© Клындюк А. И., Чижова Е. А.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА, ТЕПЛОВОЕ РАСШИРЕНИЕ И ЭЛЕКТРОТРАНСПОРТНЫЕ СВОЙСТВА МУЛЬТИФЕРРОИКОВ $Bi_{0.91}Ln_{0.09}FeO_3$, $BiFe_{0.91}Mn_{0.09}O_3$ И $Bi_{0.91}Ln_{0.09}Fe_{0.91}Mn_{0.09}O_3$ (Ln = Nd, Ho)

Белорусский государственный технологический университет, Республика Беларусь, 220006, Минск, ул. Свердлова, 13а, e-mail: kai 17@rambler.ru

Синтезированы твердые растворы $Bi_{0.91}Ln_{0.09}FeO_3$, $BiFe_{0.91}Mn_{0.09}O_3$ и $Bi_{0.91}Ln_{0.09}FeO_3$, $BiFe_{0.91}Mn_{0.09}O_3$ (Ln = Nd, Ho), определены параметры их кристаллической структуры, при температурах выше комнатной изучены тепловое расширение, электропроводность и термо-ЭДС. Установлено, что твердые растворы имеют ромбоэдрическую структуру (пр. гр. R3c) и являются полупроводниками *p*-типа, электропроводность которых выше, чем у незамещенного феррита висмута BiFeO₃, коэффициент термо-ЭДС резко уменьшается при частичном замещении железа марганцем, а коэффициент линейного теплового расширения изменяется в пределах (9.22—13.4) $\cdot 10^{-6}$ K⁻¹. Рассчитаны значения параметров электропереноса в фазах (Bi,Ln)(Fe,Mn)O₃ (Ln = Nd, Ho).

Ключевые слова: перовскиты, мультиферроики, феррит висмута, тепловое расширение, электропроводность, термо-ЭДС.

Введение. В качестве основы для разработки мультиферроиков нового поколения, способных найти применение в различных устройствах сенсорной электроники, спинтроники и т. д., рассматривают феррит висмута со структурой перовскита Bi-FeO₃ [1], поскольку этот двойной оксид характеризуется высокими значениями температур антиферромагнитного (≈ 640 K) и сегнетоэлектрического упорядочения (≈ 1100 K) [1, 2]. Недостатком BiFeO₃ является наличие несоразмерной пространственно модулированной структуры циклоидного типа, в связи с чем в нем отсутствует линейный магнитоэлектрический эффект, а проявляется только значительно менее интенсивный квадратичный [1]. Подавление пространственно модулированной структуры, дающее возможность получать на основе BiFeO₃ мультиферроики с большим линейным магнитоэлектрическим эффектом, может быть достигнуто приложением больших по величине магнитных полей, изготовлением на основе феррита висмута или его производных тонкопленочных образцов, а также частичным замещением ионов висмута в BiFeO₃ ионами редкоземельных элементов (РЗЭ) [4, 5] или ионов железа ионами 3*d*-металлов [6, 7].

Эффективно регулировать физико-химические свойства оксидов типа перовскита (ABO₃) позволяет совместное замещение катионов, расположенных в *A*- и *B*-подрешетках их кристаллической структуры с сохранением (ABO₃) или нарушением стехиометрии по кислороду (ABO_{3 – δ}). Подобный подход был использован в работах [8—10], в которых были исследованы магнитные и диэлектрические свойства твердых растворов Bi_{1 – x}Dy_xFe_{1 – x}Mn_xO₃ (0.03 ≤ *x* ≤ 0.30) [8], тепловое расширение и электри-

Поступило 28 июля 2014 г.

ческие свойства ферритов-кобальтитов висмута-празеодима $Bi_{1-x}Pr_xFe_{1-x}CoO_3$ ($0.0 \le x \le 1.0$) [9], а также магнитные свойства твердых растворов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ ($1.0 \ge x \ge 0.7$) [10].

При анализе свойств дизамещенных твердых растворов выделить влияние отдельного заместителя часто оказывается затруднительным, в связи с чем целью настоящей работы явилось изучение влияния раздельного и совместного замещения висмута РЗЭ и железа марганцем на кристаллическую структуру и физико-химические свойства образующихся при этом твердых растворов (Bi,Ln)(Fe,Mn)O₃ (Ln = Nd, Ho).

Экспериментальная часть. Твердые растворы $Bi_{0.91}Ln_{0.09}FeO_3$, $BiFe_{0.91}Mn_{0.09}O_3$ и $Bi_{0.91}Ln_{0.09}Fe_{0.91}Mn_{0.09}O_3$ (Ln = Nd, Ho) синтезировали керамическим методом из Bi_2O_3 («хч»), Nd₂O₃ («HO-Л»), Ho₂O₃ («ГоО-1»), Fe₂O₃ («осч 2—4») и Mn₂O₃ («осч 11—2») на воздухе в интервале температур 1073—1113 К в течение 8—40 ч [9]. Рентгенофазовый анализ (РФА) порошков проводили на дифрактометре Bruker D8 XRD (Си K_{α} -излучение, Ni-фильтр); параметры кристаллической структуры синтезированных твердых растворов определяли при помощи рентгеноструктурного табличного процессора RTP [10]. ИК спектры поглощения порошков в таблетках с KBr («хч») записывали на Фурье-спектрометре Nexus фирмы ThermoNicolet в интервале частот 300—1500 см⁻¹ ($\Delta v \le \pm 2$ см⁻¹).

Электропроводность и термо-ЭДС спеченных керамических образцов изучали на воздухе в интервале температур 300—1100 К, а тепловое расширение — в интервале температур 300—750 К по методикам, описанным в [9, 11, 12]. Значения энергии активации электропроводности (E_A) и термо-ЭДС (E_S) керамики находили из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$ и S = f(1/T) соответственно, а коэффициента линейного теплового расширения (ТКЛР, α) — из линейных участков зависимостей $\Delta l/l_0 = f(T)$.

Результаты и их обсуждение. После завершения отжига твердые растворы $Bi_{0.91}Ln_{0.09}FeO_3$, $BiFe_{0.91}Mn_{0.09}O_3$ и $Bi_{0.91}Ln_{0.09}Fe_{0.91}Mn_{0.09}O_3$ (Ln = Nd, Ho), как и базовый феррит висмута $BiFeO_3$, имели структуру ромбоздрически искаженного перовскита (пр. гр. R3c) и содержали незначительные количества примесных фаз — $Bi_{25}FeO_{39}$ и $Bi_2Fe_4O_9$ (рис. 1, *a*), которые, согласно результатам работ [13, 14], всегда содержатся в керамике на основе перовскитного феррита висмута при использовании твердофазного метода синтеза. Определенные нами параметры элементарной ячейки $BiFeO_3$ (табл. 1) хорошо согласуются с литературными данными, согласно которым для феррита висмута параметры *a* и *b* составляют соответственно 0.56207(3) и 1.3692(13) нм [4], 0.55786 и 1.38667 нм [5], 0.558760 и 1.38670 нм [15]. Частичное замещение висмута неодимом или гольмием, а железа — марганцем приводит к ожидаемому уменьшению размеров элементарной ячейки образующихся при этом твердых растворов, наиболее выраженному для случая $Ho^{3+} \rightarrow Bi^{3+}$ (радиусы ионов Bi^{3+} , Nd^{3+} , Ho^{3+} , Fe^{3+} и Mn^{3+} для к. ч. = 6 составляют 0.102, 0.0995, 0.0894, 0.0645 и 0.065 нм соответственно [16]).

На ИК спектрах поглощения феррита висмута и твердых растворов на его основе наблюдаются четыре полосы поглощения с экстремумами при 340—361 см⁻¹ (v₁), 384—390 см⁻¹ (v₂), 436—440 см⁻¹ (v₃) и 540—553 см⁻¹ (v₄) (рис. 1, δ , табл. 1), отвечающие валентным (v₄) и деформационным (v₃) колебаниям связей (Fe,Mn)—O и колебаниям связей (Bi,Ln)—O (v₁, v₂) в структуре этих оксидов [17]. Как видно из приведенных в табл. 1 данных, частичное замещение ионов железа в BiFeO₃ ионами марганца и ионов висмута ионами РЗЭ приводит к смещению полос поглощения в сторону бо́льших волновых чисел, что указывает на усиление металл-кислородных взаимодействий в кристаллической структуре твердых растворов (Bi,Ln)(Fe,Mn)O₃ по сравнению с BiFeO₃, и хорошо согласуется с результатами РФА.

Температурные зависимости относительного удлинения исследованных образцов были практически линейными, из чего можно заключить, что в интервале темпера-

Рис. 1. Рентгеновская дифрактограмма (*a*) и ИК спектр поглощения (б) порошка состава Ві_{0.91}Nd_{0.09}Fe_{0.91}Mn_{0.09}O₃.

Символами * и # обозначены рефлексы примесных фаз $Bi_2Fe_4O_9$ и $Bi_{25}FeO_{39}$ соответственно.

тур 300—750 К они не испытывают структурных фазовых переходов. Величина ТКЛР для Nd-, Mn- и (Nd,Mn)-замещенных твердых растворов была выше, чем для BiFeO₃ (табл. 2), что, вероятно, обусловлено увеличением степени ангармонизма колебаний в их структуре, более выраженном при замещении $Mn^{3+} \rightarrow Fe^{3+}$, чем при замещении $Nd^{3+} \rightarrow Bi^{3+}$. Частичное замещение висмута гольмием приводило к уменьшению ТКЛР образующихся при этом твердых растворов (табл. 2), что, по-видимому, связано со значительным сжатием их элементарной ячейки при замещении больших ионов Bi³⁺ значительно меньшими по размеру ионами Ho³⁺.

Как видно из рис. 2, все исследованные в работе материалы являются полупроводниками ($\partial \sigma / \partial T > 0$) *р*-типа (S > 0) (для твердого раствора $Bi_{0.91}Ho_{0.09}Fe_{0.91}Mn_{0.09}O_3$ при T > 750 К коэффициент Зеебека меняет знак: S < 0), при этом электропровод-

Таблица 1

Параметры (a, c) и объемы элементарных ячеек (V) феррита висмута BiFeO₃ (BFO) и твердых растворов Bi_{0.91}Nd_{0.09}FeO₃ (BNFO), Bi_{0.91}Ho_{0.09}FeO₃ (BHFO), BiFe_{0.91}Mn_{0.09}O₃ (BFMO), Bi_{0.91}Nd_{0.09}Fe_{0.91}Mn_{0.09}O₃ (BNFMO) и Bi_{0.91}Ho_{0.09}Fe_{0.91}Mn_{0.09}O₃ (BHFMO), а также положения экстремумов на ИК спектрах

поглощения

Феррит	Параметры элементарных ячеек			Положения экстремумов			
	а, нм	С, НМ	<i>V</i> , нм ³	v ₁ , см ⁻¹	v ₂ , см ⁻¹	v ₃ , см−1	ν ₄ , см ^{−1}
220	0.555(0)	1.0000	0.0500(5)	2.10	204	120	5 4 0
BFO	0.5576(2)	1.386(1)	0.3733(5)	340	384	438	540
BNFO	0.5579(3)	1.383(1)	0.3728(6)	359	390	436	552
BHFO	0.5562(3)	1.379(1)	0.3694(7)	357	382	436	547
BFMO	0.5579(3)	1.384(1)	0.3730(6)	359	393	440	552
BNFMO	0.5575(3)	1.380(1)	0.3714(7)	359	389	440	553
BHFMO	0.5569(3)	1.382(1)	0.3711(6)	361	390	436	551

Таблица 2

Состав	$\alpha \cdot 10^6$, K ⁻¹	<i>Е</i> _{<i>A</i>} , эВ	<i>Е_{<i>S</i>}, эВ</i>	<i>Е</i> _{<i>m</i>} , эВ
PiF ₂ O	11.0	0.622	0.422	0.210
$Bi_{0.01}Nd_{0.00}FeO_2$	12.9	0.032	0.422	0.210
$Bi_{0.91}Ho_{0.09}FeO_3$	9.46	0.811	0.413	0.398
BiFe _{0.91} Mn _{0.09} O ₃	13.4	0.457	0.117	0.340
$Bi_{0.91}Nd_{0.09}Fe_{0.91}Mn_{0.09}O_3$	13.3	0.655	0.071	0.584
$Bi_{0.91}Ho_{0.09}Fe_{0.91}Mn_{0.09}O_3$	9.22	0.721	0.090	0.631

Значения ТКЛР (α) и параметров электропереноса (E_A, E_S, E_m) для BiFeO₃ и твердых растворов на его основе

ность (о) твердых растворов (Bi,Ln)(Fe,Mn)O3 выше (у твердого раствора $Bi_{0.91}Ho_{0.09}FeO_3$ при T > 500 K ниже), а термо-ЭДС ниже, чем у незамещенной фазы ВіFeO₃. Наиболее высокими значениями о характеризуются твердые растворы $Bi_{0.91}Nd_{0.09}FeO_3$ и BiFe_{0.91}Mn_{0.09}O₃, электропроводность которых при комнатной температуре (≈ 300 K) соответственно на два и один порядок выше, чем для BiFeO₃ (рис. 2, a). Величина энергии активации электропроводности (E_A) феррита висмута составила 0.632 эВ, что хорошо согласуется с результатами работы [18], согласно которым E_A BiFeO₃ составляет 0.628(9) эВ. Для твердых растворов (Bi,Ln)(Fe,Mn)O₃ значение Е_А уменьшается при частичном замещении висмута неодимом или железа марганцем и возрастает во всех остальных случаях.

Значения коэффициента термо-ЭДС Мп-содержащих твердых растворов с учетом величины их электропроводности были аномально низки (так, например, в области температур 600—800 К $\sigma_{\rm BHFO} \approx \sigma_{\rm BHFMO}$, тогда как $S_{\rm BHFO} \gg S_{\rm BHFMO}$), а температурный коэффициент их термо-ЭДС в области температур 700—900 К изменял знак с отрицательного ($\partial S/\partial T < 0$) на положительный ($\partial S/\partial T > 0$) (рис. 2, δ). Подобные аномалии термо-ЭДС не характерны для обычных полупроводников, но могут проявляться в сильно коррелированных системах, к которым относятся многие перовскитоподобные и слоистые кобальтиты РЗЭ и бария, слоистые кобальтиты натрия или кальция, а также перовскитоподобный феррит висмута.

Так, в работе [19] при описании термо-ЭДС кобальтита натрия Na_xCoO₂ было

использовано модифицированное уравнение Хейкеса $S = \frac{k}{e} \ln \left(\frac{g_4 [\text{Co}^{3+}]}{g_2 [\text{Co}^{4+}]} \right)$, где k —

постоянная Больцмана, е — заряд электрона, g₄ и g₃ — вырождение ионов Со⁴⁺ и Со³⁺ соответственно, а [Со³⁺] и [Со⁴⁺] — их концентрации в структуре Na_xCoO₂. Авторами [19] было показано, что в зависимости от того, в каких спиновых состояниях (низко-, промежуточно- и высокоспиновых) находятся ионы Co⁴⁺ и Co³⁺ в структуре Na_xCoO₂, величина коэффициента термо-ЭДС этой фазы может изменяться от -84 до 214 мкВ/К. С учетом этого можно предположить, что частичное замещение железа марганцем в BiFeO₃ приводит к изменению спинового (и, возможно, зарядового) состояния ионов железа в структуре образующихся при этом твердых растворов, что и обусловливает отмеченные аномалии термо-ЭДС фаз BiFe_{0.91}Mn_{0.09}O₃, $Bi_{0.91}Ln_{0.09}Fe_{0.91}Mn_{0.09}O_3.$

Температурные зависимости электропроводности и термо-ЭДС сильно коррелированных систем описываются формулами $\sigma = A/T \exp(E_A/kT)$, $S = k/e(E_S/kT+B)$, где $E_A = E_S + E_m$ и E_S — энергии активации электропроводности и термо-ЭДС, причем величина E_S характеризует энергию возбуждения носителей заряда, а E_m — энергию их переноса [20].

Как следует из представленных в табл. 2 данных, частичное замещение Ln³⁺ → \rightarrow Bi³⁺, Mn³⁺ \rightarrow Fe³⁺ в BiFeO₃ приводит к уменьшению энергии возбуждения носите-

Рис. 2. Температурные зависимости электропроводности (*a*) и термо-ЭДС (*б*) феррита висмута BiFeO₃ (*1*) и твердых растворов на его основе $Bi_{0.91}Nd_{0.09}FeO_3$ (*2*), $Bi_{0.91}Ho_{0.09}FeO_3$ (*3*), $BiFe_{0.91}Mn_{0.09}O_3$ (*4*), $Bi_{0.91}Nd_{0.09}Fe_{0.91}Mn_{0.09}O_3$ (*5*) и $Bi_{0.91}Ho_{0.09}Fe_{0.91}Mn_{0.09}O_3$ (*6*).

лей заряда и значительному увеличению энергии их переноса в образующихся при этом твердых растворах, причем электроперенос наиболее затруднен в дизамещенных твердых растворах Bi_{0.91}Ln_{0.09}Fe_{0.91}Mn_{0.09}O₃, которые характеризуются наиболее высокой концентрацией ионов-заместителей.

Заключение. Керамическим методом синтезированы твердые растворы на основе феррита висмута $Bi_{0.91}Ln_{0.09}FeO_3$, $BiFe_{0.91}Mn_{0.09}O_3$ и $Bi_{0.91}Ln_{0.09}Fe_{0.91}Mn_{0.09}O_3$, изучены их кристаллическая структура, тепловое расширение и электрические свойства. Определены значения параметров элементарной ячейки, термического коэффициента линейного расширения и параметров электропереноса в структуре этих фаз. Установлено, что твердые растворы (Bi,Ln)(Fe,Mn)O₃ (Ln = Nd, Ho) являются полупроводниками *p*-типа, величина электропроводности которых в целом выше, а коэффициента термо-ЭДС ниже, чем у BiFeO₃, причем наиболее сильное уменьшение термо-ЭДС наблюдается для Mn-содержащих твердых растворов. Высказано предположение о том, что аномалии термо-ЭДС изученных в работе твердых растворов связаны с изменением спинового состояния ионов железа в их структуре.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант X13-005).

Список литературы

- Пятаков А. П., Звездин А. К. Магнитоэлектрические материалы и мультиферроики // УФН. 2012.
 Т. 182. № 6. С. 593—620. [Pyatakov A. P., Zvezdin A. K. Magnitoelectric and Multiferroic Media // Physics-Uspekhi. 2012. V. 55. Is. 6. P. 557—581.]
- Троянчук И. О., Бушинский М. В., Чобот А. Н., Мантыцкая О. С., Терешко Н. В. Слабый антиферромагнетизм в мультиферроиках на основе BiFeO₃ // Письма в ЖЭТФ. 2009. Т. 89. Вып. 4. С. 204—208. [Troyanchuk I. O., Bushinsky M. V., Chobot A. N., Mantytskaya O. S., Tereshko N. V. Weak Ferromagnetism in BiFeO₃-Based Multiferroics // JETP Letters. 2009. V. 89. Is. 4. P. 180—184.]
- 3. *Макоед И. И.* Получение и физические свойства мультиферроиков: Монография. Брест: БрГУ, 2009. 181 с.
- Suresh P., Srinath S. Observation of High Coercivity in Multiferroic Lanthanum Doped BiFeO₃ // J. Alloys Comp. 2013. V. 554. P. 271–276.
- 5. Sati P., Arora M., Chauhan S., Kumar M., Chhoker S. Effect of Dy Substitution on Structural, Magnetic and Optical Properties of BiFeO₃ Ceramics // J. Phys. Chem. Solids. 2014. V. 75. N 1. P. 105–108.
- 6. Kothari D., Reddy V. R., Gupta A., Phase D. M., Lakshmi N., Deshpande S. K., Awasthi A. M. Study of the Effect of Mn on the BiFeO3 System // J. Phys. Condens. Matter. 2007. V. 19. P. 136 202 (8 pages).
- Kumar A., Yadav K. L. A Systematic Study on Magnetic, Dielectric and Magnetocapacitance Properties of Ni Doped Bismuth Ferrite // J. Phys. Chem. Solids. 2011. V. 72. N 11. P. 1189—1194.
- Иванова В. В., Гагулин В. В., Корчагина С. К., Шевчук Ю. А., Богатко В. В. Синтез и свойства твердых растворов системы BiFeO₃—DyMnO₃ // Неорган. матер. 2003. Т. 79. № 7. С. 876—879. [*Ivanova V. V.*, Gagulin V. V., Korchagina S. K., Shevchuk Yu. A., Bogatko V. V. Synthesis and Properties of BiFeO₃—DyMnO₃ // Inorg. Mater. 2003. V. 79. N 7. P. 745—748.]
- 9. Клындюк А. И., Чижова Е. А., Затюпо А. А., Башкиров Л. А., Гусаров В. В., Тугова Е. А. Синтез, структура и физико-химические свойства твердых растворов в квазибинарной системе BiFeO₃—PrCoO₃ // Весці НАН Беларусі. Сер. хім. навук. 2012. № 4. С. 5—9.
- 10. Затюпо А. А., Башкиров Л. А., Петров Г. С., Лобановский Л. С., Труханов С. В. Магнитные свойства ферритов-кобальтитов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (1.0 ≥ $x \ge 0.7$) со структурой перовскита // Физ. и хим. стекла. 2013. Т. 39. № 5. С. 829—839. [Zatsiupa A. A., Bashkirov L. A., Petrov G. S., Lobanovskii L. S., Trukhanov S. V. Magnetic Properties of Ferrites-Cobaltites $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (1.0 ≥ $x \ge 0.7$) with a Perovskite Structure // Glass Phys. Chem. 2013. V. 39. N 5. P. 589—596.]
- Klyndyuk A. I., Chizhova Ye. A. Thermoelectric Properties of the Layered Oxides LnBaCu(Co)FeO_{5+δ} (Ln = La, Nd, Sm, Gd) # Funct. Mater. 2009. V. 16. N 1. P. 17–22.
- 12. Клындюк А. И., Чижова Е. А. Структура и свойства твердых растворов La_{1-x}Pr_xBaCuFeO_{5+δ} // Физ. и хим. стекла. 2012. Т. 38. № 2. С. 868—875. [Klyndyuk A. I., Chizhova E. A. Structure and Properties of Solid Solutions of La_{1-x}Pr_xBaCuFeO_{5+δ} // Glass Phys. Chem. 2012. V. 38. N 2. P. 234—239.]
- Морозов М. И., Ломанова Н. А., Гусаров В. В. Особенности образования BiFeO₃ в смеси оксидов висмута и железа (III) // ЖОХ. 2003. Т. 73. Вып. 11. С. 1772—1776. [Morozov M. I., Lomanova N. A., Gusarov V. V. Specific Features of BiFeO₃ Formation of a Mixtures of Bismuth (III) and Iron (III) Oxides // Rus. J. Gen. Chem. 2003. V. 73. N 11. P. 1676—1680.]
- 14. Bernardo M. S., Jardiel T., Peliteado M. et al. Reaction Pathways in the Solid State Synthesis of Multiferroic BiFeO₃ // J. Eur. Ceram. Soc. 2011. V. 31. N 16. P. 3047-3053.
- Moreau J. M., Michel C., Gerson R., James W. J. Ferroelectric BiFeO₃ X-Ray and Neutron Diffraction Study # J. Phys. Chem. Solids. 1971. V. 32. N 6. P. 1315—1320.
- Shannon R. D., Prewitt C. T. Revised Values of Effective Ionic Radii // Acta Crystallogr. 1969. V. 25B. Pt 5. P. 946—960.
- Annapu Reddy V., Pathak N. P., Nath R. Particle Size Dependent Magnetic Properties and Phase Transitions in Multiferroic BiFeO₃ Nano-Particles // J. Alloys Comp. 2012. V. 543. P. 206—212.
- Yasin Shami M., Awan M. S., Anis-ur-Rehman M. Phase Pure Synthesis of BiFeO₃ Nanopowders Using Diverse Precursor Via Co-Precipitation Method // J. Alloys Comps. 2011. V. 509. P. 10 139–10 144.
- Koshibae W., Tsutsui K., Maekawa S. Thermopower in Cobalt Oxides // Phys. Rev. B. 2000—I. V. 62. N 11. P. 6869—6872.
- Momm H., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1982. 368 с. [Mott N., Davis E. Electronic Processes in Non-Crystalline Materials. Oxford: Oxford University Press, 1979.]