УДК 54-31:54-165:536.413:537.31/.32

СТРУКТУРА, ТЕПЛОВОЕ РАСШИРЕНИЕ И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ BiFeO₃-NdMnO₃

© 2015 г. А. И. Клындюк, Е. А. Чижова

Белорусский государственный технологический университет, Минск e-mail: klyndyuk@belstu.by Поступила в редакцию 05.04.2014 г.

Синтезированы твердые растворы $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ (0.03 $\le x \le 0.21$), изучены их кристаллическая структура, тепловое расширение и электротранспортные свойства. Установлено, что при x < 0.12 они имеют структуру ромбоэдрически, а при x > 0.12 – ромбически искаженного перовскита, а параметры их элементарной ячейки уменьшаются с ростом x. Найдено, что твердые растворы $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ являются полупроводниками p-типа, электропроводность которых возрастает с ростом x, а величина коэффициента линейного теплового расширения составляет (12.8 - 13.3) $\times 10^{-6}$ и (10.0 - 11.7) $\times 10^{-6}$ K⁻¹ для ромбоэдрически и ромбически искаженных твердых растворов соответственно.

DOI: 10.7868/S0002337X15020098

ВВЕДЕНИЕ

Перовскитный феррит висмута BiFeO₃ является перспективной основой для разработки мультиферроиков (сегнетомагнетиков) нового поколения, которые могут найти широкое применение в устройствах магнитоэлектроники, различных спинтроники, сенсорной электроники и т.д. [1–3], что обусловлено высокими значениями температур антиферромагнитного ($T_N \simeq 643$ K) и сегнетоэлектрического упорядочения ($T_C \simeq 1100$ K) [1, 2]. Широкому практическому применению BiFeO₃ препятствует низкая интенсивность магнитоэлектрических взаимодействий, что обусловлено наличием в нем пространственно-модулированной спиновой структуры циклоидного типа, период модуляции которой несоразмерен с периодом кристаллической решетки феррита висмута. Линейный магнитоэлектрический эффект в таких фазах отсутствует, а проявляется только квадратичный, величина которого значительно меньше линейного [1]. Подавление пространственно-модулированной структуры, дающее предпосылки получения мультиферроиков (сегнетомагнетиков) на основе BiFeO₃ с большим линейным магнитоэлектрическим эффектом, может быть достигнуто различными способами: приложение большого по величине магнитного поля, изовалентное замещение ионов висмута Bi³⁺ в BiFeO₃ ионами редкоземельных элементов (РЗЭ) [4, 5], а также гетеровалентное замещение ионов Bi³⁺ ионами щелочноземельных элементов (ШЗЭ) и ниобия Nb^{5+} [6], изготовление тонкопленочных образцов на основе феррита висмута и его производных и т.д. При этом легирование BiFeO₃ ионами P3Э также увеличивает спонтанную поляризацию и намагниченность образующихся при этом твердых растворов [1-3, 5].

Эффективным способом управления физикохимическими свойствами перовскитов (АВО₃) является совместное изовалентное замещение катионов, расположенных в А- и В-подрешетках их кристаллической структуры. К сожалению, имеющиеся в литературе данные о свойствах твердых растворов на основе феррита висмута BiFeO₃, в котором проводилось бы одновременное замещение ионов висмута Bi³⁺ ионами P3Э, а ионов железа Fe^{3+} ионами переходных металлов (Mn^{3+} , Co^{3+}), ограничены. Так, в работе [7] исследованы диэлектрические и магнитные свойства твердых растворов $\text{Bi}_{1-x}\text{Dy}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ (0.03 $\leq x \leq$ 0.30), авторами [8] изучены тепловое расширение и электротранспортые свойства твердых растворов в системе BiFeO₃-PrCoO₃, а в работе [9] представлены результаты исследования магнитных свойства ферритов-кобальтитов Bi_{1-x}La_xFe_{1-x}Co_xO₃ $(1.0 \ge x \ge 0.7).$

В связи с этим целью настоящей работы являлось получение дизамещенных твердых растворов $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ и установление закономерностей влияния совместного замещения ионов Bi^{3+} ионами Nd^{3+} и ионов Fe^{3+} ионами Mn^{3+} на кристаллическую структуру, тепловое расширение и электрические свойства (электропроводность, термо-ЭДС) этих твердых растворов.

Рис. 1. Рентгеновские дифрактограммы (Cu K_{α} -излучение) образцов Bi_{0.97}Nd_{0.03}Fe_{0.97}Mn_{0.03}O₃ (*I*), Bi_{0.88}Nd_{0.12}Fe_{0.88}Mn_{0.12}O₃ (*2*) и Bi_{0.79}Nd_{0.21}Fe_{0.79}Mn_{0.21}O₃ (*3*) (рефлексы примесных фаз Bi₂₅FeO₃₉ и Bi₂Fe₄O₉ обозначены символами (*) и (#) соответственно, на дифрактограмме 2 стрелками (\downarrow) отмечены рефлексы ромбически искаженного твердого раствора Bi_{0.88}Nd_{0.12}Fe_{0.88}Mn_{0.12}O₃).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Керамические образцы ферритов Ві_{1-x}Nd_xFe_{1-x}Mn_xO₃ (0.03 $\le x \le 0.21$ с шагом 0.03) получали твердофазным методом из Ві₂O₃ ("х. ч."), Nd₂O₃ ("HO–Л"), Fe₂O₃ ("OCЧ 2-4") и Mn₂O₃ ("OCЧ 11-2") на воздухе при температуре 1070 К в течение 8 ч [8]. Рентгенофазовый анализ (**РФА**) порошков проводили на дифрактометре Bruker D8 XRD (Си K_{α} -излучение, Ni-фильтр).

ИК-спектры поглощения порошков записывали в таблетированных смесях с KBr ("х. ч."), содержащих ≃0.5 мас. % образца, на Фурье-спектрометре Nexus фирмы ThermoNicolet в интервале частот $300-1500 \text{ см}^{-1}$ ($\Delta v \leq \pm 2 \text{ см}^{-1}$). Электропроводность (σ) спеченных образцов (плотность таблеток составляла 3.37-4.87 г/см³) измеряли на постоянном токе ($I \le 50$ мА) 4-контактным методом (цифровые вольтметры В7-58, В7-53; источник питания Б5-47) на воздухе в интервале температур 300-1100 К в динамическом режиме со скоростью нагрева и охлаждения 3-5 К/мин с погрешностью $\delta(\sigma) \le \pm 5\%$ [8, 10]. Коэффициент термо-ЭДС (S) керамики определяли относительно серебра (цифровой вольтметр В7-65/3) на воздухе в интервале температур 300-1000 К с погрешностью $\delta(S) \le \pm 10\%$ [10]. Градиент температур между горячим и холодным концами образца в ходе измерений поддерживали на уровне 20-25 К. Перед измерениями электрофизических свойств на по-

верхности образцов формировали Ад-электроды путем вжигания серебряной пасты при 1070 К в течение 15 мин. Для измерения температуры использовали хромель-алюмелевые термопары. Тепловое расширение спеченной керамики изучали на воздухе в интервале температур 300-750 К в динамическом режиме со скоростью нагрева и охлаждения 3-5 К/мин [8]. Значения энергии активации электропроводности (E_a) и термо-ЭДС (E_s) находили из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$ и S = f(1/T) соответственно (коэффициент корреляции $R \ge 0.99$). Значения коэффициента линейного теплового расширения (КЛТР, α) керамики находили из линейных участков зависимостей $\Delta l/l_0 = f(T)$ с погрешностью $\delta(\alpha) \leq \pm 5\%$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно данным РФА, образцы Ві_{1-x}Nd_xFe_{1-x}Mn_xO₃ (x > 0.09) были практически однофазными, тогда как на рентгеновских дифрактограммах порошков с x < 0.09 наблюдали рефлексы примесных фаз – силленита (Ві₂₅FeO₃₉) и муллита (Ві₂Fe₄O₉) (рис. 1), количества которых уменьшались с ростом *х*. Полученные нами результаты согласуются с данными [11, 12], согласно которым твердофазным методом перовскитный феррит висмута ВіFeO₃ получить практически не-

x	Сингония	а, нм	<i>b</i> , нм	С, НМ	<i>V</i> , нм ³	a_p , нм
0.03	R	0.5580(2)	_	1.385(1)	0.3735(5)	0.3963
0.06	R	0.5578(3)	-	1.383(1)	0.3727(7)	0.3961
0.09	R	0.5575(3)	-	1.380(1)	0.3714(7)	0.3956
0.12	R	0.5572(4)	-	1.368(3)	0.3678(12)	0.3943
	0	0.557(1)	0.789(2)	0.557(2)	0.245(2)	0.3941
0.15	0	0.558(1)	0.785(1)	0.558(2)	0.244(2)	0.3938
0.18	0	0.556(1)	0.787(2)	0.553(2)	0.242(2)	0.3925
0.21	0	0.556(1)	0.787(3)	0.552(2)	0.241(2)	0.3922

Таблица 1. Параметры кристаллической структуры твердых растворов $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$

возможно: ввиду затрудненности диффузии Bi_2O_3 через слой продукта (BiFeO₃) реакция

$$Bi_2O_{3_{TB}} + Fe_2O_{3_{TB}} = 2BiFeO_{3_{TB}}$$

протекает не до конца — наряду с продуктом (BiFeO₃) в реакционной смеси остается некото-

Рис. 2. ИК-спектры поглощения порошков состава $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$: x = 0.03 (1), 0.06 (2), 0.09 (3), 0.12 (4), 0.15 (5), 0.18 (6), 0.21 (7).

рое количество полупродуктов ($Bi_{25}FeO_{39}$ и $Bi_2Fe_4O_9$) [12]. Увеличение времени или температуры термообработки не позволяет решить проблему, поскольку приводит либо к обеднению шихты оксидом висмута ввиду уноса его в газовую фазу, либо к перитектическому плавлению феррита висмута: в обоих случаях керамика будет обогащаться муллитом ($Bi_2Fe_4O_9$) [11].

Твердые растворы $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ при $0.03 \le x \le 0.09$ имели структуру ромбоэдрически (*R*, пр. гр. *R3c*), при $0.15 < x \le 0.21$ – ромбически (*O*, пр. гр. *Pnma*) искаженного перовскита, а на дифрактограмме образца $Bi_{0.88}Nd_{0.12}Fe_{0.88}Mn_{0.12}O_3$ наблюдали рефлексы обеих фаз (*R* и *O*) (рис. 1). Таким образом, согласно результатам РФА, морфотропный фазовый переход (изменение структуры твердых растворов от ромбоэдрической до ромбической: *R* → *O*) в системе BiFeO₃–NdMnO₃ имеет место в области составов 0.09 < *x* < 0.15.

Как видно из данных, приведенных в табл. 1, параметры кристаллической структуры твердых растворов $\text{Bi}_{1-x}\text{Nd}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ закономерно уменьшаются с ростом *x* (для к.ч. = 6 радиусы ионов Bi^{3+} , Nd^{3+} , Fe^{3+} и Mn^{3+} составляют 0.102, 0.0995, 0.0645 и 0.065 нм соответственно [13], откуда следует, что $R_{\text{Bi}}^{3+} + R_{\text{Fe}}^{3+} = 0.1665 \text{ нм} > 0.1645 \text{ нм} = R_{\text{Nd}}^{3+} + R_{\text{Mn}}^{3+}$), причем наиболее сильно это уменьшение выражено для составов с *x* > 0.09, т.е. для образцов, в которых присутствует ромбически искаженная фаза твердых растворов $\text{Bi}_{1-x}\text{Nd}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$.

На ИК-спектрах поглощения порошков $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ (рис. 2) наблюдается ряд полос поглощения с экстремумами при 552–561 см⁻¹ (v₁), 440 см⁻¹ (v₂), 382–401 см⁻¹ (v₃) и 358–368 см⁻¹ (v₄), отвечающими, согласно [14, 15], валентным (v₁) и

деформационным (v_2) колебаниям связей Fe(Mn)–O, а также колебаниям связей Bi(Nd)–O (v_3, v_4) в структуре этих оксидов. Вид спектров поглощения изменяется при переходе от ромбоэдрически (кривые 1-3, рис. 2) к ромбически искаженным (кривые 5-7, рис. 2) твердым растворам $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$: для последних исчезают полосы поглощения v_2 , v_4 и дублет $v_3 + v_4$ превращается в синглет v₃. На спектре поглощения порошка Bi_{0.88}Nd_{0.12}Fe_{0.88}Mn_{0.12}O₃ (кривая 4, рис. 2) не проявляется полоса поглощения v₂, но еще наблюдается, хотя и слабо выраженный, дублет v₃ + v₄, из чего можно заключить, что в этом образце имеются области с ромбоэдрическим и ромбическим искажениями структуры перовскита, т.е. он состоит из R- и O-фаз $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$. С ростом x экстремумы полос поглощения v_1 , v_3 смещаются в сторону больших волновых чисел (рис. 2); таким образом, частичное замещение в феррите висмута ионов Fe³⁺ ионами Mn³⁺ и ионов Ві³⁺ ионами Nd³⁺ приводит к усилению металлкислородных взаимодействий в кристаллической структуре образующихся при этом твердых растворов. Как видно, результаты ИК-спектроскопии поглощения хорошо согласуются с данными РФА и полностью подтверждают их.

Температурные зависимости относительного удлинения $\Delta l/l_0 = f(T)$ спеченных образцов $Bi_{1-x}Nd_{x}Fe_{1-x}Mn_{x}O_{3}$ были линейными, из чего следует, что в исследованном интервале температур (300-750 К) эти твердые растворы не претерпевают структурных фазовых превращений; величина среднего КЛТР керамики скачкообразно уменьшалась от значений (12.8–13.3) × 10⁻⁶ К⁻¹ для ромбоэдрически искаженных твердых растворов (x < 0.12) до (10.0–11.7) × 10⁻⁶ К⁻¹ для ромбически искаженных твердых растворов (x > 0.12). Величина КЛТР образца Bi_{0.88}Nd_{0.12}Fe_{0.88}Mn_{0.12}O₃, состоящего из двух структурных модификаций (R + O), имела промежуточное значение – $12.2 \times$ × 10⁻⁶ К⁻¹ (табл. 2).

Как видно из данных, представленных на рис. 3, твердые растворы $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ являются полупроводниками ($\partial \sigma / \partial T > 0$) *p*-типа (S>0), величина электропроводности которых монотонно увеличивалась с ростом х (вставка на рис. 3а). Величина коэффициента термо-ЭДС образцов немонотонно изменялась с ростом температуры, проходя через максимум вблизи 900 К для твердого раствора $Bi_{0.97}Nd_{0.03}Fe_{0.97}Mn_{0.03}O_3$ и через минимум при температурах 830, 800 и 915 К для твердых растворов Ві_{0.94}Nd_{0.06}Fe_{0.94}Mn_{0.06}O₃, Ві_{0.91}Nd_{0.09}Fe_{0.91}Mn_{0.09}O₃ и $Bi_{0.88}Nd_{0.12}Fe_{0.88}Mn_{0.12}O_3$ соответственно (рис. 3б). Значения коэффициента термо-ЭДС твердых растворов $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ (0.06 $\le x \le 0.21$) были значительно ниже, чем для образца $Bi_{0.97}Nd_{0.03}Fe_{0.97}Mn_{0.03}O_3$, в интервале температур 400-800 К незначительно отличались друг от друга

Габлица 2.	Значения	КЛТР, а	а также	энергий	актива-
ции процес	ссов элект	роперен	Hoca (E_a)	$, E_S, E_m)$	ферри-
FOB $B1_{1-x}N$	$d_x Fe_{1-x} M$	$n_x O_3$			

x	$\alpha \times 10^6$, K ⁻¹	<i>Е</i> _{<i>a</i>} , эВ	<i>Е_{<i>S</i>}, эВ</i>	<i>Е</i> _{<i>m</i>} , эВ
0.03	12.8	0.948	0.076	0.872
0.06	13.0	0.696	0.081	0.615
0.09	13.3	0.655	0.071	0.584
0.12	12.2	0.563	0.078	0.485
0.15	10.0	0.547	0.080	0.467
0.18	10.0	0.504	0.088	0.416
0.21	11.7	0.512	0.074	0.438

и были аномально низки, составляя 10-85 мкВ/К (рис. 3б) (по данным [8], ДЛЯ образца $Bi_{0.7}Pr_{0.3}Fe_{0.7}Co_{0.3}O_3$ в этом же интервале температур величина коэффициента Зеебека изменялась в пределах 210-520 мкВ/К). Аномалии термо-ЭДС твердых растворов $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$, вероятно, обусловлены особенностями изменения спинового состояния ионов Fe³⁺ в феррите висмута BiFeO₃ при частичном замещении в нем ионов Bi³⁺ ионами Nd³⁺ и ионов Fe³⁺ ионами Mn³⁺, однако для однозначного ответа на данный вопрос необходимо проведение дополнительных исследований.

Для веществ с поляронным характером переноса заряда, к которым относятся изученные в настоящей работе твердые растворы Bi_{1-x}Nd_xFe_{1-x}Mn_xO₃, температурные зависимости электропроводности и термо-ЭДС описываются соотношениями $\sigma = (A/T)\exp(-E_a/kT), \quad S = (k/e)(E_S/kT) + B,$ где $E_a = (E_S + E_m)$ и E_S – энергии активации электропроводности и термо-ЭДС, причем Е_S отвечает энергии возбуждения полярона, а Е_m – энергии его переноса [16]. Как видно из приведенных в табл. 2 значений E_a, E_S и E_m, величина энергии возбуждения носителей заряда в твердых растворах $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ изменяется в пределах 0.071-0.088 эВ и слабо зависит от степени замещения висмута неодимом и железа марганцем, тогда как энергия переноса носителей заряда с ростом х для ромбоэдрически искаженных твердых растворов заметно уменьшается (от 0.872 эВ для твердого раствора Ві_{0.97}Nd_{0.03}Fe_{0.97}Mn_{0.03}O₃ до 0.584 эВ для твердого раствора Bi_{0.91}Nd_{0.09}Fe_{0.91}Mn_{0.09}O₃), а для ромбически искаженных твердых растворов незначительно изменяется в пределах 0.416-0.467 эВ.

Рис. 3. Температурные (a, б) и концентрационные (на вставках) зависимости электропроводности σ и коэффициента термо-ЭДС *S* керамических ферритов Bi_{1-x}Nd_xFe_{1-x}Mn_xO₃ : x = 0.03 (*I*), 0.06 (*2*), 0.09 (*3*), 0.12 (*4*), 0.15 (*5*), 0.18 (*6*), 0.21 (*7*).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 51 № 3 2015

ЗАКЛЮЧЕНИЕ

Впервые керамическим методом синтезироварастворы $Bi_{1-x}Nd_xFe_{1-x}Mn_xO_3$ ны твердые $(0.03 \le x \le 0.21)$, определены параметры их кристаллической структуры, в широком интервале температур выше комнатной изучены их тепловое расширение, электропроводность и термо-ЭДС. Установлено, что в системе BiFeO₃-NdMnO₃ в области составов 0.09 < x < 0.15, вблизи x = 0.12, имеет место структурный переход от ромбоэдрически до ромбически искаженной структуры перовскита, что сопровождается скачкообразным уменьшением КЛТР образцов от $(12.8-13.3) \times 10^{-6}$ до $(10.0-11.7) \times 10^{-6} \text{ K}^{-1}$. Найдено, что твердые растворы Bi_{1-x}Nd_xFe_{1-x}Mn_xO₃ являются полупроводниками р-типа, величина электропроводности которых увеличивается, а коэффициента термо-ЭДС – уменьшается при частичном замещении висмута неодимом и железа марганцем. Определены параметры электропереноса в этих фазах.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант X13–005).

СПИСОК ЛИТЕРАТУРЫ

- 1. Звездин А.К., Пятаков А.П. Фазовые переходы и гигантский магнитоэлектрический эффект в мультиферроиках // Успехи физ. наук. 2004. Т. 174. № 4. С. 465–470.
- Троянчук И.О., Бушинский М.В., Чобот А.Н. и др. Слабый антиферромагнетизм в мультиферроиках на основе BiFeO₃ // Письма в ЖЭТФ. 2009. Т. 89. Вып. 4. С. 204–208.
- Макоед И.И. Получение и физические свойства мультиферроиков: монография. Брест: БрГУ, 2009. 181 с.
- Troyanchuk I.O., Karpinsky D.V., Bushinsky M.V. et al. Phase Transitions, Magnetic and Piezoelectric Properties of Rare-Earth-Substituted BiFeO₃ Ceramics // J. Am. Ceram. Soc. 2011. V. 94. Iss. 12. P. 4502–4506.
- 5. Srivastava A., Singh H.K., Awana V.P.S., Srivastava O.N. Enhancement in Magnetic and Dielectric Properties of La

and Pr co-Substituted BiFeO₃ // J. Alloys. Comp. 2013. V. 552. P. 336-344.

- Wu M.S., Huang Z.B., Han C.X. et al. Enhanced Multiferroic Properties of BiFeO₃ Ceramics by Ba and High-Valence Nb co-Doping // Solid State Commun. 2012. V. 152. P. 2142–2146.
- Иванова В.В., Гагулин В.В., Корчагина С.К. и др. Синтез и свойства твердых растворов системы BiFeO₃-DyMnO₃ // Неорган. материалы. 2003. Т. 79. № 7. С. 876-879.
- 8. Клындюк А.И., Чижова Е.А., Затюпо А.А. и др. Синтез, структура и физико-химические свойства твердых растворов в квзибинарной системе BiFeO₃-PrCoO₃ // Весці НАН Беларусі. Сер. хім. навук. 2012. № 4. С. 5–9.
- Затюпо А.А., Башкиров Л.А., Петров Г.С. и др. Магнитные свойства ферритов-кобальтитов Ві_{1-x}La_xFe_{1-x}Co_xO₃ (1.0 ≥ x ≥ 0.7) со структурой перовскита // Физика и химия стекла. 2013. Т. 39. № 5. С. 829–839.
- Klyndyuk A.I., Chizhova Ye.A. Thermoelectric Properties of the Layered Oxides LnBaCu(Co)FeO_{5+δ} (Ln = La, Nd, Sm, Gd) // Funct. Mater. 2009. V. 16. № 1. P. 17–22.
- Морозов М.И., Ломанова Н.А., Гусаров В.В. Особенности образования BiFeO₃ в смеси оксидов висмута и железа(III) // Журн. общ. химии. 2003. Т. 73. Вып. 11. С. 1772–1776.
- Bernardo M.S., Jardiel T., Peliteado M. et al. Reaction Pathways in the Solid State synthesis of Multiferroic BiFeO₃ // J. Eur. Ceram. Soc. 2011. V. 31. P. 3047– 3053.
- Shannon R.D., Prewitt C.T. Revised Values of Effective Ionic Radii // Acta Crystallogr., Sect. B. 1969. V. 25. Pt 5. P. 946–960.
- Annapu Reddy V., Pathak N.P., Nath R. Particle Size Dependent Magnetic Properties and Phase Transitions in Multiferroic BiFeO₃ Nano-Particles // J. Alloys Compd. 2012. V. 543. P. 206–212.
- Kim Y.Y., Lee D.H., Kwon T.Y., Park S.H. Infrared Spectra and Seebeck Coefficient of LnCoO₃ with the Perovskite Structure // J. Solid State Chem. 1994. V. 112. P. 376–380.
- Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. В 2-х т. Т. 1. М.: Мир, 1982. 368 с.