УДК 549.5:54-165:536.21:536.413:537.31/.32:666.654

# СИНТЕЗ И СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$ (Ln – La, Nd, Sm, Tb–Er)

© 2012 г. А. И. Клындюк, И. В. Мацукевич

Белорусский государственный технологический университет, Минск Поступила в редакцию 27.02.2012 г.

Цитратным методом синтезированы твердые растворы  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  (Ln – La, Nd, Sm, Tb–Er). Определены параметры их кристаллической структуры. При температурах выше комнатной исследованы их тепловое расширение, термо-ЭДС, тепло- и электропроводность. Найдено, что все полученные соединения являются полупроводниками *p*-типа, размеры элементарной ячейки которых уменьшаются при уменьшении радиуса замещающего катионы кальция катиона  $Ln^{3+}$ , а значения термо-ЭДС возрастают с ростом числа *f*-электронов катиона  $Ln^{3+}$ . Выделены электронный и фононный вклады в теплопроводность образцов. Рассчитаны значения фактора мощности и показателя термоэлектрической добротности оксидной керамики. Установлено, что наибольшие значения фактора мощности демонстрируют твердые растворы  $Ca_{2.8}Tb_{0.2}Co_4O_{9+\delta}$  и  $Ca_{2.8}Er_{0.2}Co_4O_{9+\delta} - 0.27$  и 0.29 мВт/(м K<sup>2</sup>) соответственно при температуре 1100 К.

### **ВВЕДЕНИЕ**

Выделяющаяся в окружающую среду при работе промышленных предприятий и автотранспорта теплота может быть преобразована в электрическую энергию в термоэлектрических генераторах, функционирующих при высоких температурах. Для создания высокотемпературных термоэлектрических генераторов необходимы материалы, характеризующиеся высокими значениями электропроводности ( $\sigma$ ) и термо-ЭДС (*S*) и низкой теплопроводностью ( $\lambda$ ), а также устойчивостью на воздухе при повышенных температурах. Перспективной основой для разработки новых эффективных высокотемпературных термоэлектриков является удовлетворяющий этим условиям слоистый кобальтит кальция Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> [1].

Соединение  $Ca_3Co_4O_{9\,+\,\delta}$  является полупроводником *р*-типа. На воздухе оно устойчиво до температуры 1199 К, при которой оно распадается на фазу  $Ca_3Co_2O_6$  и твердый раствор (Co, Ca)O, содержащий ~5 мол. % CaO [2]. Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + δ</sub> кристаллизуется в моноклинной сингонии, а его структура образована чередующимися слоями [Ca<sub>2</sub>CoO<sub>3</sub>] (структурный тип NaCl) и [CoO<sub>2</sub>] (структурный тип CdI<sub>2</sub>). Параметры a, c и  $\beta$  обоих слоев одинаковы, а параметр *b* отличается ( $b_1 : b_2 \simeq 1.62$ , где  $b_1$  и b<sub>2</sub> - значения параметров периодичности в направлении оси b слоев [Ca<sub>2</sub>CoO<sub>3</sub>] и [CoO<sub>2</sub>] соответственно). Таким образом, это соединение является несоразмерной фазой, формулу которой можно записать как [Ca<sub>2</sub>CoO<sub>3</sub>]<sup>RS</sup>[CoO<sub>2</sub>]<sub>1.62</sub> или, упрощенно, как Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+δ</sub> [3]. Согласно [3], параметры кристаллической решетки Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+ б</sub> составляют: a = 0.48376(7) нм,  $b_1 = 0.45565(6)$ ,  $b_2 = 0.28189(4)$  нм, c = 1.0833(1) нм,  $\beta = 98.06(1)^\circ$ .

В [4–13] рассмотрена возможность улучшения термоэлектрических свойств кобальтита  $Ca_3Co_4O_{9+\delta}$  путем частичного замещения входящих в его состав катионов кальция катионами РЗЭ. Растворимость РЗЭ в подрешетке кальция невелика и составляет ~10 мол. %. Так, однофазные твердые растворы  $Ca_{3-x}Ln_xCo_4O_{9+\delta}$  образуются при  $x \le 0.2$  для Ln - Lu [10],  $x \le 0.3$  для Ln - Eu [7], Gd [9] и  $x \le 0.4$  для Ln - Yb [11], хотя в ряде работ сообщается о получении твердых растворов с более высокой степенью замещения кальция РЗЭ:  $Ca_{2.5}Ln_{0.5}Co_4O_9$  (Ln - Nd, Eu, Dy, Yb) [5],  $Ca_{2.6}Lu_{0.4}Co_4O_{9+\delta}$  [12].

Гетеровалентное замещение катионов Ca<sup>2+</sup> катионами Ln<sup>3+</sup> в Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + δ</sub> приводит к уменьшению концентрации основных носителей заряда – "дырок" – в твердых растворах Ca<sub>3-x</sub>Ln<sub>x</sub>Co<sub>4</sub>O<sub>9 + δ</sub>. Поэтому величина их σ уменьшается [4–11, 13], а *S* возрастает по сравнению с незамещенной фазой [4–13]. Иновалентные тяжелые катионы Ln<sup>3+</sup> в слоях [Ca<sub>2</sub>CoO<sub>3</sub>] выступают в качестве дополнительных центров рассеяния фононов, вследствие чего  $\lambda$  твердых растворов уменьшается по сравнению с фазой Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + δ</sub> [4–10, 13]. В результате фактор мощности *P* (*P* = *S*<sup>2</sup>σ) и показатель термоэлектрической добротности *ZT* (*ZT* = *PT*/ $\lambda$ ) керамики Ca<sub>3-x</sub>Ln<sub>x</sub>Co<sub>4</sub>O<sub>9 + δ</sub> возрастают по сравнению с базовой фазой Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + δ</sub>.

К сожалению, использование авторами [4–13] различных методик синтеза керамики  $Ca_{3-x}Ln_xCo_4O_{9+\delta}$ , а также близость полученных ими результатов (так, например, параметр *ZT* 

Значения параметров кристаллической структуры  $(a, b_1, b_2, c, \beta, V, b_1/b_2)$ , коэффициента линейного теплового расширения ( $\alpha$ ) и кажущейся энергии активации электропроводности ( $E_a$ ) слоистых кобальтитов Ca<sub>2.8</sub>Ln<sub>0.2</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub>

| Ln | а, нм     | <i>b</i> <sub>1</sub> , нм | <i>b</i> <sub>2</sub> , нм | С, НМ    | β, град  | <i>V</i> , нм <sup>3</sup> | $b_1/b_2$ | $\alpha \times 10^5$ , K <sup>-1</sup> | <i>Е</i> <sub><i>a</i></sub> , эВ |
|----|-----------|----------------------------|----------------------------|----------|----------|----------------------------|-----------|----------------------------------------|-----------------------------------|
| Ca | 0.4830(7) | 0.4562(8)                  | 0.2812(6)                  | 1.085(1) | 98.28(8) | 0.2365(10)                 | 1.622     | 1.28                                   | 0.065                             |
| La | 0.4879(6) | 0.4562(7)                  | 0.2817(9)                  | 1.093(1) | 99.44(7) | 0.2400(9)                  | 1.619     | 1.23                                   | 0.075                             |
| Nd | 0.4860(6) | 0.4574(7)                  | 0.2823(10)                 | 1.092(1) | 99.03(7) | 0.2400(9)                  | 1.620     | 1.16                                   | 0.081                             |
| Sm | 0.4873(5) | 0.4549(6)                  | 0.2812(9)                  | 1.090(1) | 99.56(6) | 0.2383(8)                  | 1.618     | 1.17                                   | 0.095                             |
| Tb | 0.4856(5) | 0.4546(6)                  | 0.2835(9)                  | 1.083(1) | 98.63(6) | 0.2360(8)                  | 1.604     | 1.27                                   | 0.082                             |
| Dy | 0.4855(7) | 0.4561(7)                  | 0.2827(10)                 | 1.084(1) | 98.75(7) | 0.2373(9)                  | 1.613     | 1.29                                   | 0.094                             |
| Ho | 0.4859(5) | 0.4555(6)                  | 0.2821(8)                  | 1.084(1) | 98.77(6) | 0.2372(8)                  | 1.615     | 1.22                                   | 0.112                             |
| Er | 0.4843(5) | 0.4569(6)                  | 0.2834(7)                  | 1.083(1) | 98.36(6) | 0.2371(8)                  | 1.612     | 1.20                                   | 0.078                             |

твердых растворов  $Ca_{3-x}Ln_xCo_4O_{9+\delta}$  при 973 К составляет 0.22 для Ln – Y, x = 0.3 [4] и 0.24 для Ln – Pr, x = 0.2 [6] и Ln = Gd, x = 0.3 [8]) не позволяют выявить влияние природы (а не только заряда) катиона РЗЭ на структуру и свойства фаз  $Ca_{3-x}Ln_xCo_4O_{9+\delta}$ . В связи с этим необходимо продолжение исследований в данном направлении.

Цель данной работы — изучение влияния природы РЗЭ на кристаллическую структуру, тепло-, электрофизические и термоэлектрические свойства керамических образцов твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  (Ln – La, Nd, Sm, Tb–Er), полученных цитратным методом.

## МЕТОДИКА ЭКСПЕРИМЕНТА

Для синтеза образцов готовили растворы Ca(NO<sub>3</sub>)<sub>2</sub> · 4H<sub>2</sub>O ("ч.д.а.") ( $C_1 = 0.6$  M), La(NO<sub>3</sub>)<sub>3</sub> · · 6H<sub>2</sub>O ("х.ч.") (растворы нитратов остальных РЗЭ получали растворением оксидов  $Ln_2O_3$  (Ln – Nd, Sm, Tb, Er) ("х.ч."), Dy<sub>2</sub>O<sub>3</sub> (ДиО-3), Ho<sub>2</sub>O<sub>3</sub> (ГоО-1) в концентрированной азотной кислоте) (С2 = = 0.6 M), Co(NO<sub>3</sub>)<sub>2</sub> · 6H<sub>2</sub>O ("ч.д.а.") (C<sub>3</sub> = 0.8 M) и  $C_6H_8O_7$  ("ч.") ( $C_4 = 0.5$  М), которые смешивали в объемном соотношении 2.8: 0.2: 3: 15. Далее полученный раствор длительное время упаривали при 343 К до образования вязкого фиолетового геля. Полученный гель высушивали при 383-393 К на электроплитке до образования карамелеобразной массы, которую измельчали и дополнительно высушивали в муфельной печи в течение 2 ч при 423 К с последующим перетиранием. Образовавшийся грязно-розовый порошок отжигали в течение 4 ч при 873 К. Полученный черный порошок тщательно перетирали и прессовали в таблетки и бруски, которые далее отжигали в течение 5 ч при 1123 К с последующим спеканием в течение 8 ч при 1183 К.

РФА порошков проводили на дифрактометре Bruker D8 XRD Advance (Си $K_{\alpha}$ -излучение).

ИК-спектры поглощения порошков записывали в таблетированных смесях с KBr ("х.ч.") на фурье-спектрометре Nexus фирмы ThermoNicolet в интервале частот  $300-1500 \text{ см}^{-1}$  ( $\Delta \nu \leq 2 \text{ см}^{-1}$ ).

Тепловое расширение  $(\Delta l/l_0)$ , электропроводность и термо-ЭДС керамики изучали на воздухе в интервале температур 300—1100 К по методикам [14, 15]. Экспериментальные значения о керамики пересчитывали на нулевую пористость по методике [14, 16]. Теплопроводность образцов изучали на воздухе в интервале температур 298—423 К при помощи измерителя теплопроводности ИТ- $\lambda$ -400. Решеточную ( $\lambda_{\text{реш}}$ ) и электронную ( $\lambda_{\text{эл}}$ ) составляющие теплопроводности находили по формуле

$$\lambda = \lambda_{\text{эл}} + \lambda_{\text{реш}}, \quad \lambda_{\text{эл}} = \sigma LT,$$

где L – число Лоренца ( $L = 2.45 \times 10^{-8}$  Вт Ом/К<sup>2</sup>).

Величины энергии активации электропроводности ( $E_a$ ) и коэффициента линейного теплового расширения ( $\alpha$ ) керамики определяли из линейных участков зависимостей  $\ln(\sigma T) = f(1/T)$  и  $\Delta l/l_0 = f(T)$  (коэффициент корреляции  $R \ge 0.999$ ,  $\delta(E_a, \alpha) \le \pm 5\%$ ).

#### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

После заключительной стадии синтеза образцы кобальтита кальция  $Ca_3Co_4O_{9+\delta}$  и твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  (Ln – La, Nd, Sm, Tb–Er) были однофазными в пределах погрешности РФА и имели структуру слоистого кобальтита кальция [3] (рис. 1, кривые *1–5*).

Значения параметров кристаллической структуры фаз  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  приведены в таблице и на рис. 2. Отметим, что найденные нами параметры элементарной ячейки  $Ca_3Co_4O_{9+\delta}$  в пределах заявляемой погрешности совпадают с результатами [3].

Как видно из рис. 2, уменьшение ионного радиуса замещающего катионы  $Ca^{2+}$  катиона  $Ln^{3+}$ приводит к сжатию элементарной ячейки твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  в направлениях *а* 



**Puc. 1.** Дифрактограммы (1–5) (Cu $K_{\alpha}$ -излучение) и ИК-спектры поглощения (6–10) кобальтита кальция Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + δ</sub> (1, 6) и твердых растворов на его основе Ca<sub>2.8</sub>Ln<sub>0.2</sub>Co<sub>4</sub>O<sub>9 + δ</sub>, где Ln–La (2, 7), Sm (3, 8), Dy (4, 9), Er (5, 10).



**Рис. 2.** Зависимости параметров  $(a, b_1, b_2, c, \beta)$  и объема (*V*) элементарной ячейки твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  от ионного радиуса лантаноида  $(R_{Ln^{3+}})$  [17]: *1* – наши результаты, *2* – данные для  $Ca_{2.7}Yb_{0.3}Co_4O_{9-\delta}$  [11], *3* – для  $Ca_{2.85}Gd_{0.075}Y_{0.075}Co_4O_{9+\delta}$  [13].

и *c*, а также к уменьшению угла  $\beta$ ; параметр  $b_1$  при этом уменьшается незначительно, а  $b_2$  – слабо возрастает. В результате уменьшение ионного радиуса  $\text{Ln}^{3+}$  ( $R_{\text{Ln}^{3+}}$ ) приводит к уменьшению объема элементарной ячейки твердых растворов  $\text{Ca}_{2.8}\text{Ln}_{0.2}\text{Co}_4\text{O}_{9+\delta}$  и незначительному сокращению параметра несоразмерности их кристаллической структуры  $(b_1/b_2)$  (таблица). Последний результат хорошо согласуется с данными работы [5], авторы которой установили, что отношение  $b_1/b_2$ твердых растворов Ca<sub>2.5</sub>Ln<sub>0.5</sub>Co<sub>4</sub>O<sub>9</sub> сокращается при уменьшении  $R_{1n^{3+}}$ .

ИК-спектры поглощения порошков  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  содержали две выраженные по-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 48 № 10 2012



**Рис. 3.** Температурные зависимости электропроводности (а), термо-ЭДС (б) и фактора мощности (в) фазы  $Ca_3Co_4O_{9+\delta}$  (*1*) и твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$ , где Ln - Nd (*2*), Sm (*3*), Tb (*4*), Er (*5*). На вставке (б) дана зависимость термо-ЭДС (*S*<sub>1100</sub>) твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  от числа 4*f*-электронов катиона  $Ln^{3+}$ .

лосы поглощения с экстремумами при  $v_1 = 563 -$ 571 см<sup>-1</sup> и  $v_2 = 727 - 731$  см<sup>-1</sup> (рис. 1, кривые *6*-*10*), соответствующие, согласно [11, 18], валентным колебаниям связей Co-O (v<sub>1</sub>) и Ca(Ln)-O (v<sub>2</sub>) в структуре этих оксидов. Положение полосы у2 кобальтитов Ca<sub>2.8</sub>Ln<sub>0.2</sub>Co<sub>4</sub>O<sub>9+ б</sub> в пределах погрешности эксперимента не изменялось при частичном замещении кальция РЗЭ и изменении природы РЗЭ, полоса же  $v_1$  смещалась в сторону больших частот при переходе от Ln – La к Ln – Er (рис. 1, кривые 6-10). Таким образом, энергия взаимодействия между катионами Ca<sup>2+</sup> (Ln<sup>3+</sup>) и анионами О<sup>2-</sup> в слоях [Ca(Ln)<sub>2</sub>CoO<sub>3</sub>] структуры фаз  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  практически не зависит от ионного радиуса Ln<sup>3+</sup>, а энергия кобальт-кислородных взаимодействий в их структуре возрастает при уменьшении  $R_{I_n^{3+}}$ , что, очевидно, обусловлено сжатием элементарной ячейки образцов.

Зависимости  $\Delta l/l_0 = f(T)$  исследованных образцов в интервале температур 300–1100 К были линейными, из чего следует, что в этом интервале температур слоистые кобальтиты  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  не претерпевают структурных фазовых переходов. Как видно из данных, представленных в таблице, коэффициент линейного теплового расширения твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  в целом несколько снижается по сравнению с незамещенной фазой  $Ca_3Co_4O_{9+\delta}$ , что обусловлено увеличением энергии металл-кислородных взаимодействий в структуре этих фаз при частичном замещении катионов  $Ca^{2+}$  катионами  $Ln^{3+}$ .

Как видно ИЗ рис. 3, кобальтиты Са<sub>2.8</sub>Ln<sub>0.2</sub>Co<sub>4</sub>O<sub>9 + б</sub> являются полупроводниками р-типа, характер проводимости которых в интервале температур 800-1000 К изменялся от полупроводникового к металлическому (рис. 3а), что обусловлено частичным восстановлением образцов вследствие выделения части кислорода из их объема в окружающую среду. Величина кажущейся энергии активации электропроводности керамики фазы  $Ca_{3}Co_{4}O_{9\,+\,\delta}$ составляла 0.065 эВ, а для твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  несколько возрастала по сравнению с незамещенной фазой и изменялась в пределах 0.075-0.112 эВ (таблица), что близко к значению  $E_a = 0.114$  эВ, полученному авторами [9] для твердых растворов  $Ca_{3-x}Dy_{x}Co_{4}O_{9+\delta}$ .

Термо-ЭДС кобальтитов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  увеличивалась с ростом температуры (рис. 36) при частичном замещении кальция РЗЭ и при увеличении числа *f*-электронов на внешней электронной оболочке катиона  $Ln^{3+}$  (вставка на рис. 36).

Таким образом, полученные нами результаты указывают на то, что электротранспортные свойства сложных оксидов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  зависят не только от зарядового состояния замещающего катионы кальция катиона РЗЭ, но и от электронного строения последнего.

Значения фактора мощности исследованной керамики возрастали при увеличении температуры и для твердых растворов  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  при *T* > 700 K были в 1.5–3 раза выше, чем для незамещенной фазы  $Ca_3Co_4O_{9+\delta}$ . При этом наибольшие



**Puc. 4.** Температурные зависимости общей теплопроводности (λ) (*1*), а также решеточного ( $\lambda_{\text{peul}}$ ) (*2*) и электронного вклада в нее ( $\lambda_{3\pi}$ ) (*3*) для слоистых кобальтитов Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + δ</sub> (a), Ca<sub>2.8</sub>Nd<sub>0.2</sub>Co<sub>4</sub>O<sub>9 + δ</sub> (b), Ca<sub>2.8</sub>Er<sub>0.2</sub>Co<sub>4</sub>O<sub>9 + δ</sub> (b).

значения *P* демонстрировали твердые растворы  $Ca_{2.8}Er_{0.2}Co_4O_{9+\delta}$  и  $Ca_{2.8}Tb_{0.2}Co_4O_{9+\delta} - 0.29$  и 0.27 мВт/(м K<sup>2</sup>) соответственно при *T* = 1150 К.

Теплопроводность керамики  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$ изменялась в пределах 0.70-0.85 Вт/(м К), заметно уменьшаясь при частичном замещении кальция неодимом или эрбием (рис. 4). С ростом температуры  $\lambda$  кобальтита  $Ca_{2.8}Nd_{0.2}Co_4O_{9+\delta}$  увеличивалась, а фаз  $Ca_3Co_4O_{9+\delta}$  и  $Ca_{2.8}Er_{0.2}Co_4O_{9+\delta}$ немонотонно изменялась, проходя через размытый максимум в области 360-380 К. Электронная составляющая теплопроводности исследованной керамики была невелика ( $\lambda_{_{\rm ЭЛ}}/\lambda \simeq 0.02 - 0.03$ ) и возрастала при увеличении температуры. Как следует из результатов эксперимента, решеточная составляющая теплопроводности для керамики на основе слоистого кобальтита кальция является преобладающей ( $\lambda_{\text{реш}}/\lambda \simeq 0.97 - 0.98$ ) и заметно (на 5-15%) уменьшается при гетеровалентном замещении катионов  $Ca^{2+}$  катионами  $Nd^{3+}$ ,  $Er^{3+}$ (рис. 4).

Экстраполяция зависимостей  $\lambda = f(T)$  для оксидов Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> и Ca<sub>2.8</sub>Er<sub>0.2</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> в область высоких температур и подстановка полученных результатов в выражение для расчета *ZT* дают оценочные значения показателя термоэлектрической добротности для этих фаз: 0.093 и 0.400 при 1100 К. Таким образом, частичное замещение кальция эрбием в слоистом кобальтите кальция позволяет более чем в 4 раза улучшить термоэлектрические свойства образующейся при этом керамики.

## ЗАКЛЮЧЕНИЕ

Цитратным методом получены твердые растворы  $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$  (Ln – La, Nd, Sm, Tb–Er). Изучены их кристаллическая структура, физикохимические и термоэлектрические свойства.

Кобальтиты Ca<sub>2.8</sub>Ln<sub>0.2</sub>Co<sub>4</sub>O<sub>9 +  $\delta$ </sub> являются полупроводниками *p*-типа, размеры элементарной ячейки которых уменьшаются, а величина термо-ЭДС и фактора мощности возрастают при уменьшении радиуса замещающего катионы Ca<sup>2+</sup> катиона Ln<sup>3+</sup>.

Показано, что решеточная (и общая) теплопроводность керамики уменьшаются при гетеровалентном замещении кальция РЗЭ.

Рассчитаны значения фактора мощности и показателя термоэлектрической добротности оксидной керамики. Установлено, что максимальными значениями фактора мощности характеризуются твердые растворы  $Ca_{2.8}Tb_{0.2}Co_4O_{9+\delta}$  и  $Ca_{2.8}Er_{0.2}Co_4O_{9+\delta} - 0.27$  и 0.29 мВт/(м K<sup>2</sup>) соответственно при T = 1100 К.

Авторы выражают благодарность Л.Е. Евсеевой за измерение теплопроводности керамических образцов.

Работа выполнена при поддержке ГПНИ "Функциональные и машиностроительные материалы, наноматериалы" (подпрограмма "Кристаллические и молекулярные структуры", задание 1.02).

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *Koumoto K., Terasaki I., Murayama N. et al.* Oxide Thermoelectrics. Research Signpost. Trivandrum, India, 2002. 255 p.
- Woermann E., Muan A. Phase Equilibria in the System CaO–Cobalt Oxide in Air // J. Inorg. Nucl. Chem. 1970. V. 32. P. 1455–1459.
- Masset A.C., Michel C., Maignan A. et al. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> // Phys. Rev. B. 2000–I. V. 62. № 1. P. 166–175.
- Liu H.Q., Song Y., Zhang S.N. et al. Thermoelectric Properties of Ca<sub>3-x</sub>Y<sub>x</sub>Co<sub>4</sub>O<sub>9 + δ</sub> Ceramics // J. Phys. Chem. Solids. 2009. V. 70. P. 600–603.
- 5. *Prevel M., Perez O., Noudem J.G.* Bulk Textured  $Ca_{2.5}(RE)_{0.5}Co_4O_{9+\delta}$  (RE: Pr, Nd, Eu, Dy and Yb) Thermoelectric Oxides by Sinter-Forging // Solid State Sci. 2007. V. 9. P. 231–235.
- Zhang F.P., Zhang X., Lu Q.M. et al. Effects of Pr Doping on Thermoelectric Transport Properties of Ca<sub>3-x</sub>Pr<sub>x</sub>Co<sub>4</sub>O<sub>9</sub>// Solid State Sci. 2011. V. 13. P. 1443–1447.
- 7. Wang D., Chen L., Yao Q., Li J. High-Temperature Thermoelectric Properties of  $Ca_3Co_4O_{9+\delta}$  with Eu Substitution // Solid State Commun. 2004. V. 129. P. 615–618.
- Liu H.Q., Zhao X.B., Liu F. et al. Effect of Gd-Doping on Thermoelectric Properties of Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+8</sub> Ceramics // J. Mater. Sci. 2008. V. 43. P. 6933–6937.
- Wang D., Chen L., Wang Q., Li J. Fabrication and Thermoelectric Properties of Ca<sub>3-x</sub>Dy<sub>x</sub>Co<sub>4</sub>O<sub>9+δ</sub> System // J. Alloys Compd. 2004. V. 376. P. 58–61.

- Nong N.V., Liu C.-J., Ohtaki M. High-Temperature Thermoelectric Properties of Late Rare Earth-Doped Ca<sub>3</sub>Co<sub>4</sub>O<sub>9+δ</sub>// J. Alloys Compd. 2011. V. 509. P. 977– 981.
- Xu J., Wei C., Jia K. Thermoelectric Performance of Textured Ca<sub>3 - x</sub>Yb<sub>x</sub>Co<sub>4</sub>O<sub>9 - δ</sub> Ceramics // J. Alloys Compd. 2010. V. 500. P. 227–230.
- Tang G., Tang C., Xu X. et al. Lu-Induced Spin Entropy Enhancement in Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + 8</sub> System // Solid State Commun. 2010. V. 150. P. 1706–1709.
- Liu H.Q., Zhao X.B., Zhu T.J. et al. Thermoelectric Properties of Gd, Y co-Doped Ca<sub>3</sub>Co<sub>4</sub>O<sub>9 + δ</sub> // Curr. Appl. Phys. 2009. V. 9. P. 409–413.
- 14. Клындюк А.И., Чижова Е.А. Свойства фаз RBaCuFeO<sub>5+δ</sub> (R – Y, La, Pr, Nd, Sm–Lu) // Неорган. материалы. 2006. Т. 42. № 5. С. 611–622.
- 15. Клындюк А.И., Чижова Е.А., Сазанович Н.В., Красуцкая Н.С. Термоэлектрические свойства некоторых перовскитных оксидов // Термоэлектричество. 2009. № 3. С. 76–84.
- Tripathi A.K., Lal H.B. Electrical Transport in Rare-Earth Orthochromites // Mater. Res. Bull. 1980. V. 15. № 2. P. 233–242.
- Shannon R.D., Prewitt C.T., Revised Values of Effective Ionic Radii // Acta Crystallogr. B. 1969. V. 25. Pt. 5. P. 946–960.
- Zhang Y., Zhang J. Rapid Reactive Synthesis and Sintering of Textured Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> Ceramics by Spark Plasma Sintering // J. Mater. Process. Technol. 2008. V. 208. P. 70–74.