

Рисунок 2 - Предел прочности ПКМ на основе углеродных волокон и бензаксазиновым связующим P-а

Таким образом, применение в качестве связующего бензоксазинов для получения ПКМ на основе углепластиков обеспечивает высокие значения прочности при растяжении.

ЛИТЕРАТУРА

- 1. Мелешко А. И., Половников С. П. Углерод, углеродные волокна, углеродные композиты. М.: «САЙНС-ПРЕСС», 2007 192 с.
- 2. Раскутин А.Е. Стратегия развития полимерных композиционных материалов // Авиационные материалы и технологии. 2017. №8. С. 344–348.

УДК 661.1+678.7

магистрант А.А. Чвирова, студ. А.Е. Зимина Науч.рук. проф. О.В. Карманова (кафедра технологии органических соединений, переработки полимеров и техносферной безопасности, ВГУИТ)

ИССЛЕДОВАНИЕ СВОЙСТВ РЕЗИНОВЫХ СМЕСЕЙ И РЕ-ЗИН, ПОЛУЧЕННЫХ В ПРИСУТСТВИИ СМЕСИ ВЫСШИХ КАРБОНОВЫХ КИСЛОТ

В рецептуростроении резиновых смесей существует проблема выбора ингредиентов и их соотношений, обеспечивающего получение высокотехнологичной резиновой смеси и вулканизатов. Разрабатываемый рецепт (содержит 10-20 компонентов) должен обеспечивать необходимые эксплуатационные свойства изделия, и при этом композиция должна хорошо перерабатываться на технологическом оборудовании, быть экологически безопасной, экономически целесообразной. Применение в рецептуре ингредиентов, проявляющих полифункциональные свойства, позволит упростить рецепт и улучшить качество

получаемых материалов [1]. Жирные кислоты и их производные являются традиционными ингредиентами, широко применяемыми в резиновой промышленности. Высшие жирные кислоты фракции C_{17} (олеиновая, стеариновая) и их смеси являются высокоэффективными пластификаторами и активаторами вулканизации каучуков.

Целью работы являлось исследование свойств резиновых смесей и вулканизатов при введении в их рецептуру смеси высших карбоновых кислот, выделенных из соапстока производства растительного масла [2].

Задачами работы являлись изучение свойств высших карбоновых кислот, изучение состава смеси жирных кислот (СмЖК) разных производителей, исследование влияния дозировки СмЖК на технологические и вулканизационные свойства резиновых смесей, оценка упруго-прочностных свойств резин в присутствии СмЖК.

Исследованы составы соапстоков разных производителей и определено содержание в продуктах высших карбоновых кислот различных фракций C_{7-} C_{22} . Исходя из максимального содержания фракций выделено основные 4 представителя высших карбоновых кислот: стеариновая, олеиновая, линолевая, линоленовая (табл. 1). Анализ данных т показал, что соапстоки разных производств различаются соотношением исследуемых карбоновых кислот. Побочный продукт производства растительных масел ЕМЖК характеризуется максимальным содержанием насыщенной стеариновой кислоты ($\sim 42~\%$). Такие различия в составе могут оказывает влияние на свойства резиновых смесей и резин, полученных на их основе.

Таблица 1 – Содержание жирных кислот в соапстоке

Состав	Брутто формула	Содержание жирных кислот в соапстоке разных производителей, % мас.		
		ЕМЖК	ЭФКО	Кристалл
Стеариновая (октадекановая)	C ₁₇ H ₃₅ COOH	42,33	4,87	2,90
Олеиновая (октадеценовая)	C ₁₇ H ₃₃ COOH	15,72	18,33	22,70
Линолевая (октадекадиеновая)	C ₁₇ H ₃₁ COOH	3,63	36,33	66,80
Линоленовая (октадекатриеновая)	C ₁₇ H ₂₉ COOH	10,63	7,66	До 0,20
Прочие	фракции С _{7 -} С ₂₂	27,69	31,12	7,00

На основе СмЖК получены композиционные активаторы вулканизации в виде сплава СмЖК с оксидом цинка. Исследованы технологические, вулканизационные свойства резиновых смесей на основе каучука СКС-30АРК (табл. 2) и физико-механические показатели вулканизатов.

Таблица 2- Свойства резиновых смесей и резин с различными СмЖК

	Эталон –	Шифры образцов		
Показатели	стеариновая кислота	ЕМЖК	ЭФКО	Кристалл
Вязкость по Муни	55,00	54,00	56,00	57,00
M _{min} , дН⋅м	38,00	37,50	35,00	34,50
M _{max} , дН⋅м	52,00	50,00	48,00	46,00
τ90, МИН	11,50	12,00	14,50	14,50

Установлено, что использование смеси жирных кислот обеспечивает требуемую скорость вулканизации. Применение СмЖК улучшает не только вулканизационные, но и реологические свойства. Поэтому в промышленных рецептурах резиновых смесей можно заменять мягчители нефтяного происхождения на СмЖК, выделенных из соапстока производства растительного масла. Замена стеариновой кислоты (1,5 мас.ч.) и оксида цинка (5 мас.ч.) в рецептуре исследуемых резиновых смесей на 6 мас.ч. опытного активатора вулканизации, полученного на основе СмЖК обеспечила требуемый уровень физико-механических показателей вулканизатов.

ЛИТЕРАТУРА

- 1. Карманова О.В. Технологические активные добавки на основе сопутствующих продуктов производства растительного масла // Каучук и резина. 2009.№ 5.С. 18–21.
- 2. Попова Л.В., Репин П.С., Тарасевич Т.В. Отходы масложирового производства как вторичное сырье / Материалы междун. научнотехн. конф. «Продовольственная безопасность: научное, кадровое и информационное обеспечение». ВГУИТ. 2014. С. 167–172.

УДК 544.4:665.652.2

студ. К.И. Павлюк, В.В. Цалко Науч. рук. зав. кафедрой А.И. Юсевич (кафедра нефтегазопереработки и нефтехимии, БГТУ)

ОПРЕДЕЛЕНИЕ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ РЕАКЦИИ СИНТЕЗА НЕФТЕПОЛИМЕРНОЙ СМОЛЫ ИЗ ТЯЖЕЛОЙ СМОЛЫ ПИРОЛИЗА

Определены константы скорости процесса термической полимеризации тяжелой пиролизной смолы (ТПС) завода «Полимир» ОАО «Нафтан» в ходе синтеза нефтеполимерной смолы (НПС) при разных температурах на основе анализа изменения йодного числа (ЙЧ) реакционной смеси. Характеристика ТПС приведена в [1]. Синтез проводили при двух температурах: 250°С и 270°С, в течение 6 ч в реакторе