<sub>x</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> (0.0  $\leq x \leq$  1.5) получали керамическим методом из Co<sub>3</sub>O<sub>4</sub> ("ч."), Bi<sub>2</sub>O<sub>3</sub> ("ч.") и СаСО<sub>3</sub> ("ч."). Перемешивание и помол смесей порошков исходных веществ, взятых в заданных соотношениях, проводили в планетарной мельнице Pulverizette 6 (Fritsch, Germany). Полученную шихту с добавлением этанола прессовали под давлением 100-150 МПа в таблетки диаметром 22 и высотой 5-7 мм. которые отжигали при температуре 1173 К на воздухе в течение 12 ч, затем дробили в агатовой ступке и повторяли операции помола и прессования, при котором образцы формировали в виде прямоугольных параллелепипедов размером  $5 \times 5 \times 30$  мм и таблеток диаметром 12 и толщиной 3-4 мм. Спекание керамики проводили при температуре 1193 К на воздухе в течение 12 ч. Выбор температур твердофазного синтеза и спекания материалов отвечал рекомендациям работ [18, 19].

Оборудование и методы исследования. Рентгенофазовый анализ (РФА) порошков проводили на дифрактометре Bruker D8 XRD Advance (Си $K_{\alpha}$ излучение). Микроструктуру керамики исследовали на сканирующих электронных микроскопах JSM-5610 LV (Япония) и Quanta 200. Кажущуюся плотность материалов определяли на установке GeoPyc 1360 T.A.P. Density.

Электропроводность (о) керамики измеряли на постоянном токе ( $I \le 50$  мA) 4-контактным методом (цифровые вольтметры В7-58, В7-53; источник питания Б5-47) на воздухе в интервале температур 300-1100 К в динамическом режиме со скоростью нагрева и охлаждения 3-5 К/мин с погрешностью  $\varepsilon(\sigma) \le \pm 5\%$  [20]. Коэффициент термо-ЭДС (S) образцов определяли относительно серебра (цифровой вольтметр В7-65/3) на воздухе в интервале температур 300-1000 К с погрешностью  $\varepsilon(S) \leq \pm 10\%$ . Градиент температур между горячим и холодным концами образца в ходе измерений поддерживали на уровне 20-25 К. Перед измерениями электрофизических свойств на поверхности образцов формировали Ад-электроды путем вжигания серебряной пасты при 1073 К в течение 15 мин. Для измерения температуры использовали хромель-алюмелевые термопары. Тепловое расширение спеченной керамики изучали на воздухе в интервале температур 300— 1100 К в динамическом режиме со скоростью нагрева и охлаждения 3–5 К/мин. Значения энергии активации электропроводности ( $E_a$ ) и коэффициента линейного термического расширения (**КЛТР**,  $\alpha$ ) образцов находили из линейных участков зависимостей  $\ln(\sigma T) = f(1/T)$  и  $\Delta l/l_0 = f(T)$  с погрешностью  $\varepsilon(\alpha) \le \pm 5\%$ . Величину фактора мощности (P) керамики рассчитывали по уравнению  $P = S^2 \sigma$  [3].

Теплопроводность образцов изучали на воздухе в интервале температур 298–673 К при помощи измерителя теплопроводности ИТ- $\lambda$ -400 с погрешностью  $\delta(\lambda) \leq \pm 10\%$ . Решеточную ( $\lambda_{\text{реш}}$ ) и электронную ( $\lambda_{\text{эл}}$ ) составляющие теплопроводности находили по формулам  $\lambda = \lambda_{\text{эл}} + \lambda_{\text{реш}}, \lambda_{\text{эл}} = \sigma LT$ , где L – число Лоренца ( $L = 2.45 \times 10^{-8}$  Вт Ом/К<sup>2</sup>). Величину показателя термоэлектрической добротности (ZT) рассчитывали по формуле  $ZT = = PT/\lambda$  [1].

Значения электро- и теплопроводности анизотропной керамики были получены в направлении оси прессования (перпендикулярно преимущественной плоскости ориентации пластин), а коэффициентов термо-ЭДС и линейного термического расширения — в направлении, перпендикулярном оси прессования (параллельно преимущественной плоскости ориентации пластин).

## РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно результатам РФА, однофазные твердые растворы  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  образуются при замещении до 10 ат. % кальция висмутом ( $x \le 0.3$ ) (рис. 1, кривые 2-4), а их структура соответствует структуре слоистого кобальтита кальция Са<sub>3</sub>Со<sub>4</sub>О<sub>9+ δ</sub> [21]. На дифрактограммах 5-12 порошков с 0.3 < x < 1.5 (рис. 1) присутствовали рефлексы трех фаз – твердого раствора  $Ca_{2.7}Bi_{0.3}Co_4O_{9+\delta}$ , слоистого кобальтита висмутакальция Bi<sub>2</sub>Ca<sub>2</sub>Co<sub>1.7</sub>O<sub>v</sub> [8] и Co<sub>3</sub>O<sub>4</sub> [22]; с ростом *x* содержание Са<sub>2 7</sub>Ві<sub>0 3</sub>Со<sub>4</sub>О<sub>9+6</sub> в образцах уменьшалось, а Bi<sub>2</sub>Ca<sub>2</sub>Co<sub>17</sub>O<sub>2</sub> увеличивалось, при этом в керамике с  $0.4 \le x \le 0.9$  основной фазой выступал твердый раствор  $Ca_{2.7}Bi_{0.3}Co_4O_{9+\delta}$ , а в образцах с  $0.9 \le x \le 1.25 - фаза Bi_2Ca_2Co_{1.7}O_{\nu}$  (в керамике составов Ca<sub>2.1</sub>Bi<sub>0.9</sub>Co<sub>4</sub>O<sub>9+ δ</sub> и Ca<sub>2.0</sub>Bi<sub>1.0</sub>Co<sub>4</sub>O<sub>9+ δ</sub> содержание фаз Ca<sub>2.7</sub>Bi<sub>0.3</sub>Co<sub>4</sub>O<sub>9 + δ</sub> и Bi<sub>2</sub>Ca<sub>2</sub>Co<sub>1.7</sub>O<sub>ν</sub> было приблизительно одинаковым). Керамика номинального состава  $Ca_{1.5}Bi_{1.5}Co_4O_{9+\delta}$ , в пределах погрешности РФА, содержала только две фазы - $Bi_2Ca_2Co_{1,7}O_{\nu}$  и  $Co_3O_4$  (рис. 1, дифрактограмма 13). Следует отметить чрезвычайно низкую интенсивность рефлексов фазы Со<sub>3</sub>О<sub>4</sub> (в соответствии с результатами расчетов материального баланса не-



**Рис. 1.** Рентгеновские дифрактограммы порошков состава  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$ : x = 0.0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), 0.5 (6), 0.6 (7), 0.7 (8), 0.8 (9), 0.9 (10), 1.0 (11), 1.25 (12), 1.5 (13); на дифрактограммах 1 и 13 отмечены индексы Миллера рефлексов фаз  $Ca_3Co_4O_{9+\delta}$  и  $Bi_2Ca_2Co_{1.7}O_y$  соответственно.

однофазных образцов содержание фазы  $Co_3O_4$  в них довольно велико и при  $x \ge 0.7$  превышает 25 мол. %), что, очевидно, обусловлено ее рентгеноаморфностью, возможно, ввиду малого размера частиц.

В таблице представлены рассчитанные на основании результатов РФА значения параметров кристаллической структуры базового кобальтита кальция Са<sub>3</sub>Со<sub>4</sub>О<sub>9+ б</sub>, твердых растворов на его основе  $Ca_{3-x}Bi_{x}Co_{4}O_{9+\delta}$  (0.0 <  $x \le 0.3$ ), а также преобладающих фаз в композиционной керамике  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  (0.3 < *x* ≤ 1.5), которые хорошо согласуются с литературными данными [8, 11, 21]. Размеры элементарной ячейки твердых растворов  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  незначительно увеличивались с ростом x, что объясняется соотношением размеров замещаемого и замещающего ионов (согласно [23], для к.ч. = 6  $R(Bi^{3+}) = 0.102$  нм и  $R(Ca^{2+}) = 0.100$  нм). Следует отметить, что, ввиду близости размеров ионов  $Bi^{5+}$  и  $Co^{3+}$  ( $R(Co^{3+}) =$ = 0.063 нм.  $R(Bi^{5+}) = 0.074$  нм для к.ч. = 6 [23]) возможно образование в неоднофазных образцах комплексно замещенных твердых растворов (например, (Ca,Bi)<sub>3</sub>(Co,Bi)<sub>4</sub>O<sub>9+δ</sub> или Bi<sub>2</sub>Ca<sub>2</sub>(Co,Bi)<sub>1.7</sub>O<sub>v</sub> за счет частичного замещения ионов кобальта ионами висмута  $Bi^{5+} \rightarrow Co^{3+}$  [10]).

Кажущаяся плотность спеченной керамики возрастала от величины 2.47 г/см<sup>3</sup> для фазы  $Ca_3Co_4O_{9+\delta}$  до значений 2.54–2.87 г/см<sup>3</sup> для твердых растворов  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  (0.1  $\leq x \leq$  0.3) (на 3–15%) и резко увеличивалась при переходе от однофазных образцов к неоднофазным, достигая для составов с x = 0.9-1.5 значений 4.59–4.87 г/см<sup>3</sup> (таблица), что почти в два раза выше, чем для базового кобальтита кальция и обусловлено улучшением спекаемости неоднофазной керамики, вероятно, за счет образования микроэвтектик  $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta} + Bi_2Ca_2Co_{1,7}O_r$ 

Образующие керамику кристаллиты имели форму пластин (чешуек) размером 1–3 мкм для фазы  $Ca_3Co_4O_{9+\delta}$ , 4–8 мкм для однофазной керамики  $Ca_{2.7}Bi_{0.3}Co_4O_{9+\delta}$  и > 50 мкм для слоистого кобальтита висмута-кальция  $Bi_2Ca_2Co_{1.7}O_y$  в составе неоднофазой керамики, причем в образце состава  $Ca_{1.5}Bi_{1.5}Co_4O_{9+\delta}$  эти пластины были собраны в стопки (ламели) толщиной до 40 мкм.

Температурные зависимости относительного удлинения  $\Delta l/l_0 = f(T)$  изученных образцов в ин-

## ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ

| $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$ |                                          |                                                                  |           |                            |                            |          |           |                            |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------|-----------|----------------------------|----------------------------|----------|-----------|----------------------------|----------------------------|
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ρ <sub>эксп</sub> ,<br>г/см <sup>3</sup> | Преобладаю-<br>щая фаза                                          | а, нм     | <i>b</i> <sub>1</sub> , нм | <i>b</i> <sub>2</sub> , нм | С, НМ    | β, град   | <i>V</i> , нм <sup>3</sup> | <i>Е</i> <sub>a</sub> , эВ |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.47                                     | Ca <sub>3</sub> Co <sub>4</sub> O <sub>9+δ</sub>                 | 0.4836(5) | 0.4561(5)                  | 0.2821(5)                  | 1.083(1) | 98.19(5)  | 0.2365(7)                  | 0.072                      |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.54                                     |                                                                  | 0.4844(7) | 0.4575(6)                  | 0.2825(6)                  | 1.087(1) | 98.20(7)  | 0.2384(9)                  | 0.083                      |
| 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.71                                     |                                                                  | 0.4849(7) | 0.4579(7)                  | 0.2833(6)                  | 1.087(1) | 98.30(7)  | 0.2389(9)                  | 0.074                      |
| 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.87                                     |                                                                  | 0.4854(7) | 0.4588(7)                  | 0.2827(5)                  | 1.090(1) | 98.15(8)  | 0.2402(10)                 | 0.073                      |
| 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.69                                     |                                                                  | 0.4843(7) | 0.4573(7)                  | 0.2828(7)                  | 1.089(1) | 98.24(7)  | 0.2387(9)                  | 0.078                      |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.86                                     |                                                                  | 0.4854(9) | 0.4565(8)                  | 0.2826(6)                  | 1.090(1) | 98.65(9)  | 0.2388(12)                 | 0.089                      |
| 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.96                                     |                                                                  | 0.4840(8) | 0.4558(10)                 | 0.2820(7)                  | 1.091(1) | 98.84(8)  | 0.2378(12)                 | 0.075                      |
| 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.14                                     |                                                                  | 0.4846(9) | 0.4563(9)                  | 0.2824(6)                  | 1.090(1) | 98.25(11) | 0.2385(12)                 | 0.089                      |
| 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.46                                     |                                                                  | 0.4856(7) | 0.4553(8)                  | 0.2879(9)                  | 1.093(1) | 98.42(8)  | 0.2391(10)                 | 0.083                      |
| 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.59                                     |                                                                  | 0.4853(7) | 0.4567(8)                  | 0.2815(9)                  | 1.093(1) | 98.39(8)  | 0.23973(10)                | 0.078                      |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.56                                     | Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.7</sub> O <sub>y</sub> | 0.4948(9) | 0.4739(7)                  |                            | 1.464(2) | 93.12(19) | 0.3429(17)                 | 0.079                      |
| 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.64                                     |                                                                  | 0.4937(9) | 0.4747(9)                  |                            | 1.468(3) | 93.30(20) | 0.3434(22)                 | 0.071                      |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.87                                     |                                                                  | 0.4961(9) | 0.4741(7)                  |                            | 1.466(3) | 93.12(19) | 0.3425(18)                 | 0.073                      |

Значения кажущейся плотности ( $\rho_{3\kappa cn}$ ), кажущейся энергии активации электропроводности ( $E_a$ ) и параметров кристаллической решетки преобладающих фаз керамики состава Ca<sub>3 – x</sub>Bi<sub>x</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub>

тервале температур 300—1100 К были линейными, а величина КЛТР керамики с ростом *x* вначале уменьшалась от значения  $12.8 \times 10^{-6} \text{ K}^{-1}$  для базовой фазы Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 –  $\delta$ </sub> до величины 10.6 × 10<sup>-6</sup> K<sup>-1</sup> для состава Ca<sub>2.2</sub>Bi<sub>0.8</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub>, после чего вновь возрастала, достигая для образцов с *x* = 0.9–1.5 значений (12.1–12.4) × 10<sup>-6</sup> K<sup>-1</sup>.

Как видно из данных, представленных на рис. 2, полученные в работе материалы являлись полупроводниками *p*-типа ( $\partial\sigma/\partial T > 0$ , S > 0, рис. 2a, 26), при этом характер проводимости фазы Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + δ</sub>

вблизи 900 К изменялся от полупроводникового к металлическому ( $\partial \sigma / \partial T < 0$ ), что обусловлено частичным восстановлением образцов с ростом температуры.

Величина электропроводности однофазных образцов  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  (0.0  $\leq x \leq$  0.3) уменьшалась при увеличении содержания оксида висмута, а для неоднофазной керамики (0.4  $\leq x \leq$  1.0) возрастала с ростом *x*, а затем вновь уменьшалась для составов с 1.0  $\leq x \leq$  1.5 (рис. 2г). Сложный ход концентрационной зависимости электропровод-



**Рис. 2.** Температурные (а–в) и концентрационные (г–е) зависимости электропроводности ( $\sigma$ ) (а, г), коэффициента термо-ЭДС (*S*) (б, д) и фактора мощности (*P*) (в, е) спеченной керамики состава Ca<sub>3 – x</sub>Bi<sub>x</sub>Co<sub>4</sub>O<sub>9 + δ</sub>: x = 0 (*I*), 0.3 (*2*), 0.5 (*3*), 1.0 (*4*), 1.25 (*5*), 1.5 (*6*).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 52 № 6 2016



**Рис. 3.** Температурные зависимости теплопроводности (а) и показателя термоэлектрической добротности (б) керамики Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> (*I*), Ca<sub>2.7</sub>Bi<sub>0.3</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> (*2*), Ca<sub>2.3</sub>Bi<sub>0.7</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> (*3*), Ca<sub>1.75</sub>Bi<sub>1.25</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> (*4*), а также решеточной (*5*) и электронной (*6*) составляющих теплопроводности твердого раствора Ca<sub>2.7</sub>Bi<sub>0.3</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> (в).

ности полученной керамики обусловлен различными причинами. Частичное замещение  $Bi^{3+} \rightarrow Ca^{2+}$  в структуре Са<sub>3</sub>Со<sub>4</sub>О<sub>9 + б</sub> приводит к уменьшению концентрации основных носителей заряда - "дырок" – по реакции е + h  $\rightarrow$  0, что и объясняет уменьшение электропроводности твердых растворов Ca<sub>3-x</sub>Bi<sub>x</sub>Co<sub>4</sub>O<sub>9+ б</sub> по сравнению с незамещенным кобальтитом кальция Са<sub>3</sub>Со<sub>4</sub>О<sub>9+ 6</sub>. Последующее возрастание  $\sigma$  образцов с  $0.4 \le x \le 1.0$ обусловлено наличием в их составе помимо твердого раствора Ca2 7Bi0 3Co4O9+ 6 высокопроводящей фазы слоистого кобальтита кальция-висмута Ві<sub>2</sub>Са<sub>2</sub>Со<sub>17</sub>О<sub>у</sub>. Снижение электропроводности образцов с x > 1.0 вызвано, очевидно, тем фактом, что в них сильно возрастает содержание низкопроводящего оксида кобальта Со<sub>3</sub>О<sub>4</sub>.

Значения кажущейся энергии активации электропроводности  $E_a$  полученных образцов незначительно изменялись в пределах 0.071–0.089 эВ (таблица), из чего следует, что как частичное замещение кальция висмутом в фазе Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+δ</sub>, так и неоднофазность керамики на основе кобальтитов кальция и висмута Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+δ</sub> и Bi<sub>2</sub>Ca<sub>2</sub>Co<sub>1.7</sub>O<sub>y</sub> практически не влияют на энергетику электропереноса в ее объеме.

Величина коэффициента термо-ЭДС спеченной керамики возрастала при увеличении температуры и с ростом содержания в ней оксида висмута (рис. 26, 2д), что объясняется как уменьшением концентрации основных носителей заряда (в однофазных твердых растворах  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$ ( $0.0 < x \le 0.3$ )), так и увеличением количества (плотности) межфазных границ в объеме керамики (для неоднофазных образцов с  $0.3 < x \le 1.5$ ).

Значения фактора мощности образцов также увеличивались с ростом температуры (рис. 2в) и немонотонно изменялись с ростом x (рис. 2е), достигая наибольших значений ( $P_{\rm max} \approx 0.24$  мВт/(м K<sup>2</sup>) при 1100 K, что в 2.5 раза больше, чем для базового слоистого кобальтита кальция  $Ca_3Co_4O_{9+\delta}$  и твердых растворов на его основе – (0.094–0.098 мВт/(м K<sup>2</sup>) при той же температуре) с x = 0.9-1.0, содержащих высокопроводящие фазы  $Ca_{2.7}Bi_{0.3}Co_4O_{9+\delta}$  и  $Bi_2Ca_2Co_{1.7}O_y$  в отношении, близком к эквимолярному.

Теплопроводность керамики Ca<sub>3-x</sub>Bi<sub>x</sub>Co<sub>4</sub>O<sub>9+δ</sub> (x = 0.0, 0.3, 0.7 и 1.25) в интервале температур 298-673 К варьировалась в пределах 0.54-1.65 Вт/(м К), возрастала при увеличении температуры, а при изменении состава изменялась немонотонно, увеличиваясь с ростом x от 0.0 до 0.7, и при дальнейшем возрастании х уменьшалась (рис. 3а). Электронная составляющая теплопроводности  $\lambda_{_{\mathfrak{I}\!\mathcal{I}}}$  исследуемой керамики была невелика ( $\lambda_{3\pi}/\lambda \approx 0.02-0.03$ ) и возрастала при увеличении температуры, а решеточная составляющая  $\lambda_{\text{реш}}$  являлась преобладающей ( $\lambda_{\text{реш}}/\lambda \approx 0.97 - 0.98$ ) (рис. 3а). Возрастание λ с ростом температуры нехарактерно для оксидной керамики (она должна уменьшаться за счет уменьшения преобладающей решеточной составляющей (см., например, [24, 25]), однако наблюдалось в работах [9, 26] для твердых растворов на основе слоистого кобальтита кальция  $Ca_3Co_{3.9}M_{0.1}O_{9+\delta}$  (M – Fe, Mn, Cu) и перовскитных плюмбатов бария-стронция Ba<sub>1-x</sub>Sr<sub>x</sub>PbO<sub>3</sub> (x = 0.0, 0.2) соответственно, что, по мнению авторов, обусловлено возрастанием электронной составляющей теплопроводности этих оксидов. Увеличение теплопроводности керамики  $Ca_{3-x}Bi_{x}Co_{4}O_{9+\delta}$  при увеличении содержания в ней оксида висмута (для  $0.0 \le x \le 0.7$ ), по нашему мнению, может быть связано с резким уменьшением ее пористости (увеличением кажущейся плотности (см. таблицу)) за счет улучшения спекаемости; действительно, для составов с x = 0.7 и 1.25, имеющих близкие значения р<sub>эксп</sub>, увеличение х приводит к ожидаемому снижению тепопроводности.

Значения показателя термоэлектрической добротности керамики в интервале температур 300-673 К возрастали с ростом *Т* и при *T* > 500 К для неоднофазного образца состава Ca2 3Bi0 7Co4O9+6 были выше, чем для однофазной керамики Са<sub>3</sub>Со<sub>4</sub>О<sub>9+δ</sub>, Са<sub>2.7</sub>Ві<sub>0.3</sub>Со<sub>4</sub>О<sub>9+δ</sub> (рис. 36). Рассчитанные по уравнению  $ZT_{1100} = (P_{1100} \times 1100) / \lambda_{673}$  оценочные значения  $ZT_{1100}$  составили 0.089, 0.065, 0.121 и 0.194 для образцов Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+δ</sub>, Ca<sub>2.7</sub>Bi<sub>0.3</sub>Co<sub>4</sub>O<sub>9+δ</sub>,  $Ca_{2,3}Bi_{0,7}Co_4O_{9+\delta}$  и  $Ca_{1,75}Bi_{1,25}Co_4O_{9+\delta}$  соответственно и для неоднофазных образцов (x = 0.7, 1.25) были в 1.4–2.2 раза выше, чем для однофазного слоистого кобальтита кальция, из чего можно заключить, что создание неоднофазных образцов на основе Са<sub>3</sub>Со<sub>4</sub>О<sub>9+ б</sub> позволяет значительно улучшить термоэлектрические характеристики керамики при высоких температурах.

#### ЗАКЛЮЧЕНИЕ

В работе изучены тепловое расширение, тепло- и электропроводность и коэффициент термо-ЭДС керамики  $Ca_{3-x}Bi_xCo_4O_{9+\delta}$  (0.0  $\leq x \leq 1.5$ ), полученной методом твердофазных реакций. При синтезе обнаружено, что однофазные твердые растворы Ca<sub>3-x</sub>Bi<sub>x</sub>Co<sub>4</sub>O<sub>9+6</sub> образуются при  $x \le 0.3$ , образцы с  $0.3 \le x \le 1.5$  состоят из трех фаз — Са<sub>2.7</sub>Ві<sub>0.3</sub>Со<sub>4</sub>О<sub>9+ δ</sub>, Ві<sub>2</sub>Са<sub>2</sub>Со<sub>1.7</sub>О<sub>v</sub> и Со<sub>3</sub>О<sub>4</sub>, а керамика состава  $Ca_{1.5}Bi_{1.5}Co_4O_{9+\delta}$  содержит две фазы — Ві<sub>2</sub>Са<sub>2</sub>Со<sub>17</sub>О<sub>2</sub> и Со<sub>3</sub>О<sub>4</sub>. Полученные материалы являются полупроводниками р-типа, КЛТР которых составляет  $(10.6-12.8) \times 10^{-6} \text{ K}^{-1}$ , а электро- и теплопроводность немонотонно изменяются с ростом х.

Показано, что у неоднофазной керамики улучшаются термоэлектрические свойства: наибольшие значения фактора мощности демонстрирует керамика с x = 0.9-1.0, содержащая фазы  $Ca_{2,7}Bi_{0,3}Co_4O_{9+\delta}$  и  $Bi_2Ca_2Co_{1,7}O_{\nu}$  в соотношении, близком к эквимолярному,  $- \approx 0.24 \text{ мBt/(м K^2)}$ при T = 1100 K, что в 2.5 раза выше, чем для слоистого кобальтита кальция Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+ δ</sub> и твердых растворов на его основе  $-0.09-0.10 \text{ MBT}/(\text{M K}^2)$  при той же температуре, а оценочные значения показателя термоэлектрической добротности неоднофазной керамики  $Ca_{2,3}Bi_{0,7}Co_4O_{9+\delta}$  и  $Ca_{1,75}Bi_{1,25}Co_4O_{9+\delta}$ при T = 1100 К составляют 0.121 и 0.194 соответственно, что в 1.4 и 2.2 раза выше, чем для  $Ca_3Co_4O_{9+\delta}$  (ZT<sub>1100</sub> = 0.089).

#### БЛАГОДАРНОСТЬ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 15-33-50134 мол нр).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ № 6 2016 5 том 52

Авторы благодарят В.В. Гусарова за полезные и ценные замечания, сделанные при обсуждении работы.

# СПИСОК ЛИТЕРАТУРЫ

- 1. Иоффе А.Ф. Полупроводниковые термоэлементы. М.: Изд-во АН СССР, 1956. 188 с.
- 2. Иоффе А.Ф., Стильбанс Л.С., Иорданишвили Е.К., Ставицкая Т.С. Термоэлектрическое охлаждение. М.-Л.: Изд-во АН СССР, 1956. 108 с.
- 3. CRC Handbook of Thermoelectrics / Ed. Rowe D.M. Boca Raton: CRC Press, 1995. 701 p.
- 4. Ivanov V.A., Gremenok V.F., Seidi H.G. et al. Electrical Properties of Hot Wall Deposited PbTe-SnTe Thin Films // Nanosystems: phys., chem., mathematics. 2013. V. 4. № 6. P. 816–822.
- 5. Koumoto K., Terasaki I., Murayama N. et al. Oxide Thermoelectrics. Trivandrum: Research Signpost, 2002. 255 p.
- 6. Fergus J.W. Oxide Materials for High Temperature Thermoelectric Energy Conversion // J. Eur. Ceram. Soc. 2012. V. 32. P. 525-540.
- 7. Wang H., Sun X., Yan X. et al. Fabrication and Thermoelectric Properties of Highly Textured Ca9Co12O28 Ceramic // J. Alloys Compd. 2014. V. 582. P. 294–298.
- 8. Sotelo A., Rasekh Sh., Madre M.A. et al. Solution-Based Synthesis Routes to Thermoelectric  $Bi_2Ca_2Co_{1,7}O_x$  // J. Eur. Ceram. Soc. 2011. V. 31. P. 1763-1769.
- 9. Wang Y., Sui Y., Ren P. et al. Strongly Correlated Properties and Enhanced Thermoelectric Response in  $Ca_3Co_{4-x}M_xO_9$  (M = Fe, Mn, and Cu) // Chem. Mater. 2010. V. 22. P. 1155-1163.
- 10. Клындюк А.И., Мацукевич И.В. Синтез, структура и свойства слоистых термоэлектриков  $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M - Ti - Zn, Mo, W, Pb, Bi) // Неорган. материалы.2015. T. 51. № 9. C. 1025–1031.
- 11. Prevel M., Perez O., Noudem J.G. Bulk Textured  $Ca_{2.5}(RE)_{0.5}Co_4O_{9\,+\,\delta}$  (RE: Pr, Nd, Eu, Dy and Yb) Thermoelectric Oxides by Sinter-Forging // Solid State Sci. 2007. V. 9. P. 231–235.
- 12. Клындюк А.И., Мацукевич И.В. Синтез и свойства твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  (Ln – La, Nd, Sm, Tb-Er) // Неорган. материалы. 2012. Т. 48. № 10. C. 1181–1186.
- 13. Li S., Funahashi R., Matsubara I. et al. Synthesis and Thermoelectric Properties of the New Oxide Materials  $Ca_{3-x}Bi_xCo_4O_{9-\delta}$  (0.0 < x < 0.75) // Chem. Mater. 2000. V. 12. P. 2424–2427.
- 14. Xu G., Funahashi R., Shikano M. et al. Thermoelectric Properties of the Bi- and Na-substituted  $Ca_3Co_4O_9$ System // Appl. Phys. Lett. 2002. V. 80. P. 3760-3762.
- 15. Liu Y., Lin Y., Jiang Lei et al. Thermoelectric Properties of Bi<sup>3+</sup> Substituted Co-Based Misfit-Layered Oxides // J. Electroceram. 2008. V. 21. P. 748-751.
- 16. Park J.W., Kwak D.H., Yoon S.H., Choi S.C. Thermoelectric Properties of Highly Oriented Ca2.7Bi0.3Co4O9 Fabricated by Rolling Process // J. Ceram. Soc. Jpn. 2009. V. 117. № 5. P. 643–646.
- 17. Клындюк А.И., Красуцкая Н.С., Мацукевич И.В. и др. Термоэлектрические свойства керамики на основе

слоистых кобальтитов натрия и кальция // Термоэлектричество. 2011. № 4. С. 49–55.

- Гусаров В.В. Быстропротекающие твердофазные химические реакции // Журн. общ. химии. 1997. Т. 67. № 12. С. 1959–1964.
- 19. Гусаров В.В., Суворов С.А. Высокоскоростное термическое уплотнение материалов // Журн. прикл. химии. 1993. Т. 66. № 3. С. 525–530.
- Klyndyuk A.I., Chizhova Ye.A. Thermoelectric Properties of the Layered Oxides LnBaCu(Co)FeO<sub>5 + δ</sub> (Ln = La, Nd, Sm, Gd) // Funct. Mater. 2009. V. 16. № 1. P. 17–22.
- Masset A.C., Michel C., Maignan A. et al. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> // Phys. Rev. B. 2000–I. V. 62. № 1. P. 166–175.
- 22. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standard: Card № 00–042–1467.

- Shannon R.D., Prewitt C.T. Revised Values of Effective Ionic Radii // Acta Crystallogr., Sect. B. 1969. V. 25. Pt. 5. P. 946–960.
- 24. *Nong N.V., Liua C.-J., Ohtaki M.* Improvement on the High Temperature Thermoelectric Performance of Gadoped Misfit-layered  $Ca_3Co_{4-x}Ga_xO_{9+\delta}$  (x = 0, 0.05, 0.1, and 0.2) // J. Alloys Compd. 2010. V. 491. P. 53–56.
- Prasoetsopha N., Pinitsoontorn S., Kamwanna T. et al. The Effect of Cr Substitution on the Structure and Properties of Misfit-Layered Ca<sub>3</sub>Co<sub>4-x</sub>Cr<sub>x</sub>O<sub>9+δ</sub> thermoelectric oxides // J. Alloys Compd. 2014. V. 588. P. 199–205.
- Yasukawa M., Murayama N. A Promising Oxide Material for High-Temperature Thermoelectric Energy Conversion: Ba<sub>1-x</sub>Sr<sub>x</sub>PbO<sub>3</sub> Solid Solution System // Mater. Sci. Eng. B. 1998. V. 54. P. 64–69.