_____ ФИЗИЧЕСКИЕ МЕТОДЫ __ ИССЛЕДОВАНИЯ

УДК 54-31+54-165+536.413+537.226.1/.3+537.31/.32

СТРУКТУРА И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ МУЛЬТИФЕРРОИКОВ $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ (x = 0.03, 0.06, 0.09)

© 2016 г. А. И. Клындюк, Е. А. Чижова

Белорусский государственный технологический университет, Минск E-mail: Klyndyuk@belstu.by Поступила в редакцию 18.10.2015 г.

Керамическим методом синтезированы твердые растворы $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ (x = 0.03, 0.06, 0.09), изучены их кристаллическая структура, термическое расширение и электрические свойства. Установлено, что соединения $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ кристаллизуются в ромбоэдрической сингонии (пр. гр. *R3c*) и являются полупроводниками *p*-типа, параметры элементарной ячейки, коэффициент линейного термического расширения и термо-ЭДС которых уменьшаются, а электропроводность, диэлектрическая проницаемость и диэлектрические потери возрастают с ростом *x*.

DOI: 10.7868/S0044457X16070096

Феррит висмута со структурой перовскита BiFeO₃ обладает высокими температурами антиферромагнитного ($T_N \approx 643$ K) и сегнетоэлектрического упорядочения ($T_C \approx 1100$ K), поэтому его рассматривают как перспективную основу для разработки мультиферроиков, способных найти применение в различных областях: спинтронике, фотонике, медицине и т.д. [1]. Практическое применение BiFeO₃ ограничено наличием в нем пространственно-модулированной спиновой циклоиды, несоразмерной с периодом кристаллической решетки, вследствие чего в феррите висмута проявляется только квадратичный магнитоэлектрический эффект, а более интенсивный линейный отсутствует [1, 2]. Подавление спиновой циклоиды, дающее предпосылки получения мультиферроиков на основе перовскитного феррита висмута с большим линейным магнитоэлектрическим эффектом, достигается использованием сильных магнитных полей [1], наноструктурированием [1, 3], а также частичным замещением в BiFeO₃ ионов железа ионами 3*d*-металлов [4, 5] или ионов висмута ионами редкоземельных элементов (РЗЭ) [6, 7], причем последнее также увеличивает спонтанную поляризацию и намагниченность образующихся при этом твердых растворов [1, 2, 7].

Эффективно управлять физико-химическими свойствами перовскитных оксидов (ABO₃) можно путем совместного замещения ионов, расположенных в обеих (A и B) катионных подрешетках их кристаллической структуры. Такой подход был использован в работах [8–13], в которых были изучены диэлектрические и магнитные свойства твердых растворов $Bi_{1-x}Dy_xFe_{1-x}Mn_xO_3$ [8],

электротранспортные свойства и термическое расширение двойных перовскитов в системе $BiFeO_3-PrCoO_3$ [9], магнитные свойства ферритов-кобальтитов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ [10] и ферритов-манганитов $Bi_{1-x}La_xFe_{0.95}Mn_{0.05}O_3$ [11], термическое расширение, магнитные, электротранспортные и диэлектрические свойства твердых растворов $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ [12–14].

Цель настоящей работы — получение дизамещенных твердых растворов $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ и установление закономерностей влияния совместного замещения ионов Bi^{3+} ионами Ho^{3+} и ионов Fe^{3+} ионами Mn^{3+} на кристаллическую структуру, термическое расширение и электрические свойства (электропроводность, термо-ЭДС, диэлектрическая проницаемость, диэлектрические потери) этих твердых растворов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Керамические образцы твердых растворов $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ (x = 0.03, 0.06, 0.09) синтезировали твердофазным методом из Bi_2O_3 (х. ч.), Ho_2O_3 (ГоО-1), Fe_2O_3 (ос. ч. 2-4) и Mn_2O_3 (ос. ч. 11-2) на воздухе в интервале температур 1073–1113 К в течение 8–13 ч [12].

Рентгенофазовый анализ (**РФА**) порошков проводили на дифрактометре Bruker D8 XRD (Cu K_{α} -излучение, Ni-фильтр), параметры их кристаллической структуры определяли с помощью рентгеноструктурного табличного процессора RTP [10].

ИК-спектры поглощения порошков записывали в таблетированных смесях с KBr (х. ч.), содержащих ≈0.5 мас. % образца, на Фурье-спек-

Рис. 1. Порошковые рентгенограммы (Cu K_{α} -излучение) (*1*–*3*) и ИК-спектры поглощения (*4*–*6*) твердых растворов Bi_{1-x}Ho_xFe_{1-x}Mn_xO₃: x = 0.03 (*1*, *4*), 0.06 (*2*, *5*), 0.09 (*3*, *6*). Рефлексы примесных фаз Bi₂₅FeO₃₉ и Bi₂Fe₄O₉ обозначены символами * и # соответственно.

трометре Nexus фирмы ThermoNicolet в интервале частот $300-1500 \text{ см}^{-1}$ ($\Delta v \le \pm 2 \text{ см}^{-1}$).

Электропроводность (на постоянном и переменном токе ($v = 1 \ \kappa \Gamma \mu$)), коэффициент термо-ЭДС и диэлектрические свойства ($v = 1 \ \kappa \Gamma \mu$) спеченных керамических образцов изучали на воздухе в интервале температур 300–1100 К, а тепловое расширение — в интервале температур 300–750 К по методикам, описанным в [13, 15, 16]. Значения энергии активации электропроводности на постоянном (E_A) и переменном (E_a) токе и термо-ЭДС (E_S) керамики находили из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$ и S = f(1/T) соответственно (коэффициент корреляции $R \ge 0.99$).

Величину коэффициента линейного термического расширения (КЛТР, α) образцов определяли из линейных участков зависимостей $\Delta l/l_0 = f(T)$ с погрешностью $\delta(\alpha) \leq \pm 5\%$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

После завершения синтеза порошки ферритовманганитов висмута-гольмия помимо основной

Таблица 1. Параметры кристаллической структуры (a, c, V) твердых растворов $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$

x	а, нм	С, НМ	<i>V</i> , нм ³			
0.03	0.5575(3)	1.384(1)	0.3724(6)			
0.06	0.5571(4)	1.383(1)	0.3715(8)			
0.09	0.5569(3)	1.382(1)	0.3711(6)			

фазы – твердого раствора $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ со структурой ромбоэдрически искаженного перовскита (*R*, пр. гр. *R*3*c*) – содержали небольшие количества примесных фаз: $Bi_{25}FeO_{39}$ и $Bi_2Fe_4O_9$ (рис. 1), содержание которых уменьшалось с ростом *x*. Наличие следов примесей ($Bi_{25}FeO_{39}$ и $Bi_2Fe_4O_9$) в конечном продукте, согласно [17, 18], обусловлено тем, что вследствие затрудненности диффузии Bi_2O_3 через слой продукта ($BiFeO_3$) реакция

$$1/2Bi_2O_{3,TB} + 1/2Fe_2O_{3,TB} = BiFeO_{3,TE}$$

протекает не до конца, причем увеличение времени или температуры обжига не решает проблему, поскольку приводит либо к обеднению шихты Bi_2O_3 ввиду его испарения, либо к перитектическому плавлению феррита висмута: в обоих случаях керамика обогащается $Bi_2Fe_4O_9$ [18].

Тот факт, что твердые растворы Ві_{1-х}Но_хFe_{1-х}Mn_xO₃ (0.03 $\leq x \leq$ 0.09), как и незамещенный феррит висмута ВіFeO₃, имели ромбоэдрически искаженную структуру перовскита, хорошо согласуется с результатами работ [11, 12], согласно которым переход от ромбоэдрической к орторомбической структуре для твердых растворов Ві_{1-x}La_xFe_{0.95}Mn_{0.05}O₃ и Ві_{1-x}Nd_xFe_{1-x}Mn_xO₃ наблюдается при $x \ge 0.10$ [11] и $x \ge 0.09$ [10] соответственно. Как видно из данных, приведенных в табл. 1, параметры кристаллической структуры твердых растворов Ві_{1-x}Ho_xFe_{1-x}Mn_xO₃ уменышаются с ростом x, что хорошо согласуется с радиусами замещаемых и замещающих ионов (для KЧ = 6 радиусы ионов Ві³⁺, Ho³⁺, Fe³⁺ и Mn³⁺ составляют со-

Рис. 2. Температурные зависимости электропроводности на постоянном (*1–3*) и переменном (*4–6*) токе (a) и коэффициента термо-ЭДС (б) керамики состава $Bi_{0.97}Ho_{0.03}Fe_{0.97}Mn_{0.03}O_3$ (*1*, *4*), $Bi_{0.94}Ho_{0.06}Fe_{0.94}Mn_{0.06}O_3$ (*2*, *5*) и $Bi_{0.91}Ho_{0.09}Fe_{0.91}Mn_{0.09}O_3$ (*3*, *6*).

ответственно 0.102, 0.0894, 0.0645 и 0.065 нм [19], т.е. $R_{\text{Bi}}^{3+} + R_{\text{Fe}}^{3+} = 0.1665$ нм > 0.1544 нм = $R_{\text{Ho}}^{3+} + R_{\text{Mn}}^{3+}$).

В ИК-спектрах поглощения порошков $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ (рис. 1) наблюдается ряд полос поглощения с экстремумами при 551–552 (v_1), 436–443 (v_2), 386–390 (v_3) и 357–361 см⁻¹ (v_4), отвечающих, согласно [20, 21], валентным (v_1) и деформационным (v_2) колебаниям связей Fe(Mn)–O, а также колебаниям связей Bi(Ho)–O (v_3 , v_4) в структуре этих оксидов. Как видно из рис. 1, положения экстремумов v_1 – v_4 всех исследованных оксидов близки, из чего можно заключить, что замещение в BiFeO₃ до 9 мол. % висмута гольмием и железа марганцем слабо сказывается на величине энергии металлкислородных взаимодействий в кристаллической структуре образующихся при этом твердых растворов $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$.

Температурные зависимости относительного удлинения $\Delta l/l_0 = f(T)$ спеченных образцов Ві_{1-x}Ho_xFe_{1-x}Mn_xO₃ были линейными, из чего следует, что в интервале температур 300–750 К эти твердые растворы не претерпевают структурных фазовых превращений; величина среднего КЛТР керамики уменьшалась с ростом *x* (табл. 2), что согласуется с результатами РФА, согласно которым частичное совместное замещение Ho³⁺ \rightarrow Bi³⁺, Mn³⁺ \rightarrow \rightarrow Fe³⁺ в BiFeO₃ приводит к сжатию элементарной ячейки сложных оксидов Bi_{1-x}Ho_xFe_{1-x}Mn_xO₃.

Как видно из рис. 2, твердые растворы Ві_{1-х}Ho_xFe_{1-x}Mn_xO₃ являются полупроводниками ($\partial\sigma/\partial T > 0$) *р*-типа (S > 0 (для Ві_{0.94}Ho_{0.06}Fe_{0.94}Mn_{0.06}O₃ в интервале температур 740-870 К и для Ві_{0.91}Ho_{0.09}Fe_{0.91}Mn_{0.09}O₃ при T >> 760 К S < 0)), величина электропроводности которых увеличивалась, а значение коэффициента термо-

ЭДС уменьшалось с ростом х и немонотонно изменялось при увеличении температуры, проходя через максимум вблизи 880 К для сложного оксида Ві_{0.97}Но_{0.03}Fe_{0.97}Мп_{0.03}О₃ и через минимум вблизи 810 К для твердых растворов Bi_{0.94}Ho_{0.06}Fe_{0.94}Mn_{0.06}O₃, Ві_{0 91}Но_{0 09}Fe_{0 91}Мп_{0 09}О₃ (рис. 2б). Величина электропроводности керамики состава Ві_{0 97}Ho_{0 03}Fe_{0 97}Mn_{0 03}O₃, Ві_{0 94}Ho_{0 06}Fe_{0 94}Mn_{0 06}O₃, измеренная на постоянном токе, была выше, чем на переменном (рис. 2а). Это, по всей видимости, обусловлено тем. что в электропроводность этих образцов заметный вклад вносят примесные фазы (Bi₂₅FeO₃₉, Bi₂Fe₄O₉ и твердые растворы на их основе), располагающиеся на межзеренных границах и имеющие более высокую проводимость, чем основная фаза (твердый раствор $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ со структурой перовскита).

Температурные зависимости электропроводности и коэффициента термо-ЭДС сильнокоррелированных систем, к которым относятся перовскитный феррит висмута BiFeO₃ и его производные, описываются уравнениями $\sigma = (A/T)\exp(-E_A/kT)$, $S = (k/e)(E_S/kT) + B)$, в которых $E_A = (E_S + E_m)$ и E_S энергии активации электропроводности и термо-ЭДС; при этом E_S представляет собой энергию

Таблица 2. Значения коэффициента линейного термического расширения (α) и энергий активации процессов электропереноса (E_A , E_a , E_S , E_m) керамики состава $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$

x	$\alpha \times 10^6$, K ⁻¹	<i>Е</i> _{<i>A</i>} , эВ	<i>Е</i> _{<i>a</i>} , эВ	<i>Е</i> _{<i>S</i>} , эВ	<i>Е</i> _{<i>m</i>} , эВ	
0.03	13.4	0.950	1.184	0.155	0.795	
0.06	10.3	0.879	1.021	0.109	0.770	
0.09	9.22	0.721	0.707	0.090	0.631	

Puc. 3. Температурные (a, б) и концентрационные (в, г) зависимости диэлектрической проницаемости (a, в) и тангенса угла диэлектрических потерь (б, г) керамических образцов $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$: x = 0.03 (1), 0.06 (2), 0.09 (3).

возбуждения носителей заряда, а E_m — энергию их переноса [22].

Как видно из табл. 2, значения E_S и E_m твердых растворов $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ уменьшаются с ростом *x*, иначе говоря, увеличение степени замещения висмута гольмием и железа марганцем в феррите висмута приводит к уменьшению параметров электропереноса в образующихся при этом твердых растворах.

Диэлектрическая проницаемость твердых растворов $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ немонотонно изменялась с ростом температуры, проходя вблизи 500 К через размытый максимум. интенсивность которого увеличивалась с ростом x, далее уменьшалась, проходя через выраженные минимумы при 610 и 930 К для x = 0.03, 710 К для x = 0.06 и 840 К для x = 0.09, после чего резко возрастала при увеличении температуры до 1100 К (рис. 3а). Рост є в области высоких температур, предшествующих температуре перехода сегнетоэлектрик-параэлектрик (для BiFeO₃ $T_C \approx 1100$ K [1]), обусловлен началом дипольного разупорядочения в ферритах-манганитах висмута-гольмия, тогда как аномалия диэлектрической проницаемости вблизи 500 К связана, вероятно, с фазовым переходом антиферромагнетик-парамагнетик, который в этих твердых растворах имеет место при температурах, более низких, чем для BiFeO₃ ($T_N \approx 643$ K [1]). Beличина є керамики $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ с ростом x увеличивалась, изменяясь при комнтной температуре от 160 для твердого раствора $Bi_{0.97}Ho_{0.03}Fe_{0.97}Mn_{0.03}O_3$ до 330 для фазы $Bi_{0.91}Ho_{0.09}Fe_{0.91}Mn_{0.09}O_3$ (рис. 3в).

Ди электрические потери образцов Ві_{1-x}Ho_xFe_{1-x}Mn_xO₃ возрастали при увеличении температуры (рис. 36) и при увеличении степени замещения висмута гольмием и железа марганцем (рис. 3г), при этом на зависимостях $tg\delta = f(T)$ наблюдались резкие максимумы, отвечающие минимумам на зависимостях $\varepsilon = f(T)$ (рис. 3а). Аналогичный характер концентрационных зависимостей о и $tg\delta$ твердых растворов Bi_{1-x}Ho_xFe_{1-x}Mn_xO₃ позволяет заключить, что возрастание $tg\delta$ этих фаз с ростом содержания в них манганита гольмия HoMnO₃ связано с увеличением вклада проводимости в диэлектрические потери керамики.

Таким образом, в настоящей работе впервые керамическим методом синтезированы твердые растворы $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ (0.03 $\leq x \leq$ 0.09), определены параметры их кристаллической структуры, в широком интервале температур выше комнатной изучены их термическое расширение, электропроводность, термо-ЭДС и диэлектрические свойства. Найдено, что ферриты-манганиты висмута-гольмия $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$ имеют

структуру ромбоэдрически искаженного перовскита и являются полупроводниками *p*-типа, параметры элементарной ячейки, коэффициент линейного термического расширения и термо-ЭДС которых уменьшаются, а диэлектрическая проницаемость и диэлектрические потери увеличиваются с ростом *x*. Определены параметры электропереноса в фазах $Bi_{1-x}Ho_xFe_{1-x}Mn_xO_3$.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант X13-005).

СПИСОК ЛИТЕРАТУРЫ

- 1. Пятаков А.П., Звездин А.К. // Успехи физических наук. 2012. Т. 182. № 6. С. 593.
- Макоед И.И. Получение и физические свойства мультиферроиков: монография. Брест: БрГУ, 2009. 181 с.
- 3. *Manzoor A., Hasanain S.K., Mumtaz A. et al.* // J. Nanopart. Res. 2012. № 14. P. 1310.
- Kothari D., Reddy V.R., Gupta A. et al. // J. Phys.: Condens. Matter. 2007. V. 19. P. 136202.
- Kumar A., Yadav K.L. // J. Phys. Chem. Solids. 2011. V. 72. P. 1189.
- 6. *Troyanchuk I.O., Karpinsky D.V., Bushinsky M.V. et al.* // J. Am. Ceram. Soc. 2011. V. 94. № 12. P. 4502.
- Srivastava A., Singh H.K., Awana V.P.S., Srivastava O.N. // J. Alloys. Compd. 2013. V. 552. P. 336.
- Иванова В.В., Гагулин В.В., Корчагина С.К. и др. // Неорган. материалы. 2003. Т. 79. № 7. С. 876 [Ivanova V.V., Gagulin V.V., Korchagina S.K. et al. // Inorg. Mater. 2003. V. 79. № 7. Р. 745].
- Клындюк А.И., Чижова Е.А., Затюпо А.А. и др. // Весці НАН Беларусі. Сер. хім. навук. 2012. № 4. С. 5.

- Затюпо А.А., Башкиров Л.А., Петров Г.С. и др. // Физика и химия стекла. 2013. Т. 39. № 5. С. 829 [Zatsiupa A.A., Bashkirov L.A., Petrov G.S. et al. // Glass Phys. Chem. 2013. V. 39. № 5. Р. 589].
- 11. *Li Y., Zhang H., Liu H. et al.* // J. Alloys Compd. 2014. V. 592. P. 19.
- Клындюк А.И., Чижова Е.А. // Неорган. материалы. 2015. Т. 51. № 3. С. 322 [Klyndyuk A.I., Chizhova E.A. // Inorg. Mater. 2015. V. 51. № 3. Р. 272].
- 13. *Клындюк А.И., Чижова Е.А.* // Весці НАН Беларусі. Сер. хім. навук. 2015. № 1. С. 7.
- Клындюк А.И., Чижова Е.А., Тугова Е.А. и др. // Изв. СПбГТИ (ТУ). 2015. № 29(55). С. 3.
- 15. *Klyndyuk A.I., Chizhova Ye.A.* // Funct. Mater. 2009. V. 16. № 1. P. 172.
- Клындюк А.И., Петров Г.С., Башкиров Л.А. // Неорган. материалы. 2001. Т. 37. № 4. С. 482 [Klyndyuk A.I., Petrov G.S., Bashkirov L.A. // Inorg. Mater. 2001. V. 37. № 4. Р. 399].
- 17. Морозов М.И., Ломанова Н.А., Гусаров В.В. // Журн. общ. химии. 2003. Т. 73. № 11. С. 1772 [Morozov M.I., Lomanova N.A., Gusarov V.V. // Russ. J. Gen. Chem. 2003. V. 73. № 11. Р. 1676].
- Bernardo M.S., Jardiel T., Peliteado M. et al. // J. Eur. Ceram. Soc. 2011. V. 31. P. 3047.
- Shannon R.D., Prewitt C.T. // Acta Crystallogr. B. 1969. V. 25. Pt. 5. P. 946.
- 20. Annapu Reddy V., Pathak N.P., Nath R. // J. Alloys Compd. 2012. V. 543. P. 206.
- 21. *Kim Y.Y., Lee D.H., Kwon T.Y., Park S.H.* // J. Solid State Chem. 1994. V. 112. P. 376.
- Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. В 2 т. Т. 1. М.: Мир, 1982. 368 с.