УДК 549.5:54.165:536.413:537.31/.32:665.654

СИНТЕЗ, СТРУКТУРА И СВОЙСТВА СЛОИСТЫХ ТЕРМОЭЛЕКТРИКОВ $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – Ti–Zn, Mo, W, Pb, Bi)

© 2015 г. А. И. Клындюк, И. В. Мацукевич

Белорусский государственный технологический университет, Минск, Беларусь e-mail: klyndyuk@belstu.ru, matsukevich515@rambler.ru Поступила в редакцию 27.08.2014 г.

Синтезированы твердые растворы $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M — Ti–Zn, Mo, W, Pb, Bi), исследованы их кристаллическая структура и микроструктура, на воздухе в интервале температур 300–1100 К изучены термическая стабильность, термическое расширение, электропроводность и термо-ЭДС. Найдено, что кобальтиты $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ являются полупроводниками *p*-типа, размеры элементарной ячейки которых уменьшаются с ростом числа *d*-электронов иона 3*d*-металла и при увеличении средней степени окисления кобальта, а коэффициент термо-ЭДС возрастает при увеличении температуры и достигает наибольшего значения для твердого раствора $Ca_3Co_{3.85}Pb_{0.15}O_{9+\delta} - 380$ мкB/K при температуре 1100 К. Максимальное значение фактора мощности среди исследованных составов у твердого раствора $Ca_3Co_{3.85}Bi_{0.15}O_{9+\delta} - 206$ мкBт/(м K²) при температуре 1100 К, что в 2 раза больше, чем для незамещенного кобальтита кальция $Ca_3Co_4O_{9+\delta}$.

DOI: 10.7868/S0002337X15080102

ВВЕДЕНИЕ

Разработка новых термоэлектриков, эффективных при высоких температурах и устойчивых при этих условиях к окислению атмосферным кислородом представляет научно значимую и практически важную задачу. Перспективной базой для разработки таких термоэлектриков является слоистый кобальтит кальция $Ca_3Co_4O_{9+\delta}$, характеризующийся высокими значениями удельной электропроводности (σ) и коэффициента термо-ЭДС (*S*) и низкой теплопроводностью (λ) [1, 2].

Кобальтит Ca₃Co₄O_{9+ δ} устойчив на воздухе до температуры 1222 ± 13 K, выше которой он перитектоидно распадается на фазу Ca₃Co₂O₆ и твердый раствор Ca_{1-x}Co_xO [3]. Ca₃Co₄O_{9+ δ} кристаллизуется в моноклинной сингонии, а его структура образована чередующимися слоями [Ca₂CoO₃] и [CoO₂], параметры *a*, *c* и β которых одинаковы, а параметр *b* отличается, в связи с чем это соединение представляет собой слоистую несоразмерную фазу, формула которой может быть записана как [Ca₂CoO₃][CoO₂]_{1.62} или упрощенно Ca₃Co₄O_{9+ δ} [4].

В работах [5–11] изучена возможность улучшению термоэлектрических характеристик $Ca_3Co_4O_{9+\delta}$ путем частичного замещения входящих в его состав ионов кобальта ионами 3*d*-металлов. Согласно [5], при $x \le 0.2$ ионы титана замещают ионы кобальта в слоях [Ca_2CoO_3], тогда как при x = 0.3 ионы титана располагаются одновременно в слоях [Ca_2CoO_3] и [CoO_2] кристаллической структуры твердых растворов $Ca_3Co_{4-x}Ti_xO_9$, что приводит к значительному увеличению их термо-ЭДС. В соответствии с результатами [9], ионы железа и мар-

ганца замещают ионы кобальта преимущественно в слоях [Ca₂CoO₃], тогда как ионы меди – в слоях [CoO₂] образующихся твердых растворов Ca₃Co_{4-*x*}M_{*x*}O₉ (M – Fe, Mn, Cu). По сравнению с базовой фазой Ca₃Co₄O₉ электропроводность твердых растворов Ca₃Co_{4-*x*}M_{*x*}O₉ (M – Ti, Cr, Mn, Fe, Cu) несколько уменьшается [5–7, 10], а термо-ЭДС заметно возрастает [5–7, 9–11].

Анализ литературы показывает, что влияние частичного замещения ионов кобальта в $Ca_3Co_4O_{9+\delta}$ ионами 3*d*-металлов на структуру и свойства образующихся твердых растворов изучено недостаточно, а влияние частичного замещения ионов кобальта ионами тяжелых металлов не изучено вообще, что обусловливает необходимость проведения дальнейших исследований.

Цель работы — изучение влияния природы ионов 3*d*- и тяжелых металлов на параметры кристаллической структуры, термическое расширение, электропроводность и термо-ЭДС керамических образцов твердых растворов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M — Ti—Zn, Mo, W, Pb, Bi).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Порошки состава $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb, Bi) получали из $Ca(NO_3)_2 \cdot 4H_2O$ "ч. д. a", $Co(NO_3)_2 \cdot 6H_2O$ "ч. д. а.", VO₂ "ч.", Cr(NO₃)₃ · 9H₂O "ч. д. a.", Mn₂O₃ "ч.", Fe(NO₃)₃ "x. ч.", Ni(NO₃)₂ · 6H₂O "ч. д. а.", CuO "ч.", ZnO "ч. д. а.", Pb(NO₃)₂ "x. ч.", Bi(NO₃)₃ · 5H₂O "ч." [12]. Перетертые с этанолом после прокаливания на воздухе при температуре 873 K в течение 4 ч порошки прессовали под давлением 100—150 МПа в таблетки диаметром 22 мм и высотой 5—7 мм, которые просушивали для удаления спирта и отжигали на воздухе в течение 5 ч при температуре 1123 К. После этого таблетки дробили в агатовой ступке, мололи и прессовали, формуя образцы в виде прямоугольных параллелепипедов размером 5 × 5 × × 30 мм с последующим спеканием на воздухе в течение 8 ч при 1183—1193 К.

Порошки образцов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – Ti, Мо, W) синтезировали из CaCO₃ "ч.", Co₃O₄ "ч.", TiO₂ "ч.", MoO₃ "ч. д. а.", WO₃ "ч." методом твердофазных реакций [13]. Перемешивание и помол смесей порошков исходных веществ, взятых в стехиометрических соотношениях, проводили в планетарной мельнице Pulverizette 6 (Fritsch, Germany). Полученную шихту с добавлением этанола прессовали под давлением 100-150 МПа в таблетки диаметром 22 мм и высотой 5-7 мм, которые отжигали при температуре 1173 К на воздухе в течение 12 ч, затем дробили в агатовой ступке и повторяли операции помола и прессования, при котором образцы формировали в виде прямоугольных параллелепипедов размером $5 \times 5 \times 30$ мм. Окончательное спекание керамики проводили при температуре 1193 К на воздухе в течение 12 ч.

Для измерения электропроводности из спеченной керамики вырезали образцы в форме прямоугольных параллелепипедов размером $(4-5) \times (4-5) \times (2-3)$ мм (отношение площади к толщине 5–12).

Рентгенофазовый анализ (РФА) порошков проводили на дифрактометре Bruker D8 XRD Advance (СиКа-излучение). С учетом результатов РФА рассчитывали рентгеновскую плотность (р_{рент}) образцов. Величину кажущейся плотности (р_к) рассчитывали по геометрическим размерам и массе образцов, а пористость (П) спеченной керамики определяли по формуле $\Pi = (1 - \rho_{\kappa} / \rho_{\text{рент}}) 100\%$. ИК-спектры поглощения порошков записывали в таблетированных смесях с KBr "х. ч." на Фурьеспектрометре Nexus фирмы ThermoNicolet в интервале частот 300-1500 см⁻¹. Микроструктуру керамики исследовали на сканирующем электронном микроскопе JSM-5610 LV (Япония). Содержание кислорода в образцах (9 + δ) находили при помощи иодометрии, по результатам которой рассчитывали также среднюю степень окисления (z) ионов кобальта Co^{z+} в фазах $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$.

Термический анализ порошков $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – V, Mn, Ni, Zn) проводили с помощью термоанализатора Mettler Toledo (Швейцария) на воздухе в интервале температур 298–1173 К со скоростью нагрева 10 К/мин.

Электропроводность (σ) спеченных образцов измеряли на постоянном токе ($I \le 50$ мА) 4-контактным методом (цифровые вольтметры B7–58,

В7-53; источник питания Б5-47) на воздухе в интервале температур 300-1100 К в динамическом режиме со скоростью нагрева и охлаждения 3-5 К/мин с погрешностью не более 5% [12, 13]. Коэффициент термо-ЭДС (S) керамики определяли относительно серебра (цифровой вольтметр B7-65/3) на воздухе в интервале температур 300-1000 К с погрешностью не более 10% [14]. Градиент температур между горячим и холодным концами образца в ходе измерений поддерживали на уровне 20-25 К. Перед измерениями электротранспортных свойств на поверхности образцов формировали Ад-электроды путем вжигания серебряной пасты при 1073 К в течение 15 мин. Для измерения температуры использовали хромельалюмелевые термопары. Тепловое расширение спеченной керамики изучали на воздухе в интервале температур 300-750 К в динамическом режиме со скоростью нагрева и охлаждения 3-5 К/мин [12, 13]. Значения энергии активации электропроводности (Е_a) и коэффициента линейного термического расширения (α) керамики определяли из линейных участков зависимостей $\ln(\sigma T) =$ f(1/T) и $\Delta l/l_0 = f(T)$ с погрешностью не более 5%. Величину фактора мощности (Р) керамики рассчитывали по уравнению $P = S^2 \sigma$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

После завершения синтеза, согласно результатам РФА, образцы кобальтита кальция $Ca_3Co_4O_{9+\delta}$ и твердых растворов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (М — Ті— Zn, Mo, W, Pb, Bi) были однофазными и имели структуру слоистого кобальтита кальция [4] (рис. 1, кривые *1*—5). Значения параметров кристаллической структуры фаз $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ приведены в табл. 1 и на рис. 2. Найденные значения параметров кристаллической структуры базовой фазы $Ca_3Co_4O_{9+\delta}$ хорошо согласуются с литературными данными, по которым для слоистого кобальтита кальция *a* = 0.48376(7) нм, *b*₁ = 0.45565(6) нм, *b*₂ = = 0.28189(4) нм, *c* = 1.08933(1) нм, $\beta = 98.06(1)^{\circ}$ [4].

Согласно результатам иодометрического титрования, величина параметра δ для базовой фазы $Ca_3Co_4O_{9+\delta}$ и твердых растворов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – Fe, Ni) составила 0.35, для M – V, Cr, Mn, Cu и Zn значение δ равно 0.37, 0.42, 0.44, 0.55 и 0.48 соответственно.

Как видно из данных, приведенных в табл. 1 и на рис. 2, с ростом числа 3*d*-электронов (*n*) на внешней оболочке замещающего иона кобальта иона 3*d*-металла (в ряду Ti \rightarrow Zn) параметры *a*, *b*₁ и β кристаллической структуры твердых растворов Ca₃Co_{3.85}M_{0.15}O_{9+δ} уменьшаются (исключая кобальтит Ca₃Co_{3.85}Ti_{0.15}O_{9+δ}, параметр *b*₁ которого аномально низок, и фазу Ca₃Co_{3.85}Fe_{0.15}O_{9+δ}, для которой *a* и β аномально высоки), а параметры

Puc. 1. Рентгеновские дифрактограммы (*1*–*5*) (Си*K*α-излучение) и ИК-спектры поглощения (*6*–*10*) кобальтита кальция Ca₃Co₄O_{9 + δ} (*1*, *6*) и твердых растворов на его основе Ca₃Co_{3.85}M_{0.15}O_{9 + δ}: M – Ni (*2*, *7*), Mn (*3*, *8*), W (*4*, *9*) и Bi (*5*, *10*).

 b_2 и c изменяются немонотонно, проходя через максимум при n = 4-5; объем элементарной ячейки кобальтитов Ca₃Co_{3.85}M_{0.15}O_{9 + б} в результате этого уменьшается при увеличении п (рис. 2а) и средней степени окисления ионов кобальта (z) в структуре этих фаз, причем зависимость V = f(n) является практически линейной. Частичное замещение ионов кобальта ионами молибдена, вольфрама, свинца или висмута приводило к увеличению размеров элементарной ячейки образующихся при этом твердых растворов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (М – Мо, W, Pb, Bi), причем наибольший объем имела элементарная ячейка твердого раствора

 $Ca_3Co_{3.85}Bi_{0.15}O_{9+\delta} - 0.2398(8)$ нм³. Значения рентгеновской плотности исследованных образцов изменялись в пределах 3.47–3.64 г/см³ и в целом увеличивались с ростом атомной массы металла, замещающего кобальт в слоистом кобальтите кальция $Ca_3Co_4O_{9+\delta}$.

ИК-спектры поглощения порошков $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M - Ti - Zn, Mo, W, Pb, Bi) содержали две выраженные полосы поглощения с экстремумами при $v_1 = 561 - 588$ см⁻¹ и $v_2 = 725 - 744$ см⁻¹ (рис. 1, кривые 7–10), соответствующие, согласно [15, 16], валентным колебаниям связей (Co,M)-O (v_1) и Ca-O (v_2) в

Таблица 1. Значения параметров кристаллической структуры $(a, b_1, b_2, c, \beta, V, b_1/b_2)$ и рентгеновской плотности (ρ_p) твердых растворов Ca₃Co_{3.85}M_{0.15}O_{9 + δ} (M – Ti–Zn, Mo, W, Pb, Bi)

М	а, нм	<i>b</i> ₁ , нм	<i>b</i> ₂ , нм	С, НМ	β, град	<i>V</i> , нм ³	b_1/b_2	ρ _p , г/см ³
Ti	0.4874(8)	0.4533(9)	0.2808(7)	1.083(1)	98.75(8)	0.2400(9)	1.614	3.50
V	0.4839(7)	0.4591(7)	0.2837(9)	1.085(1)	98.23(6)	0.2386(9)	1.618	3.47
Cr	0.4838(7)	0.4595(8)	0.2841(9)	1.085(1)	98.20(7)	0.2387(9)	1.617	3.47
Mn	0.4830(6)	0.4561(7)	0.2819(9)	1.090(1)	98.26(8)	0.2377(9)	1.617	3.49
Fe	0.4868(5)	0.4557(5)	0.2843(6)	1.089(1)	100.3(1)	0.2378(6)	1.603	3.49
Co	0.4830(7)	0.4562(8)	0.2812(6)	1.085(1)	98.28(8)	0.2365(9)	1.622	3.51
Ni	0.4827(5)	0.4561(6)	0.2839(9)	1.084(1)	98.08(7)	0.2363(9)	1.607	3.51
Cu	0.4838(7)	0.4540(8)	0.2823(9)	1.081(1)	98.16(8)	0.2349(9)	1.608	3.54
Zn	0.4832(6)	0.4544(7)	0.2824(9)	1.083(1)	97.97(7)	0.2354(9)	1.605	3.53
Mo	0.4838(6)	0.4574(7)	0.2841(9)	1.084(1)	98.18(7)	0.2370(9)	1.610	3.52
W	0.4868(6)	0.4564(6)	0.2818(9)	1.087(1)	98.18(7)	0.2370(9)	1.620	3.61
Pb	0.4826(6)	0.4564(7)	0.2827(9)	1.092(1)	98.18(7)	0.2380(9)	1.614	3.64
Bi	0.4875(5)	0.4557(6)	0.2812(9)	1.090(1)	98.18(7)	0.2398(8)	1.621	3.62

Рис. 2. Зависимости объема элементарной ячейки кобальтитов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ от числа *d*-электронов на внешней оболочке замещающего ионы кобальта иона 3*d*-металла (а) и от средней степени окисления иона кобальта Co^{z+} (б).

структуре этих оксидов. По сравнению с незамещенной фазой $Ca_3Co_4O_{9+\delta}$ положения полос v_1 и v_2 твердых растворов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$, в целом, смещаются в сторону больших волновых чисел, что указывает на увеличение энергии металл-кислородных взаимодействий в структуре $Ca_3Co_4O_{9+\delta}$ при частичном замещении ионов кобальта ионами других металлов.

Кажущаяся плотность твердых растворов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – Ti–Zn, Mo, W, Pb, Bi) изменялась в пределах 2.64–3.22 г/см³, а их пористость при этом составляла 10–25% (табл. 2) и была выше, чем для $Ca_3Co_4O_{9+\delta}$ (10%), из чего можно заключить, что частичное замещение ионов кобальта ионами других металлов ухудшает спекаемость керамики на основе слоистого кобальтита кальция.

Как видно из рис. 3, кристаллиты $Ca_3Co_4O_{9+\delta}$ и $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – Cr, Mn, Cu, Zn) имели форму чешуек, которые широкой стороной ориентированы перпендикулярно оси прессования. Размер чещуек составлял 1–3 мкм для $Ca_3Co_4O_{9+\delta}$ и 3–7 мкм для твердых растворов на его основе, при этом наи-

более крупными являлись кристаллиты твердых растворов $Ca_{3}Co_{3.85}Cr_{0.15}O_{9+\delta}$ и $Ca_{3}Co_{3.85}Cu_{0.15}O_{9+\delta}$ (рис. 3а, 3г).

Согласно результатам термического анализа порошков кобальтитов Ca₃Co₄O_{9+δ}, Ca₃Co_{3.85}V_{0.15}O_{9+δ} и Ca₃Co_{3.85}Zn_{0.15}O_{9 + б} (рис. 4а), потеря массы образцами протекает в три стадии, первая из которых (Т < 623-625 К) отвечает выделению адсорбированной и слабосвязанной воды, а вторая и третья – потере кислорода. На первой стадии в интервалах температур 625-925, 623-900 и 623–905 К для Ca₃Co₄O_{9 + δ}, Ca₃Co_{3.85}V_{0.15}O_{9 + δ} и $Ca_{3}Co_{3.85}Zn_{0.15}O_{9+\delta}$ потеря массы протекает более интенсивно и составляет 0.71, 0.27 и 0.61% соответственно. На рис. 4б представлены рассчитанные для кобальтитов $Ca_3Co_{3,85}M_{0,15}O_{9+\delta}$ (M – V, Co, Zn) по данным иодометрии и термогравиметрии зависимости $(9 + \delta) = f(T)$, из которых видно, что термическая стабильность производных слоистого кобальтита кальция практически не изменяется при частичном замещении ионов кобальта в его структуре ионами других металлов.

М	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Mo	W	Pb	Bi
ρ _к , г/см ³	2.81	3.02	2.86	2.64	3.09	3.18	3.12	3.01	3.16	2.75	3.22	3.14	2.71
П, %	20	13	18	24	11	10	11	15	10	22	11	14	25
$\alpha \times 10^5$, K ⁻¹	1.25	1.22	1.25	1.21	1.20	1.28	1.31	1.25	1.21	1.21	1.20	1.28	1.31
<i>Е</i> _{<i>a</i>} , эВ	0.099	0.075	0.099	0.075	0.068	0.065	0.073	0.077	0.072	0.075	0.068	0.065	0.073
_{о1100} , См/см	6.75	21.7	13.7	7.73	23.1	23.8	24.3	17.9	6.28	3.91	4.42	6.29	16.6
<i>S</i> ₁₁₀₀ , мкВ/К	338	229	242	278	257	205	250	249	295	365	356	380	352
P_{1100} , мкВт/(м K ²)	77	114	80.2	59.7	153	100	152	111	54.7	52.1	56.0	90.8	206

Таблица 2. Значения кажущейся плотности (ρ_{κ}), пористости (П), коэффициента линейного термического расширения (α), энергии активации электропроводности (E_a), а также электропроводности (σ_{1100}), коэффициента термо-ЭДС (S_{1100}) и фактора мощности (P_{1100}) керамики состава Ca₃Co_{3.85}M_{0.15}O_{9 + δ} (M – Ti–Zn, Mo, W, Pb, Bi)

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 51 № 9 2015

Рис. 3. Электронные микрофотографии поверхности сколов керамики (перпендикулярно оси прессования) состава Ca₃Co_{3.85}M_{0.15}O_{9 + δ}: M – Cr (a), Mn (б), Co (в), Cu (г), Zn (д).

Рис. 4. Результаты термогравиметрического анализа (а) порошков $Ca_3Co_4O_{9+\delta}$ (*1*), $Ca_3Co_{3.85}V_{0.15}O_{9+\delta}$ (*2*), $Ca_3Co_{3.85}Zn_{0.15}O_{9+\delta}$ (*3*) и температурная зависимость общего содержания в них кислорода (9 + δ) (6).

Температурные зависимости относительного удлинения $\Delta l/l_0 = f(T)$ изученных образцов в интервале температур 300—1100 К были линейными, из чего следует, что в этом интервале температур фазы Ca₃Co_{3.85}M_{0.15}O_{9+δ} не испытывают структурных фазовых переходов. Величина коэффициента линейного термического расширения оксидов Ca₃Co_{3.85}M_{0.15}O_{9+ δ} (M – Ti – Zn, Mo, W, Pb, Bi) изменялась в пределах (1.20–1.31) × 10⁻⁵ K⁻¹ и для всех твердых растворов (за исключением фаз Ca₃Co_{3.85}Ni_{0.15}O_{9+ δ}, Ca₃Co_{3.85}Bi_{0.15}O_{9+ δ}) была ниже, чем для базового кобальтита кальция (табл. 2). Результаты дилатометрии хорошо согласуются с данными ИК-спектроскопии поглощения, со-

Рис. 5. Температурные зависимости электропроводности (а), коэффициента термо-ЭДС (б) и фактора мощности (в) кобальтитов $Ca_3Co_4O_{9+\delta}$ (*I*), $Ca_3Co_{3.85}Ni_{0.15}O_{9+\delta}$ (*2*), $Ca_3Co_{3.85}Mn_{0.15}O_{9+\delta}$ (*3*), $Ca_3Co_{3.85}Pb_{0.15}O_{9+\delta}$ (*4*), $Ca_3Co_{3.85}Bi_{0.15}O_{9+\delta}$ (*5*).

гласно которым частичное замещение ионов кобальта ионами других металлов увеличивает энергию межионных взаимодействий в структуре фазы $Ca_3Co_4O_{9+\delta}$.

Кобальтиты $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ являются полупроводниками *p*-типа, при этом для Ca₃Co₄O_{9+δ} характер проводимости вблизи 800 К изменяется от полупроводникового к металлическому (рис. 5а, кривая 1), что обусловлено выделением части кислорода из объема керамики в окружающую среду. Величина кажущейся энергии активации электропроводности $Ca_3Co_4O_{9+\delta}$ составила 0.065 эВ, а твердых растворов на его основе возрастала и изменялась в пределах 0.065-0.099 эВ. Как видно, частичное замещение ионов кобальта в Са₃Со₄О_{9+б} ионами других металлов затрудняет перенос заряда в проводящих СоО2 слоях кристаллической структуры образующихся при этом твердых растворов Ca₃Co_{3.85}M_{0.15}O_{9 + δ}. Что хорошо согласуется с результатами ИК-спектроскопии поглощения, по которым такое замещение увеличивает энергию металл-кислородных взаимодействий в структуре производных слоистого кобальтита кальция.

Коэффициент термо-ЭДС исследованных кобальтитов был положительным, возрастал при увеличении температуры (рис. 5б) и для твердых растворов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – Ti–Zn, Mo, W, Pb, Bi) был значительно выше, чем для кобальтита кальция $Ca_3Co_4O_{9+\delta}$, при этом наибольшее значение коэффициента термо-ЭДС наблюдалось для твердого раствора $Ca_3Co_{3.85}Pb_{0.15}O_{9+\delta}$ – 380 мкВ/К при температуре 1100 К.

Значения фактора мощности исследованной керамики возрастали при увеличении температуры и для твердых растворов $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$ (M – V, Fe, Ni, Cu, Bi) были выше, чем для незамещенной фазы $Ca_3Co_4O_{9+\delta}$. Наибольшее значение

фактора мощности показал твердый раствор $Ca_3Co_{3.85}Bi_{0.15}O_{9+\delta} - 206 \text{ мкBt/(м K}^2)$ при температуре 1100 К, что обусловлено, главным образом, высокими значениями коэффициента его термо-ЭДС (рис. 56, 5в).

ЗАКЛЮЧЕНИЕ

Получены твердые растворы Ca₃Co_{3.85}M_{0.15}O_{9+δ} (M – Ti–Zn, Mo, W, Pb, Bi), изучены их кристаллическая структура, микроструктура, физико-химические и термоэлектрические свойства. Найдено, что кобальтиты Ca₃Co_{3.85}M_{0.15}O_{9+δ}, являются полупроводниками *p*-типа, размеры элементарной ячейки которых уменьшаются при увеличении числа 3*d*-электронов замещающего ионы кобальта иона 3*d*-металла и при увеличении средней степени окисления ионов кобальта, а коэффициент термо-ЭДС увеличивается с ростом температуры, достигая наибольшего значения (380 мкB/K) для твердого раствора Ca₃Co_{3.85}Pb_{0.15}O_{9+δ} при температуре 1100 K.

Рассчитаны значения энергии активации электропроводности и фактора мощности керамики $Ca_3Co_{3.85}M_{0.15}O_{9+\delta}$. Установлено, что частичное замещение ионов кобальта ионами других металлов затрудняет электроперенос в образующихся при этом твердых растворах, а наибольшее значение фактора мощности демонстрирует твердый раствор $Ca_3Co_{3.85}Bi_{0.15}O_{9+\delta} - 206 \text{ мкBt/(м K}^2)$ при температуре 1100 K, что в 2 раза выше, чем для базовой фазы $Ca_3Co_4O_{9+\delta}$ при той же температуре.

Работа выполнена при поддержке государственной программы научных исследований "Функциональные и машиностроительные материалы, наноматериалы" (подпрограмма "Кристаллические и молекулярные структуры", задание 1.21).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 51 № 9 2015

СПИСОК ЛИТЕРАТУРЫ

- 1. *Koumoto K., Terasaki I., Murayama N. et al.* Oxide Thermoelectrics. Research Signpost. Trivandrum, India, 2002. 255 p.
- 2. *Fergus J.W.* Oxide Materials for High Temperature Thermoelectric Energy Conversion // J. Eur. Ceram. Soc. 2012. V. 32. P. 525–540.
- 3. Sedmidubsky D., Jakes V., Jankovsky O. et al. Phase Equilibria in Ca–Co–O System // J. Solid State Chem. 2012. 194. P. 199–205.
- Masset A.C., Michel C., Maignan A. et al. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca₃Co₄O₉ // Phys. Rev. B. 2000–I. V. 62. № 1. P. 166–175.
- Xu L., Li F., Wang Y. High-temperature Transport and Thermoelectric Properties of Ca₃Co_{4-x}Ti_xO₉ // J. Alloys Compd. 2010. V. 501. P. 115–119.
- Diez J.C., Torres M.A., Rasekh Sh. et al. Enhancement of Ca₃Co₄O₉ Thermoelectric Properties by Cr for Co Substitution // Ceram. Int. 2013. V. 39. P. 6051–6056.
- Prasoetsopha N., Pinitsoontorn S., Kamwanna T. et al. The Effect of Cr Substitution on the Structure and Properties of Misfit-Layered Ca₃Co_{4-x}Cr_xO₉₊₈ Thermoelectric Oxides // J. Alloys Compd. 2014. V. 588. P. 199–205.
- Pinitsoontorn S., Lerssongkram N., Harnwunggmoung A. et al. Synthesis, Mechanical and Magnetic Properties of Transition Metals-Doped Ca₃Co_{3.8}M_{0.2}O₉ // J. Alloys Compd. 2010. V. 503. P. 431–435.
- 9. Wang Y., Sui Y., Ren P. et al. Strongly Correlated Properties and Enhanced Thermoelectric Response in

 $Ca_3Co_{4-x}M_xO_9$ (M = Fe, Mn, and Cu) // Chem. Mater. 2010. V. 22. P. 1155–1163.

- 10. *Liu C.-J., Huang L.-C., Wang J.-S.* Improvement of the Thermoelectric Characteristics of Fe-Doped Misfit-Layered Ca₃Co_{4-x}Fe_xO_{9+ δ} (*x* = 0, 0.05, 0.1, and 0.2) // Appl. Phys. Lett. 2006. V. 89. P. 204102-1–204102-3.
- 11. *Liu Y., Li H., Chen H., Ji Y.* The Effect of Fe Substitution on the Electrical and Thermal Conductivity and Thermopower of $Ca_3(Fe_xCo_{1-x})_4O_9$ Synthesized by a Sol-Gel Process // J. Phys. Chem. Solids. 2014. V. 75. P. 606–610.
- Клындюк А.И., Мацукевич И.В. Синтез и свойства твердых растворов Ca_{2.8}Ln_{0.2}Co₄O_{9 + δ} (Ln-La, Nd, Sm, Tb-Er) // Неорган. матер. 2012. Т. 48. № 10. С. 1181-1186.
- Клындюк А.И., Красуцкая Н.С., Мацукевич И.В. и др. Термоэлектрические свойства керамики на основе слоистых кобальтитов натрия и кальция // Термоэлектричество. 2011. № 4. С. 49–55.
- Klyndyuk A.I., Chizhova Ye.A. Thermoelectric Properties of the Layered Oxides LnBaCu(Co)FeO_{5+δ} (Ln = La, Nd, Sm, Gd) // Funct. Mater. 2009. V. 16. № 1. P. 17–22.
- Xu J., Wei C., Jia K. Thermoelectric Performance of Textured Ca_{3-x}Yb_xCo₄O_{9-δ} Ceramics // J. Alloys Compd. 2010. V. 500. P. 227–230.
- Zhang Y., Zhang J. Rapid Reactive Synthesis and Sintering of Textured Ca₃Co₄O₉ Ceramics by Spark Plasma Sintering // J. Mater. Process Technol. 2008. V. 208. P. 70–74.