УДК 54-31+666.654

Е. А. Чижова, канд. хим. наук, доц., Р. С. Латыпов, студ.;С. В. Шевченко, канд. хим. наук, ст. преп.;А. И. Клындюк, канд. хим. наук, доц. (БГТУ, г. Минск)

УЛУЧШЕНИЕ ТЕРМОЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК СазСо4О9+8 ПУТЕМ МОДИФИКАЦИИ ЕГО ОКСИДАМИ ПЕРЕ-ХОДНЫХ И ТЯЖЕЛЫХ МЕТАЛЛОВ

Для создания высокотемпературных термоэлектрогенераторов (ТЭГ) необходимы материалы, характеризующиеся высокими значениями электропроводности (σ) и термо-ЭДС (*S*) и низкой теплопроводностью, а также устойчивые на воздухе при повышенных температурах. Слоистые кобальтиты кальция (Ca₃Co₄O_{9+ δ}), удовлетворяющие перечисленным требованиям, могут рассматриваться как перспективные материалы *p*-ветвей высокотемпературных ТЭГ. Термоэлектрические характеристики керамики на основе Ca₃Co₄O_{9+ δ} могут быть существенно улучшены за счет применения «растворных» методов синтеза [1], использования специальных методик спекания керамики [1, 2], за счет частичного замещения в структуре фазы Ca₃Co₄O_{9+ δ} ионов кальция или ионов кобальта ионами иных металлов [3], а также в результате создания в керамике на основе слоистого кобальтита кальция фазовой неоднородности [4].

В данной работе с целью разработки новых эффективных высокотемпературных термоэлектриков изучено влияние добавок оксидов тяжелых (PbO, PbO₂, Bi₂O₃) и переходных металлов (Co₃O₄, Co₂O₃, Cu₂O, CuO) на спекаемость, электротранспортные (электропроводность, коэффициент термо-ЭДС) и функциональные (фактор мощности) свойства керамики на основе слоистого кобальтита кальция.

Исходный кобальтит кальция $Ca_3Co_4O_{9+\delta}$ получали керамическим методом при температуре 1173 К на воздухе в течение 12 ч. После обжига керамику подвергали повторному помолу, а затем к порошку кобальтита кальция добавляли 8 мас. % PbO (ч.д.а), PbO₂ (ч.), Bi₂O₃ (ч.), Co_3O_4 (ч.д.а.), CuO (ч.д.а.), 2, 5, 8, 10, 15 мас. % Co_2O_3 (ч.д.а.) и 2, 5, 8, 15 мас. % Cu₂O (ч.д.а.). После перетирания и прессования образцы спекали на воздухе при температуре 1193 К в течение 12 ч.

Как видно из таблицы, кажущаяся плотность керамики $Ca_3Co_4O_{9+\delta} + \omega$ мас.% Me_xO_y , определенная по массе и геометрическим размерам образцов, уменьшалась при введении в нее оксида висмута (Bi₂O₃), оксидов свинца (PbO, PbO₂) и кобальта (Co₃O₄, Co₂O₃) и заметно увеличивалась при добавлении к ней оксидов меди (Cu₂O, CuO). Наименьшее значение общей пористости образцов, расчитанной по

формуле $\Pi_{\text{общ}} = (1 - \rho_{\text{каж}} / \rho_{\text{рент}}) \cdot 100\%$, где $\rho_{\text{каж}}$ и $\rho_{\text{рент}}$ – кажущаяся и рентгенографическая плотность образца ($\rho_{\text{рент}} = 4,677$ г/см³ [5]), наблюдалось для состава Ca₃Co₄O_{9+δ} + 15 мас.% Cu₂O. Таким образом, спекаемость керамики на основе слоистого кобальтита кальция можно значительно улучшить за счет введения в нее оксидов одно- (Cu₂O) и двухвалентной меди (CuO).

Таблица - Значения кажущейся плотности ($\rho_{\kappa a ж}$, г/см³), пористости (П, %), кажущейся энергии активации электропроводности (E_a , эВ), электропроводности (σ_{1100} , См/см), коэффициента термо-ЭДС (S_{1100} , мкВ/К) и фактора мощности (P_{1100} , мкВт/(м·К²) керамики состава СазСо4О9+ δ и СазСо4О9+ δ + ω мас.% Me_xO_y

Me_xO_y	ω	ρ _{exp}	Побщ	EA	σ1100	S_{1100}	P_{1100}
_		3,23	31	0,092	38,6	192	142
PbO	8	2,72	42	0,099	15,1	168	42,6
PbO ₂	8	2,79	40	0,086	30,7	192	113
Bi ₂ O ₃	8	2,48	47	0,109	24,6	208	106
Co ₃ O ₄	8	2,74	41	0,080	29,5	170	85,3
Co ₂ O ₃	2	2,84	39	0,075	35,5	150	79,9
	5	2,73	42	0,078	27,6	139	53,1
	8	3,05	35	0,049	30,0	272	222
	10	2,77	41	0,067	22,0	188	76,8
	15	2,83	40	0,067	16,5	159	40,9
CuO	8	4,08	13	0,168	24,4	209	107
Cu ₂ O	2	3,52	25	0,084	47,1	98,2	45,0
	5	3,84	18	0,075	47,9	170	141
	8	3,93	16	0,086	53,4	198	209
	15	4,10	12	0,114	21,9	179	68,5

Электропроводность (σ) исследованных нами материалов носила полупроводниковый $(\partial \sigma / \partial T > 0)$ (для образца состава $Ca_3Co_4O_{9+\delta} + 8$ мас.% Co_2O_3 – металлический ($\partial\sigma/\partial T < 0$)) характер, а сами материалы представляли собой проводники *p*-типа (S > 0). Электропроводность керамики возрастала при введении в ее состав Cu₂O. Величина кажущейся энергии активации электропроводности исследованной керамики, найденная из линейных участков зависимостей $\ln(\sigma \cdot T) = f(1/T)$, изменялась в пределах 0,049–0,168 эВ, уменьшалась при введении в керамику на основе Са₃Со₄О_{9+δ} оксидов кобальта (Co₃O₄, Co₂O₃), свинца (IV) и меди (I) и возрастала при введении в нее Bi_2O_3 , PbO и CuO, при этом наименьшее и наибольшее значение E_A зафиксировано для образцов с добавками 8 мас.% Co₂O₃ и CuO – 0,049 и 0,168 эВ соответственно.

Значения коэффициента термо-ЭДС (S) керамики увеличивались с ростом температуры (для материалов с добавками Bi₂O₃, Co₃O₄ и Cu₂O

при T > 850-900 К наблюдалось уменьшение *S* при возрастании температуры), при этом для образца с добавкой PbO величина коэффициента Зеебека (*S*) была заметно ниже, для материалов с добавками Bi₂O₃, Co₂O₃, Cu₂O и CuO – выше, чем для базового слоистого кобальтита кальция Ca₃Co₄O_{9+δ}, а для керамики с добавками PbO₂ и Co₃O₄ – близки к таковым (таблица). Наибольшее значение коэффициента термо-ЭДС наблюдалось для керамики состава Ca₃Co₄O_{9+δ} + 8 мас.% Co₂O₃ – 272 мкB/К при температуре 1100 К (таблица).

Температурные зависимости фактора мощности (Р) исследованных материалов, рассчитанного по формуле $P = S^2 \cdot \sigma$, были симбатны зависимостям S = f(T), при этом наибольшие значения фактора мощнонаблюдались для $Ca_{3}Co_{4}O_{9+\delta} + 8$ mac. % $Co_{2}O_{3}$ сти И $Ca_{3}Co_{4}O_{9+\delta} + 8$ mac. % $Cu_{2}O$ (значения P_{1100} составили 222 И 209 мкВт/(м· K^2), что в 1,56 и 1,47 раза выше, чем для базовой керамики состава Ca₃Co₄O_{9+ δ} при той же температуре (142 мкВт/(м·K²)).

Таким образом, введение в керамику оксидов меди (I) и кобальта (III) приводит к значительному улучшению термоэлектрических характеристик керамики на основе слоистого кобальтита кальция.

Работа выполнена при поддержке ГПНИ «Физическое материаловедение, новые материалы и технологии» (подпрограмма «Материаловедение и технологии материалов», задание 1.55).

ЛИТЕРАТУРА

1. Synthesis of $Ca_3Co_4O_9$ ceramics by polymerized complex and hydrothermal hot-pressing processes and the investigation of its thermoelectric properties / S. Katsuyama [et al.] // J. Mater. Sci. – 2008.– V. 43. – P. 3553–3559.

2. High temperature thermoelectric properties of $Ca_3Co_4O_{9+\delta}$ by auto-combustion synthesis and spark plasma sintering / N.Y. Wu [et al.] // J. Eur. Ceram. Soc. – 2014. –V. 34. – P. 925–931.

3. Термоэлектрические свойства керамики Са_{3-х}Ві_хСо₄О_{9+δ} (0,0 ≤ *x* ≤ 1,5) / И.В. Мацукевич [и др.] // Неорган. Матер. – 2016. – Т. 52, № 6. – С. 644–650.

4. Thermoelectric properties of $Ca_3Co_4O_9$ – Co_3O_4 composites / F. Delorme [et al.] // Ceram. Int. – 2015. – V. 41, N. 8. – P. 10038–10043.

5. Preparation of high-performance $Ca_3Co_4O_9$ thermoelectric ceramics produced by a new two-step method / M.A. Madre [et al.] // J. Eur. Ceram. Soc. - 2013. - V. 33. - P. 1747-1754.