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ON SOLVING COHERENT DYNAMICS EQUATIONS WITH DISCRETE MATHEMATICS 
METHOD FOR QUANTUM SYSTEMS UNDER LASER EXCITATION 

Molecular coherent excitation calculations are performed using a simple model of quantum 
N + 1-levels systems. An exact solution of the corresponding system of differential equations is obtained 
without their integration. For this, the discrete Fourier transform is applied: the sought-for functions – 
probability amplitudes ( )na t  of a quantum system are represented with Fourier images ( ),nF ω  i.e. spectra 

that are described by some corresponding system of discrete orthogonal polynomials. Fourier spectra are 
calculated using the polynomials constructed. We find the required ( )na t  by calculating the final sum from 

0  to N. Based on a one-to-one correspondence: polynomial characteristics vs equations coefficients, we 
find all the characteristics of quantum systems, the dynamics of which are described by the obtained solu-
tion. The construction of various polynomial systems of a discrete variable makes it possible to obtain 
solutions for quantum systems with various characteristics, including systems with non-equidistant ar-
rangement of energy levels, which are typical for real molecules. 

Key words: coherent laser excitation of quantum systems, Fourier spectra, discrete orthogonal poly-
nomials in Fourier space, exact solutions of differential equations systems. 

Introduction. One of the unique properties of 
laser radiation is its ability, acting on molecules, 
atoms, crystals, to translate them into a special state 
of quantum coherence, which differs sharply from 
classical states. New states are obtained by exciting 
the medium with ultrashort pulses. Media in a quan-
tum coherent state can be used for a number of new 
technologies: quantum computing, quantum com-
munication lines, reliable encryption of infor-
mation, laser control of chemical reactions, to create 
selectively excited molecules in order to study their 
spectral properties and rates of intramolecular redis-
tribution energy in them etc. One of the problems in 
the implementation of these technologies is the 
preservation of quantum coherence of the medium, 
since coherence is rapidly destroyed. Decoherence 
occurs during the interaction of a quantum system 
with the environment, including measuring setup. 
A lot of literature is devoted to theoretical and ex-
perimental investigation of media in states of quan-
tum coherence, methods for their production, con-
servation and control of their characteristics [1–4]. 
Nevertheless, many unsolved problems remain, in 
particular, with obtaining exact solutions of quan-
tum equations and developing analytical methods 
for constructing solutions that describe the process 
of coherent excitation of quantum systems under 
various conditions. 

This paper describes a new approach to the con-
struction of exact solutions of equations of a certain 
type, describing the indicated process occurring un-
der the action of a constant amplitude laser pulse. It 
allows one to obtain an analytical solution for the dy-
namics of various quantum systems, including those 
having a non-equidistant arrangement of energy 
levels and when excited by radiation with a carrier 

frequency that is not in exact resonance with the 
transition eigenfrequencies of the quantum system. 
In the work, the solution algorithm is illustrated 
with a simple example – a system with a few energy 
levels, but it allows a natural generalization. The 
method is “spectral”. It is based on the transition 
from the sought-after functions 0{ ( )}N

na t  of time, 
the probability amplitudes of a N + 1-level quantum 
system to their Fourier images 0{ ( )} ,N

nF ω  Fourier 
spectra. In this case, the discrete Fourier transform 
is used, that is, the spectral space is discrete. This is 
natural, since the amplitudes are periodic functions 
of time when N < ∞. The paper considers systems 
with a uniform space, i.e. spectra are function of 
a discrete argument given on a uniform grid. This 
restriction is not fundamental. It is also shown 
that the Fourier spectra are expressed in terms 
of orthogonal polynomials; they are used to con-
struct a solution of differential equations of the 
type under consideration. Polynomials are given 
in the Fourier space of the probability amplitudes 
of a quantum system. The algorithm for construc-
ting the solution is simple. Constructing a certain 
sequence of discrete orthogonal polynomials cor-
responding to a quantum system, we construct 
spectra, calculate probability amplitudes, and find 
the distribution of the quantum system by energy 
levels. Further, using the connections between 
the characteristics of the polynomials and the co-
efficients of the differential equations, we find 
these coefficients and determine the characteris-
tics of the excited quantum systems, for which 
a solution is obtained, that describes their cohe-
rent dynamics. 
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The excited medium model and dynamic 
equations. The model is a quantum system contain-
ing 1N +  energy levels 0 1, , ..., NE E E  (N  is a na-
tural number). Radiation cosωτλ λ E  turned on at the 
moment τ = 0 has constant amplitude λE  and fre-
quency ωλ  and causes transitions between neigh-
boring levels. Each transition 1n nE E−   is charac-
terized by its eigenfrequency 1( ) /n n nE E −ω = − ħ 
and dipole moment 1,n n n−μ ≡μ  describing the in-
tensity of the interaction of the transition with radi-
ation. The radiation frequency may not coincide 
with the eigenfrequency of the transition, so the 
transition may also have a frequency detuning 
∆ .n nω =ω −ωλ  Thus, each n-th transition is de-
scribed by quantities , ,n nμ ω  ∆ .nω  

The Schrödinger equation, which describes the 
dynamics of coherent excitation, for such problems 
is written not for the wave function, but for com-
plex-valued probability amplitudes ( )na t  of detec-
ting a system at a level n  at a time τ during excita-
tion [5]. In dimensionless variables, such a system 
of equations has the form 

 1
1 1 1;

n ni t i tn
n n n n

da
f e a f e a

dt
+−ε ε

+ + −− = +  (1) 

0,( 0) ; 0, 1, ..., .n na t n N= =δ =  

This widely used method of the semiclassical 
description of the process by equations (1) is 
called the resonance approximation, or the rota-
ting field method [4–6]. In this model, the terms 
containing the frequencies ω ωn + λ are omitted, 
which practically does not affect the dynamics. 
Here, the dimensionless function of dipole mo-
ments nf ; 1 1f =  with respect to the moment of 
the first transition 0 1↔  is introduced, 

1 .n nfμ =μ  It characterizes all the transitions of a 
quantum system interacting with radiation. The 
usage of the Rabi frequency Ω 1 / 2R =μ λE ħ of the 
first transition allows the introduction of dimen-
sionless time t =ΩRτ and frequency detunings 

( ) /n nε = ω −ωλ ΩR  at the transitions. As a re-
sult, a quantum system is characterized by a pa-
rameter N – the number of transitions interacting 
with radiation and two sets of quantities , ;n nf ε  
they are the coefficients of equations (1); the 
number of equations (1) is N + 1. The experimen-
tally measured quantities are the populations of 
energy levels *( ) ( ) ( )n n nt a t a tρ =  forming a dis-
crete statistical distribution. Building a discrete 
distribution is the ultimate goal of calculations. 
The study of its dependence on the characteristics 
of the process, the properties of the quantum sys-
tems and radiation opens the way to controlling 

the process of coherent excitation of molecules 
and atoms and to its technological use. 

Differential equation system solving. The al-
gorithm for solving the problem is simple and phy-
sically clear. We apply the discrete Fourier trans-
form to equations (1), passing from the functions 

( )na t  with the continuous argument to the discrete 
Fourier space of these functions, that is to their spec-
tra ( )nF ω – the functions of the discrete argument. 
Indeed, ( )na t  are time-periodic functions of time if 
N < ∞. The solution to the system of differential 
equations (1) is sought in the form 

0

( ) ( )
N

ni s t i t
n na t e F e

ω
ω

ω=ω
= ω =∑ %  

 
0

( ) .n

N
i s t i r xt

n
x

e F x e
=

= ∑  (2) 

Further simplest case – a uniform Fourier space 
is considered, i.e. Fourier frequencies are equidis-
tant: ;r xω =  0, 1, ..., .x N=  Constants ns  and r  
in (2) will be defined below. We also assume that 
discrete Fourier spectra are as follows 

 0ˆ ˆ( ) ( ) ( ); , 0,1, , ,n nF x x p p x n x N=σ = Κ  (3) 

i.e. they are expressed in terms of a certain sequence 
of discrete polynomials 0{ ( )}N

n np x =  in this space, and 
they correspond, are adequate to the quantum systems 
under consideration as well as to the equations (1). 
The presence 0p̂  in (3) is due to the initial conditions 
for equations (1) – at the moment 0t =  the systems 
are in the ground energy state. The polynomials are 
normalized and orthogonal 

 ,
0

ˆ ˆ( ) ( ) ( )
N

m n m n
x

x p x p x
=
σ =δ∑  (4) 

with discrete weight function ( ).xσ  
The most important property of orthogonal po-

lynomials is the three-term recurrence relation 

 1 1 1ˆ ˆ ˆ( ) ( ) ( ) ( )n n n n n nf p x f p x rx s p x+ + −+ = +  (5) 

which is satisfied by the polynomials of both con-
tinuous and discrete arguments [7–9]. Here it is 
written in an unconventional, but equivalent form, 
with normalization 1 1.f =  To study or construct a 
sequence of orthogonal polynomials means to know 
not only their explicit form, but also the weight 
function and the recurrence relation. This infor-
mation is available in the corresponding sources for 
polynomials. To date, a huge “zoo” of various or-
thogonal polynomials, classical and new ones, has 
been created [9]. Continuous polynomials are 
widely used in various fields of science and techno-
logies, discrete polynomials are used much less often. 
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Earlier, we used some classical polynomials of 
continuous and discrete variables to construct ana-
lytic solutions of the equations describing coherent 
excitation of multilevel quantum systems [10–12]. 
A number of results were obtained, including in-
teresting ones for physical applications. The clas-
sical discrete polynomials (Charlier, Kravchuk) 
turned out to be especially meaningful in compari-
son with the polynomials of a continuous argu-
ment. So, the solutions describing the excitation of 
both basic models of quantum physics – a har-
monic oscillator and a two-level system, were con-
structed using Kravchuk polynomials. The dyna-
mics of these systems is described by the same sta-
tistical (binomial) energy distribution (populations 
of energy levels) at any time while radiation is in 
effect, and with any detuning of the radiation fre-
quency from the eigenfrequencies of the quantum 
system [12]. 

A “drawback” of using classical polynomials 
for the problem under discussion was that they led 
to solutions describing the excitation of quantum 
systems with equidistant energy levels. However, it 
is important to try to build exact solutions for the 
dynamics of more real models, since molecules and 
atoms, as a rule, have levels that are non-equidis-
tant. In addition, radiation interacts with a finite 
number of transitions between levels. This, in par-
ticular, explains the motivation for the work pre-
sented here. 

If well-known polynomials are used, then their 
weight function and the coefficients of the recur-
rence relation (5) are known. But it is possible to 
construct new discrete polynomials by defining, set-
ting in advance, for example, a weight function, and, 
using the well-known procedure, and determine the 
coefficients of the recurrence relation [7–9]. Then 
the probability amplitudes are found by calculating 
the final sum (2). The desired solution is obtained 
without integration, using finite discrete mathema-
tics. Thus, by setting a discrete set of Fourier fre-
quencies and a weight function, we construct a se-
quence of polynomials, calculate the Fourier spectra 
according to formula (3) and find a solution of equa-
tions (1) according to formula (2). It can be seen that 
the probability amplitudes are spectrally bounded 
functions if N < ∞. The constructed solution de-
scribes the coherent dynamics of some N + 1-level 
quantum systems. 

Dynamical equations coefficients and 
quantum systems characteristics. Now it is 
easy to determine the coefficients of equations (1), 
the solution of which is constructed, and to deter-
mine the characteristics of systems whose dy-
namics are described by this solution (see Exam-
ple below). That is the assumption (3) can be con-
firmed. Substituting (2), (3) into the equations (1) 
gives:  

 

1 1

1

( ( ))
1 1

( ( ))
0 1

0

ˆ ( )

ˆ ˆ( ) ( ) 0.

ˆ( ) ( )

n n n

n n n

i s s t
n n

N
i s s ti r xt

n n
x

n n

e f p x

x p e e f p x

r x s p x

+ +

−

− ε − −
+ +

ε − −
−

=

⎧ ⎫
⎪ ⎪⎪ ⎪σ + =⎨ ⎬
⎪ ⎪

− +⎪ ⎪⎩ ⎭
∑  (6) 

Expression (6) is satisfied if 

 1 1 1

1 1 1

; ;

ˆ ˆ ˆ( ) ( ) ( ) ( ).
n n n n n n

n n n n n n

s s s s

f p x f p x rx s p x
− + +

+ + −

ε = − ε = −
+ = +

 (7) 

A comparison of recurrence relations (5) and (7) 
proves that (2), (3) is a solution of equations (1) if 
the polynomials in (3) that determine the Fourier 
spectra are related to the coefficients of equations (1) 
as follows 

 1; ,n n n n nf f s s −= ε = −   (8) 

where ,n nf ε  and r  in (2) are the coefficients of the 
recurrence relation for polynomials. The one-to-one 
correspondence between the coefficients of the dy-
namical equations and the characteristics of the pol-
ynomials shows that the system of equations corre-
sponds to a certain sequence of polynomials with its 
weight function and recurrence relation. This allows 
one to solve the inverse problem – based on polyno-
mials one can construct a solution that describes the 
coherent excitation of the corresponding quantum 
systems, the dynamics of which are described by 
equations (1). Next example shows how this method 
works, using discrete orthogonal polynomials and 
without using integration of quantum dynamical 
equations (1). 

Example. Here we use the well-known method 
for constructing a sequence of orthogonal polyno-
mials based on a preset weight function [7–9]. Con-
sider the simplest case – three-level quantum sys-
tems ( 2).N =  Let the weight function of polynomi-
als have the form 

 
2

0

( ) {0.2; 0.3; 0.5}; ( ) 1.
N

x

x x
=

=
σ = σ =∑  (9) 

The weight function moments 
1 3

0

( )
N

k
k

x

c x x
+ =

=
= σ =∑

{1; 1.3; 2.3; 4.3}=  are special determinants ele-
ments that give rise to the sequence of three non-
normalized orthogonal polynomials 

 
0

1

2
2

1;

( ) 1.3;

( ) 0.61 1.31 0.3.

p

p x x

p x x x

≡
= −

= − +

  

The squares of their norms are as follows: 

 2 2 2
0 1 21; 0.61; 0.0732;d d d= = =    

these are exact results. The normalized polynomials 
have the following form ˆ ( ) ( ) / .n n np x p x d=  Next, 
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the coefficients of the recurrence relation (5) can be 
obtained 

 

2
2 4

1 1

0 1 23 3
1 1 1

1
; ;

1.3 0.517 0.52
; ; .

d
r f

d d

s s s
d d d

= =

= − = − = −
 (10) 

These exact data determine the parameters of 
quantum systems:  

1 2

0.0732
1; 0.727,

0.3721
f f= = ≈  

i.e. the second transition interacts with radiation 
slightly. Frequency detunings at transitions are non-
equal 

 1 1 0 2 2 13 3
1 1

0.276 0.003
; .s s s s

d d
ε = − = + ε = − = −  (11) 

The radiation frequency almost coincides with 
the eigenfrequency of the second transition and dif-
fers noticeably from the frequency of the first tran-
sition. The energy levels are located non-equidis-
tantly, and the detunings have different signs. 

Equations solution and a discrete level distri-
bution function of particles. Using formulas (3) 
and (2), we calculate the Fourier spectra and proba-
bility amplitudes, i.e. obtain the solution of equa-
tions (1) 

 

0

1

2

1 2
0 0

1 2
1 1

1 2
2 2

(0.20 0.30 0.50 );

( 0.26 0.09 0.35 );

(0.06 0.12 0.06 ).

i s t i r t i r t

i s t i r t i r t

i s t i r t i r t

a e d e e

a e d e e

a e d e e

− ⋅

− ⋅

− ⋅

= + +

= − − +

= − +

 (12) 

Energy level populations 

0

1

2

0.38 0.42cos 0.2cos2 ;

1
(0.1982 0.0162cos

0.61
0.1820cos2 );

1
(0.0216 0.0288cos

0.0732
0.0072cos2 ),

rt rt

rt

rt

rt

rt

ρ = + +

ρ = − −

−

ρ = − +

+

 

i.e. energy distribution discrete function can be pre-
sented in an equivalent, more convenient form 

 

2 2
0

2
1

2 2
2

0.2 0.61(0.9 2.1φ 2φ );

0.2 (1 φ)(1.901 1.82φ);

0.2 0.6(1 φ) ;

φ cos .

r

r

r

rt

ρ = ⋅ + +

ρ = − +

ρ = ⋅ −
=

 (14) 

Figure shows time dependence of populations of 
energy levels. 

Three-level quantum systems, the dynamics 
of which are described by the solution (12) and 
distribution function (14). Let us consider in more 
detail what the proposed and used algorithm gives, 
and the dynamics of which three-level systems it de-
scribes for a given weight function ( )xσ  (9) that 
does not contain parameters. 

 

Figure. The dependence of the populations 
of a three-level quantum system on time: 

0 1 2, ,ρ ρ ρ  – dashed, dot-dashed, solid lines 

Let some system (#1) with dipole moments (#1)
1μ  

and (#1) (#1)
2 2 1fμ = μ  and frequencies (#1)

1ω  and (#1)
2ω  

of transitions be excited by radiation with amplitude 
(#1)

λE and carrier frequency (#1).ωλ  And let the dyna-
mics of this system be described by the distribution 
function (14). We take radiation of a different ampli-
tude (#2) (#1),k=λ λE E  changed at k  times. What 
should be the characteristics of a system (#2) so that 
its dynamics is identical to the dynamics of the sys-
tem (#1)? The answer is obvious: the system (#2) 
must have (#2) (#1) (#2) (#1)

1 1 2 2/ , / .k kμ =μ μ =μ  In-

deed, then the Rabi frequency 1Ω
2R

μ
=

π
λE  of the 

systems (#1) and (#2) will be the same, as well as the 
“proper” time Rrt rΩ= τ (where τ is the time in se-
conds), and the process speeds are the same. The po-
pulation 2ρ  peaks occur at the same moment maxτ  in 

both processes, when max .Rr Ωτ =π  And the value 

2
2 max

0.48
0.48 0.7869

0.61
rρ = = ;  

will also be the same. There are infinitely many 
such systems. They have different 1,μ  each is ex-
cited by radiation of the corresponding amplitude, 
have the same Rabi frequencies, the same (identi-
cal) dynamics. An algorithm implemented with 
a given function ( )xσ  that does not contain free 
parameters “selects” many systems with identical 
dynamics. 

2 4 6 8 10 12
rt

0.2

0.4

0.6

0.8

1.0

n

(13)

1.0
nρ

0.8

0.6

0.4

0.2

rt
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ħ
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In addition to dipole, power characteristics all 
systems and radiation have frequency characteris-
tics. They form two dimensionless quantities 

 1 2
1 2; ,

R RΩ Ω
ω −ω ω −ω

=ε =ελ λ  (15) 

where 1 2,εε  are constants. We will show now that 
the algorithm and solution (14) contain many sys-
tems whose dynamics are similar with the coefficient 
of similarity k  to the dynamics of the system (#1). 
Systems (#2) have Rabi frequency (#2) (#1)

R RkΩ Ω=  
changed several times due to changes in the field am-
plitude, but the dipole moments coincide with the 
moments of the system (#1). There are also infinitely 
many such systems, expression (14) is still their dis-
tribution function, and its plot in coordinates popula-
tion – time is compressed ( 1)k >  or stretched 
( 1)k <  compared to the plot in Figure. What are the 
characteristics of these systems with k-like dyna-
mics? These are systems with modified natural fre-
quencies 1ω  and 2.ω  Since 1 2,εε  are constants, 
when the Rabi frequency changes, condition (15) can 
be fulfilled in this way. For example, for 1ε we obtain 

(#1)
(#1) 1
1 (#1)

RΩ
ω −ω

ε = =λ  

(#2)
(#2) 1
1 (#1)

.
RkΩ

ω −ω
=ε = λ  

This implies 

 
(#2) (#1) (#1)
1 1 1

(#2) (#1) (#1)
2 2 2

( 1) ( );

( 1)( ).

k

k

ω =ω + − ω −ω

ω =ω + − ω −ω
λ

λ

 (16) 

The second expression in (16) is obtained simi-
larly. Systems (#2) with such a change in the transition 
frequencies have a k-like dynamics, regardless of 
which of the two methods the Rabi frequency has 
changed. The similarity coefficient can be any positive 
number 0 k< < ∞  if conditions (15) and (16) are sa-
tisfied. More complicated cases are possible when the 
systems have a k-like dynamics, and condition (15) 
is fulfilled while changing both the frequencies of the 
transitions and the frequency of the radiation. 

Thus, the proposed and used algorithm leads to 
the consideration of quantum systems “dressed” by 
the radiation field, since the coefficients of equa-
tions (1) include physical parameters that characte-
rize both the quantum system and electromagnetic 
radiation. The algorithm allows us to construct a so-
lution, determine systems with similar dynamics, 
and shows that there are infinitely many such sys-
tems, their dynamics is described by solution (12) 
and distribution function (14). There is an extensive 
family containing quantum systems having different

dipole moments, level arrangements, excited by dif-
ferent frequencies and amplitudes of radiation, pos-
sessing similar (universal) coherent dynamics. The 
algorithm made it possible to discover the property 
of similarity of dynamics, to distinguish such fami-
lies, to build a single analytical solution for their dy-
namics. 

The algorithm can be generalized with using 
other discrete functions as a weight function or in-
troducing additional parameters for ( ).xσ  In [13] 
for the first time an additional parameter a  was in-
troduced into the weight function. A corresponding 
analytical solution is constructed that describes the 
dynamics of a one-parameter family of quantum 
three-level systems with non-equidistant energy 
levels. In addition the family has three systems with 
equidistant energy levels when 0a =  and 

1 / (2 3)a = ±  as well. 
Obviously, it is possible to include quantum sys-

tems whose probability amplitudes have a non-uni-
form Fourier space, which corresponds to orthogo-
nal polynomials with a non-uniform grid. 

Conclusion. For the first time it has been 
shown that to solve the system of equations under 
consideration it is possible not to be limited to 
known polynomials, but to build “any” discrete 
orthogonal polynomials, which significantly ex-
pands the capabilities of the proposed algorithm 
that does not require integration, but use discrete 
mathematics. 

An example of constructing a sequence of dis-
crete polynomials is given, a solution is obtained for 
a number of three-level quantum systems and their 
characteristics are determined. This solution de-
scribes the dynamics of quantum systems with a 
non-equidistant arrangement of energy levels. Such 
a model is closer to real molecules. 

For quantum systems with a large number of 
transitions interacting with radiation a computer al-
gebra system, for example, “Mathematica” can be 
used. 

It is shown that there are many quantum systems 
with k-like dynamics among all systems described 
by equations (1). 

The solution of the equations of coherent dy-
namics of quantum systems by the method de-
scribed above has required knowledge in several 
areas of mathematics: not only the theory of dif-
ferential equations, but also the Fourier transform 
and Fourier spectra, orthogonal polynomials of a 
discrete variable defined in Fourier space, and 
their properties, statistical distribution functions, 
i.e. probability theory. This applies equally to sci-
entific work and to education, university and even 
school. 

An educated person is a carrier of fundamen-
tal deep and versatile knowledge about nature and 
culture. 
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