© Клындюк А. И., Мацукевич И. В.

СИНТЕЗ И СВОЙСТВА ДИЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ СЛОИСТОГО КОБАЛЬТИТА КАЛЬЦИЯ

Белорусский государственный технологический университет, Республика Беларусь, 220006, Минск, ул. Свердлова, 13А, e-mail: kai 17@rambler.ru

Цитратным методом синтезированы дизамещенные твердые растворы на основе слоистого кобальтита кальция Ca2.8Ln0.1Bi0.1Co4O9+6, Ca3Co3.85Fe0.075 · $Bi_{0.075}O_{9+\delta}$, $Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi), определены параметры их кристаллической структуры, изучены их тепло-, электрофизические и термоэлектрические свойства. Показано, что полученные оксиды являются полупроводниками *p*-типа, теплопроводность и коэффициент линейного термического расширения которых уменьшаются, а кажущаяся энергия активации электропроводности возрастает при замещении ионов кальция и кобальта ионами более тяжелых металлов. Установлено, что наибольшее значение фактора мощности демонстрирует твердый раствор Ca2.8Tb0.2Co3.85Bi0.15O9 + 6 $(P_{1100} = 0.140 \text{ MBt/(M} \cdot \text{K}^2))$, а показателя термоэлектрической добротности кобальтит Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9 + δ} (*ZT*₄₂₃ = 0.009), что соответственно на 40 и 50 % выше, чем для базовой фазы $Ca_{3}Co_{4}O_{9\,+\,\delta}$ при тех же температурах.

Ключевые слова: оксидные термоэлектрики, слоистый кобальтит кальция, теплопроводность, фактор мощности, показатель термоэлектрической добротности.

Введение. Слоистый кобальтит кальция Ca₃Co₄O_{9 + б} является полупроводником р-типа, который обладает одновременно высокими значениями электропроводности (σ) и коэффициента термо-ЭДС (S) и низкой теплопроводностью (λ), а также устойчив на воздухе вплоть до 1222 К [1], что позволяет рассматривать его как перспективную основу для р-ветвей высокотемпературных термоэлектрогенераторов (ТЭГ) [2, 3].

 $Ca_3Co_4O_{9+\delta}$ кристаллизуется в моноклинной сингонии, его структура образована чередующимися слоями [Ca₂CoO₃] и [CoO₂]. Параметры *a*, *c* и β обоих слоев одинаковы, а параметры b отличаются ($b_1 : b_2 \approx 1.62$, где b_1 и b_2 — значения параметров периодичности в направлении оси b слоев [Ca₂CoO₃] и [CoO₂] соответственно). Таким образом, это соединение является несоразмерной фазой, формулу которой можно записать как $[Ca_2CoO_3][CoO_2]_{b_1: b_2}$ или, упрощенно, как $Ca_3Co_4O_{9+\delta}$ [4].

Известно, что функциональные (термоэлектрические) характеристики (фактор мощности $P = S^2 \cdot \sigma$ и показатель термоэлектрической добротности (параметр Иоффе) $P = S^2 \cdot \sigma$ и $ZT = (P \cdot T) / \lambda$) керамики на основе Ca₃Co₄O_{9 + δ} могут быть улучшены за счет использования вместо традиционного твердофазного «мягких» низкотемпературных методов синтеза [5, 6], а также при частичном замещении в нем ионов

Поступило 25 сентября 2014 г.

кальция ионами висмута [7, 8] или редкоземельных элементов (РЗЭ) [9—11], или ионов кобальта ионами 3*d*-металлов [12—14]. Влияние совместного частичного замещения ионов кальция и кобальта в $Ca_3Co_4O_{9+\delta}$ на свойства образующихся при этом твердых растворов практически не изучено.

В связи с этим целью настоящей работы являлся синтез дизамещенных производных слоистого кобальтита кальция $Ca_{2.8}Ln_{0.1}Bi_{0.1}Co_4O_{9+\delta}$, $Ca_3Co_{3.85}Fe_{0.075}Bi_{0.075}O_{9+\delta}$, $Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi), исследование их кристаллической структуры, физико-химических и функциональных свойств.

Экспериментальная часть. Керамические образцы кобальтитов Ca_{2.8}Ln_{0.1}Bi_{0.1} · Co₄O_{9+δ}, Ca₃Co_{3.85}Fe_{0.075}Bi_{0.075}O_{9+δ}, Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+δ} (Ln = Tb, Er; M = Fe, Bi) синтезировали цитратным методом по методикам, описанным в [11, 14], с использованием в качестве исходных реагентов лимонной кислоты C₆H₈O₇ «ч», Ca(NO₃)₂ · 4H₂O «чда», Co(NO₃)₂ · 6H₂O «чда», Fe(NO₃)₃ «хч», Bi(NO₃)₃ · 5H₂O «ч», а также Tb₂O₃ «хч» и Er₂O₃ «хч», причем последние предварительно растворяли в концентрированной HNO₃ «чда». Процессы, протекающие в ходе получения прекурсоров Ca₃Co₄O_{9+δ} цитратным методом и в ходе термолиза этих прекурсоров, описаны нами ранее в работах [14, 15].

Идентификацию образцов и определение параметров их кристаллической структуры проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, Cu K_{α} -излучение), параметры кристаллической структуры синтезированных твердых растворов определяли при помощи рентгеноструктурного табличного процессора RTP [16]. Кажущуюся плотность спеченной керамики (ρ_к) определяли по массе и геометрическим размерам образцов. Термическое расширение, электропроводность (σ) и коэффициент термо-ЭДС (S) спеченных керамических образцов Ca₂ $_{8}$ Ln₀ $_{1}$ Bi₀ $_{1}$ Co₄O_{9 + δ}, Ca₃Co₃ $_{85}$ Fe₀ $_{075}$ Bi₀ $_{075}$ O_{9 + δ}, $Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi) изучали в интервале температур 300-1100 K, а теплопроводность (λ) в интервале температур 298-423 K по методикам, описанным в [8, 11, 17]. Решеточную ($\lambda_{\text{реш}}$) и электронную ($\lambda_{\text{эл}}$) составляющие теплопроводности находили по формулам $\lambda = \lambda_{3\pi} + \lambda_{pem}$, $\lambda_{3\pi} = \sigma \cdot L \cdot T$, где L — число Лоренца ($L = 2.45 \cdot 10^{-8}$ Вт · Ом · К⁻²). Значения термического коэффициента линейного расширения (ТКЛР, α) и кажущейся энергии активации электропроводности (E_A) керамики определяли из линейных участков зависимостей $\Delta l/l_0 = f(T)$ и $\ln(\sigma T) = f(1/T)$ соответственно. Величины фактора мощности (P) и показателя термоэлектрической добротности (ZT) полученной керамики рассчитывали по выражениям $P = S^2 \cdot \sigma$ и $ZT = (P \cdot T) / \lambda$ соответственно.

Результаты и их обсуждение. После завершения синтеза образцы кобальтита кальция Ca₃Co₄O_{9+δ} и твердых растворов на его основе Ca_{2.8}Ln_{0.1}Bi_{0.1}Co₄O_{9+δ}, Са₃Со_{3.85}Fe_{0.075}Bi_{0.075}O_{9+δ}, Са_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+δ} (Ln = Tb, Er; M = Fe, Bi) были в пределах погрешности РФА однофазными и имели структуру слоистого кобальтита кальция [4] (рис. 1). Найденные нами значения параметров кристаллической структуры Ca₃Co₄O_{9+δ} составили a = 0.4830(7) нм, $b_1 = 0.4562(8)$ нм, $b_2 = 0.2812(6)$ нм, c = 1.085(1) нм, $\beta = 98.28(1)^{\circ}$ (табл. 1), что в пределах погрешности эксперимента согласуется с литературными данными, согласно которым для слоистого кобальтита кальция *a* = 0.48376(7) нм, *b*₁ = 0.45565(6) нм, *b*₂ = 0.28189(4) нм, *c* = 1.08933(1) нм, $\beta = 98.06(1)^{\circ}$ [4]. Как видно из данных, представленных в табл. 1, частичное замещение ионов кальция и кобальта более крупными ионами железа, висмута или РЗЭ [18] в целом приводит к ожидаемому увеличению размеров элементарной ячейки образующихся при этом твердых растворов; параметр несоразмерности $(b_1 : b_2)$ при этом незначительно уменьшается. Сопоставление параметров кристаллической структуры дизамещенных (табл. 1) и монозамещенных [8, 11, 14] производных Ca₃Co₄O_{9 + б} позволяет сделать ряд заключений. Размер элементарной ячейки твердых растворов на основе слоистого кобальтита кальция, в которых кальций замещается одно-

Рис. 1. Рентгеновские дифрактограммы (Си K_{α} -излучение) порошков состава Ca₃Co₄O_{9+ δ} (1), Ca_{2.8}Tb_{0.1}Bi_{0.1}Co₄O_{9+ δ} (2), Ca₃Co_{3.85}Fe_{0.075}Bi_{0.075}O_{9+ δ} (3) и Ca_{2.8}Tb_{0.2}Co_{3.85}Fe_{0.15}O_{9+ δ} (4).

временно висмутом и РЗЭ, является промежуточным между размерами элементарной ячейки твердых растворов, в которых кальций частично замещается либо висмутом, либо РЗЭ, тогда как совместное замещение кобальта висмутом и железом, а также кальция висмутом или РЗЭ и кобальта железом или висмутом приводит к заметному уменьшению размеров элементарной ячейки образующихся при этом кобальтитов по сравнению с монозамещенными твердыми растворами (так, $V(Ca_3Co_{3.85}Fe_{0.075}Bi_{0.075}O_{9+\delta}) < V(Ca_3Co_{3.85}Fe_{0.15}O_{9+\delta})$).

Кажущаяся плотность твердых растворов $Ca_{2.8}Ln_{0.1}Bi_{0.1}Co_4O_{9+\delta}$, $Ca_3Co_{3.85}Fe_{0.075}$. Bi_{0.075}O_{9+ δ}, $Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi) изменялась в пределах 2.65—2.91 г/см³ (табл. 2), что на 9—20 % ниже, чем для базовой фазы $Ca_3Co_4O_{9+\delta}$ (3.18 г/см³) и на 3—13 % ниже, чем для монозамещенных кобальтитов $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$ [11] и $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ [14], из чего следует, что спекаемость производных слоистого кобальтита кальция ухудшается при усложнении их состава.

Таблица 1

Значения параметров кристаллической структуры $(a, b_1, b_2, c, \beta, V, b_1/b_2)$ слоистого кобальтита кальция и его производных

Состав	а, нм	<i>b</i> ₁ , нм	<i>b</i> ₂ , нм	С, НМ	β, град	<i>V</i> , нм ³	b_1/b_2
$Ca_3Co_4O_{9+\delta}$	0.4830(7)	0.4562(8)	0.2812(6)	1.085(1)	98.28(8)	0.2365(10)	1.62
$Ca_{2.8}Tb_{0.1}Bi_{0.1}Co_4O_{9+\delta}$	0.4826(6)	0.4581(6)	0.2854(9)	1.086(8)	98.17(6)	0.2376(8)	1.61
$Ca_{2.8}Er_{0.1}Bi_{0.1}Co_4O_{9+\delta}$	0.4832(7)	0.4582(8)	0.2841(8)	1.085(1)	98.02(8)	0.2380(10)	1.61
$Ca_3Co_{3.85}Fe_{0.075}Bi_{0.075}O_{9+\delta}$	0.4841(5)	0.4566(6)	0.2837(8)	1.084(7)	98.16(6)	0.2370(7)	1.61
$Ca_{2.8}Tb_{0.2}Co_{3.85}Fe_{0.15}O_{9+\delta}$	0.4840(7)	0.4550(8)	0.2831(9)	1.078(1)	98.05(8)	0.2350(9)	1.61
$Ca_{2.8}Tb_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$	0.4835(5)	0.4565(6)	0.2840(9)	1.083(1)	98.02(6)	0.2367(8)	1.61
Ca _{2.8} Er _{0.2} Co _{3.85} Fe _{0.15} O _{9 + δ}	0.4833(7)	0.4562(8)	0.2820(9)	1.085(1)	97.78(9)	0.2370(9)	1.62
$Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$	0.4847(8)	0.4564(9)	0.2818(9)	1.081(1)	98.15(9)	0.2366(9)	1.62

739

Таблица 2

Состав	ρ _к , г/см ³	$\alpha \cdot 10^6, \mathrm{K}^{-1}$	<i>Е</i> _А , эВ
	3.18	1.28	0.065
$Ca_{2.8}Tb_{0.1}Bi_{0.1}Co_4O_{9+\delta}$	2.74		0.081
$Ca_{2.8}Er_{0.1}Bi_{0.1}Co_4O_{9+\delta}$	2.69	_	0.094
Ca ₃ Co _{3.85} Fe _{0.075} Bi _{0.075} O _{9 + δ}	2.71		0.102
$Ca_{2.8}Tb_{0.2}Co_{3.85}Fe_{0.15}O_{9+\delta}$	2.91	1.20	0.082
$Ca_{2.8}Tb_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$	2.74	1.17	0.083
Ca _{2.8} Er _{0.2} Co _{3.85} Fe _{0.15} O _{9 + δ}	2.80	1.17	0.082
$Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$	2.65	1.12	0.083

Значения кажущейся плотности (ρ_к), термического коэффициента линейного расширения (α) и кажущейся энергии активации электропроводности (E_A) керамики на основе слоистого кобальтита кальния

Согласно данным электронной микроскопии, частицы спеченной керамики имели форму пластин (чешуек) толщиной 0.5—1 мкм и диаметром 3—7 мкм.

Зависимости $\Delta l / l_0 = f(T)$ для фаз Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+δ} (Ln = Tb, Er; M = Fe, Bi) в интервале температур 300—1100 К были линейными, из чего следует, что в этом интервале температур эти соединения не претерпевают структурных фазовых превращений. Значения ТКЛР кобальтитов Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+δ} изменялись в пределах (1.12—1.20) · 10⁻⁵ K⁻¹ (табл. 2) и были заметно ниже, чем для базовой фазы Ca₃Co₄O_{9+δ} (1.28 · 10⁻⁵ K⁻¹) и ее монозамещенных производных Ca_{2.8}Ln_{0.2}Co₄O_{9+δ} ((1.22—1.27) · 10⁻⁵ K⁻¹ [11]), Ca₃Co_{3.85}M_{0.15}O_{9+δ} ((1.20—1.31) · 10⁻⁵ K⁻¹ [14]), что, очевидно, обусловлено увеличением энергии металл-кислородных взаимодействий в структуре этих фаз при частичном совместном замещении ионов кальция и кобальта ионами других металлов. Следует отметить хорошую корреляцию результатов дилатометрии и РФА кобальтитов Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+δ} — сжатие их элементарной ячейки приводит к ожидаемому уменьшению ТКЛР.

Как видно из рис. 2, *a*, *б*, *c*, *д*, кобальтиты $Ca_{2.8}Ln_{0.1}Bi_{0.1}Co_4O_{9+\delta}$, $Ca_3Co_{3.85}Fe_{0.075}$. Ві_{0.075} $O_{9+\delta}$, $Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi) являются полупроводниками *p*-типа, величина о которых в целом ниже, а коэффициента термо-ЭДС выше, чем для незамещенного кобальтита кальция и возрастает с ростом температуры. При этом во всем исследованном интервале температур значения электропроводности фаз $Ca_{2.8}Ln_{0.1}Bi_{0.1}Co_4O_{9+\delta}$ и $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$ были ниже, чем у монозамещенных кобальтитов $Ca_{2.8}Bi_{0.2}Co_4O_{9+\delta}$ [8], $Ca_{2.8}Ln_{0.2}Co_4O_{9+\delta}$ [11], $Ca_3Co_{3.85}Fe_{0.15}O_{9+\delta}$ [8, 11, 14].

Величина кажущейся энергии активации электропроводности керамики Ca_{2.8} · Ln_{0.1}Bi_{0.1}Co₄O_{9+ δ}, Ca₃Co_{3.85}Fe_{0.075}Bi_{0.075}O_{9+ δ}, Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+ δ} (Ln = Tb, Er; M = Fe, Bi) изменялась в пределах 0.081—0.102 эВ (эВ) и была на 25—60 % выше, чем для базовой фазы Ca₃Co₄O_{9+ δ} (табл. 2), достигая наибольшего значения для твердого раствора Ca₃Co_{3.85}Fe_{0.075}Bi_{0.075}O_{9+ δ}, из чего следует, что создание разнородных дефектов замещения в проводящих CoO₂-слоях структуры слоистого кобальтита кальция приводит к значительному затруднению электропереноса в этих слоях.

Значения фактора мощности кобальтитов $Ca_{2.8}Ln_{0.1}Bi_{0.1}Co_4O_{9+\delta}$, $Ca_3Co_{3.85} \cdot Fe_{0.075}Bi_{0.075}O_{9+\delta}$, $Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+\delta}$ возрастали при увеличении температуры и для дизамещенных твердых растворов были ниже, чем для $Ca_3Co_4O_{9+\delta}$, за исключением кобальтита $Ca_{2.8}Tb_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$, который продемонстрировал наибольшее значение $P = 0.140 \text{ MBT/}(\text{M} \cdot \text{K}^2)$ при T = 1100 K, что на 40 % выше, чем для незамещенного кобальтита кальция (рис. 2, *e*, *e*).

Теплопроводность исследованных кобальтитов в интервале температур 298— 423 К изменялась незначительно, а ее величина составила 0.69—0.75 Вт/(м · К) для

Рис. 2. Температурные зависимости электропроводности (σ) (*a*, *z*), коэффициента термо-ЭДС (S) (*b*, *d*) и фактора мощности (*P*) (*s*, *e*) кобальтитов Са₃Со₄O_{9+δ} (*I*), Ca_{2.8}Tb_{0.1}Bi_{0.1}Co₄O_{9+δ} (2), Ca_{2.8}Er_{0.1}Bi_{0.1}Co₄O_{9+δ} (3), Ca₃Cb_{3.85}Fe_{0.075}Bi_{0.075}O_{9+δ} (4), Ca_{2.8}Tb_{0.2}CO_{3.85}Fe_{0.15}O_{9+δ} (5), Ca_{2.8}Er_{0.15}O_{9+δ} (5), Ca_{2.8}Er_{0.15}O_{9+δ} (6), Ca_{2.8}Er_{0.15}O_{9+δ} (6), Ca_{2.8}Er_{0.15}O_{9+δ} (6), Ca_{2.8}Er_{0.15}O_{9+δ} (7) и Ca_{2.8}Er_{0.15}O_{9+δ} (6), Ca_{2.8}Er_{0.15}O_{9+δ} (7), Ca_{2.8}Er_{0.15}O_{0+δ} (7), Ca

741

Рис. 3. Температурные зависимости теплопроводности (λ) (*a*) и безразмерного показателя термоэлектрической добротности (*ZT*) (δ) слоистого кобальтита кальция (*I*) и его дизамещенных производных $Ca_{2.8}Tb_{0.2}Co_{3.85}Fe_{0.15}O_{9+\delta}$ (2), $Ca_{2.8}Er_{0.2}Co_{3.85}Fe_{0.15}O_{9+\delta}$ (3), $Ca_{2.8}Er_{0.1}Bi_{0.1}Co_4O_{9+\delta}$ (4) и $Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$ (5).

твердых растворов Ca_{2.8}Ln_{0.2}Co_{3.85}Fe_{0.15}O_{9+δ}, 0.62—0.65 Вт/(м · K) для кобальтита Ca_{2.8}Er_{0.1}Bi_{0.1}Co₄O_{9+δ} и 0.53—0.58 Вт/(м · K) для фазы Ca_{2.8}Er_{0.2}Co_{3.85}O_{9+δ} (рис. 3, *a*), что на 13, 24 и 35 % ниже, чем для незамещенного кобальтита кальция, а для дизамещенного твердого раствора Ca_{2.8}Er_{0.1}Bi_{0.1}Co₄O_{9+δ} также на 21 % ниже, чем для монозамещенного твердого раствора Ca_{2.8}Er_{0.2}Co₄O_{9+δ} [11]. Электронная составляющая теплопроводности фаз Ca_{2.8}Er_{0.1}Bi_{0.1}Co₄O_{9+δ}, Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+δ} была невелика и не превышала 3 % от общей теплопроводности, а решеточная составляющая была преобладающей и, как и общая теплопроводность, слабо зависела от температуры. Как видно, создание разнородных дефектов замещения в подрешетке кальция (Er_{Ca} и Bi_{Ca}) является более эффективным способом снижения теплопроводных Ca₃Co₄O_{9+δ}, чем создание в ней однородных дефектов замещения λ обеспечивается за счет снижения е решеточной составляющей.

Как видно из рис. 3, δ , показатель термоэлектрической добротности исследованных кобальтитов возрастал при увеличении температуры и для твердого раствора Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9+ δ} при температуре 423 К составил 0.009, что на 50 % выше, чем для незамещенного кобальтита кальция. Экстраполяция зависимостей $\lambda = f(T)$ исследованной керамики в область высоких температур позволяет получить оценочные значения *ZT* кобальтитов Ca_{2.8}Er_{0.1}Bi_{0.1}Co₄O_{9+ δ}, Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9+ δ} и Ca_{2.8}Tb_{0.2}Co_{3.85}Fe_{0.15}O_{9+ δ} при *T* = 1100 K, равные 0.15, 0.13 и 0.11, что соответственно на 50, 30 и 10 % выше, чем для Ca₃Co₄O_{9+ δ}. Таким образом, совместное замещение ионов кальция или кальция и кобальта в слоистом кобальтите кальция ионами других металлов позволяет получить дизамещенные твердые растворы с улучшенными по сравнению с базовой фазой термоэлектрическими характеристиками при повышенных температурах.

Заключение. Впервые цитратным методом получены дизамещенные производные слоистого кобальтита кальция $Ca_{2.8}Ln_{0.1}Bi_{0.1}Co_4O_{9+\delta}$, $Ca_3Co_{3.85}Fe_{0.075}Bi_{0.075}O_{9+\delta}$, $Ca_{2.8}Ln_{0.2}Co_{3.85}M_{0.15}O_{9+\delta}$ (Ln = Tb, Er; M = Fe, Bi), определены параметры их кристаллической структуры, изучены тепловые, электрические и термоэлектрические свойства. Установлено влияние частичного совместного замещения ионов кальция ионами РЗЭ и висмута, а ионов кобальта ионами железа и висмута на структуру и свойства образующихся при этом твердых растворов. Показано, что дизамещенные кобальтиты $Ca_{2.8}Tb_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$ и $Ca_{2.8}Er_{0.2}Co_{3.85}Bi_{0.15}O_{9+\delta}$ имеют улучшенные по сравнению с $Ca_3Co_4O_{9+\delta}$ термоэлектрические характеристики, что позволяет рассматривать совместное замещение ионов кальция и кобальта в слоистом кобальтите кальция ионами других металлов как перспективный способ получения термоэлектрической оксидной керамики с улучшенными функциональными характеристиками.

Авторы выражают благодарность В. М. Кононовичу (БГТУ) за запись рентгеновских дифрактограмм и Л. Е. Евсеевой (ИТМО им. А. В. Лыкова НАН Беларуси) за измерение теплопроводности керамических образцов.

Работа выполнена при поддержке ГПНИ «Функциональные и машиностроительные материалы, наноматериалы» (подпрограмма «Кристаллические и молекулярные структуры», задание 1.21).

Список литературы

- 1. Sedmidubsky D., Jakes V., Jankovsky O., Leitner J., Sofer Z., Hejtmanek J. Phase Equilibria in Ca—Co—O System // J. Solid State Chem. 2012. V. 194. P. 199—205.
- Oxide Thermoelectrics. Research Signpost / Ed. K. Koumoto, I. Terasaki, N. Murayama. Trivandrum, India, Research Signpost, 2002. 255 p.
- Fergus J. W. Oxide Materials for High Temperature Thermoelectric Energy Conversion // J. Eur. Ceram. Soc. 2012. V. 32. P. 525—540.
- Masset A. C., Michel C., Maignan A., Hervieu M., Toulemonde O., Studer F., Raveau B. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca₃Co₄O₉ // Phys. Rev. B. 2000—I. V. 62. N 1. P. 166—175.
- Zhang Y. F., Zhang J. X., Lu Q. M., Zhang Q. Y. Synthesis and Characterization of Ca₃Co₄O_{9+δ} Nanoparticles by Citrate Sol-Gel Method // Mater. Lett. 2006. V. 60. P. 2443—2446.
- 6. Yin T, Lui D., Ou Y., Ma F., Xie S., Li J.-F., Li J. Nanocrystalline Thermoelectric Ca₃Co₄O₉ Ceramics by Sol-Gel Based Electrospinning and Spark Plasma Sintering // J. Phys. Chem. C. 2010. V. 114. P. 10 061—10 065.
- 7. Park J. W., Kwak D. H., Yoon S. H., Choi S. C. Thermoelectric Properties of Highly Oriented Ca_{2.7}Bi_{0.3}Co₄O₉ Fabricated by Rolling Process // J. Ceram. Soc. Jap. 2009. V. 117. N 5. P. 643—646.
- 8. Клындюк А. И., Красуцкая Н. С., Мацукевич И. В., Денисенко М. Д., Чижова Е. А. Термоэлектрические свойства керамики на основе слоистых кобальтитов натрия и кальция // Термоэлектричество. 2011. № 4. С. 49—55. [Klyndyuk A. I., Krasutskaya N. S., Matsukevich I. V., Denysenko M. D., Chizhova Ye. A. Thermoelectric Properties of Ceramics Based on Layered Sodium and Calcium Cobaltites // J. Thermoelectricity. 2011. N 4. P. 47—53.]
- Prevel M., Perez O., Noudem J. G. Bulk Textured Ca_{2.5}(RE)_{0.5}Co₄O_{9+δ} (RE: Pr, Nd, Eu, Dy and Yb) Thermoelectric Oxides by Sinter-Forging // Solid State Sciences. 2007. V. 9. P. 231–235.
- Nong N. V., Liu C.-J., Ohtaki M. High-Temperature Thermoelectric Properties of Late Rare Earth-Doped Ca₃Co₄O_{9+δ} // J. Alloys Compd. 2011. V. 509. P. 977—981.
- Клындюк А. И., Мацукевич И. В. Синтез и свойства твердых растворов Ca_{2.8}Ln_{0.2}Co₄O_{9+δ} (Ln La, Nd, Sm, Tb—Er) // Неорган. матер. 2012. Т. 48. № 10. С. 1181—1186. [Klyndyuk A. I., Matsukevich I. V. Synthesis and Properties of Ca_{2.8}Ln_{0.2}Co₄O_{9+δ} (Ln La, Nd, Sm, Tb—Er) Solid Solutions // Inorg. Mater. 2012. V. 48. P. 1052—1057.]
- Pinitsoontorn S., Lerssongkram N., Harnwunggmoung A., Kurosaki K., Yamanaka S. Synthesis, Mechanical and Magnetic Properties of Transition Metals-Doped Ca₃Co_{3.8}M_{0.2}O₉ // J. Alloys Compd. 2010. V. 503. P. 431–435.
- Wang Y., Sui Y., Ren P., Wang L., Wang X., Su W., Fan H. Strongly Correlated Properties and Enhanced Thermoelectric Response in Ca₃Co_{4-x}M_xO₉ (M = Fe, Mn, and Cu) // Chem. Mater. 2010. V. 22. P. 1155— 1163.
- 14. *Мацукевич И. В., Клындюк А. И.* Синтез и термоэлектрические свойства твердых растворов Ca₃Co_{3.85}M_{0.15}O_{9+δ} (M = V—Zn), полученных цитратным гель-методом // Термоэлектричество. 2013. № 3. С. 50—57. [*Matsukevich I. V., Klyndyuk A. I.* Synthesis and Thermoelectric Properties of Ca₃Co_{3.85}M_{0.15}O_{9+δ} (M = V—Zn) Solid Solutions Prepared by Citrate Gel Method // J. Thermoelectricity. 2013. N 3. P. 47—53.]
- 15. Мацукевич И. В., Клындюк А. И. Получение слоистого кобальтита кальция Ca₃Co₄O_{9 + δ} растворными методами и его свойства // Украинский хим. журн. 2013. Т. 79. № 12. С. 104—110. [Matsukevich I. V., Klyndyuk A. I. Preparation of the Layered Ca₃Co₄O_{9 + δ} Calcium Cobaltite by Means of Solution Methods and Its Properties // Ukr. Chem. Journal. 2013. V. 79. N 12. P. 104—110.]

- 16. Затюпо А. А., Башкиров Л. А., Петров Г. С., Лобановский Л. С., Труханов С. В. Магнитные свойства ферритов—кобальтитов $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ (1.0 ≥ $x \ge 0.7$) со структурой перовскита // Физ. и хим. стекла. 2013. Т. 39. № 5. С. 829—839. [Zatsiupa A. A., Bashkirov L. A., Petrov G. S., Lobanovskii L. S., CTERNA. 2013. 1. 39. Nº 5. C. 629—639. [Laustupa A. A., Basharov E. A., Ferrov G. S., Locanovski E. S., *Trukhanov S. V.* Magnetic Properties of Ferrites—Cobaltites $Bi_{1-x}La_xFe_{1-x}Co_xO_3$ ($1.0 \ge x \ge 0.7$) with a Perovskite Structure // Glass Phys. Chem. 2013. V. 39. N 5. P. 589—596.] 17. *Klyndyuk A. I., Chizhova Ye. A.* Thermoelectric Properties of the Layered Oxides LnBaCu(Co)FeO_{5+δ}
- (Ln = La, Nd, Sm, Gd) // Funct. Mater. 2009. V. 16. N 1. P. 17—22.
 18. Shannon R. D., Prewitt C. T. Revised Values of Effective Ionic Radii // Acta Crystallogr. 1969. V. 25B.
- Part 5. P. 946-960.