раковые клетки погибают при воздействии на них хитиназой. В некоторых исследованиях хитиназы работают вместе с протеазами и могут повреждать различные раковые клетки как *in vitro, так* и *in vivo* [3]. Глубокое понимание биологической роли различных хитиназ может помочь ученым розработать новые терапевтические подходы к ряду заболеваний, включая астму, рак и хронический риносинусит.

ЛИТЕРАТУРА

- 1. Rathore, A. S., & Gupta, R. D. (2015). Chitinases from Bacteria to Human: Properties, Applications, and Future Perspectives. *Enzyme Research*, 2015, 1–8.
- 2. Mohammed Kuddus. Potential applications of microbial chitinase: Recent development. *Biochem. Cell. Arch.* Vol. 14, No. 1, pp. 1-7, 2014. ISSN 0972-5075
- 3. Xing-Qing Pan. The mechanism of the anticancer function of M1 macrophages and their use in the clinic. *Chin J Cancer*. 2012; 31(12): 557–563.

УДК 678.55(075.8)

студ. П.И. Шумчик, А.О. Максимов, Н.С. Ушак Науч.рук.доц. А.И. Глоба (кафедра полимерных композиционных материалов, БГТУ)

ПОДБОР МЕТОДИК И ИССЛЕДОВАНИЕ СВОЙСТВ ПОЛИМЕРНЫХ ДИСПЕРСИЙ

Полимерные дисперсии получают методом эмульсионной полимеризации. Преимущества данного метода обусловлены проведением процесса полимеризации с высокой скоростью и получением (со)полимеров с большой молекулярной массой, также этот способ позволяет синтезировать высококонцентрированные латексы со сравнительно малой вязкостью [1]. Полимерные дисперсии, широко применяемые в промышленной и гражданской областях, по назначению делят на две группы: дисперсии, которые используются в качестве вспомогательных материалов и дисперсии, используемые в качестве основного материала при производстве латексных изделий [2]. Одной из основных сфер дисперсий применения данных является производство дисперсионных лакокрасочных материалов – лаков, красок, эмалей, грунтов.

Цель данной работы заключалась в подборе методик и изучении свойств полимерных дисперсий на примере акриловой и стиролакриловой дисперсий.

Для получения образцов покрытий, необходимых для дальнейшего определения твердости по маятниковому прибору типа ТМЛ (ГОСТ 5233–89), акриловую и стирол-акриловую дисперсии аппликатором наносили на стеклянные подложки при комнатной температуре. Испытания проводили через 48 часов. Сущность метода по определению твердости заключается в определении числа затухающих колебаний маятника, помещенного на покрытие по сравнению с числом колебаний маятника на стеклянной подложке. Измерение проводили не менее, чем на трёх участках образца. Исходя из результатов исследования, твердость для акриловой и стрирол-акриловой дисперсий составила 0,278 и 0,315 отн. ед. соответственно.

Наиболее простой и доступный метод определения молекулярной массы сополимеров в широкой области значений молекулярных масс является вискозиметрический метод [3]. Для определения вязкости раствора сополимера определяют время истечения равных объемов растворителя и раствора через капилляр вискозиметра при заданной постоянной температуре. Сополимеры были получены разрушением дисперсий путем перевода их рН в кислую среду с помощью уксусной кислотой с последующим промыванием осадка до нейтральной реакции, фильтрованием и высушиванием. Для растворения осажденных сополимеров были выбраны три растворителя различной полярности: толуол, ацетон и этилцеллозольв. Установлено, что этилцеллозольв является наиболее подходящим растворителем для данных сополимеров и позволяет получить растворы с концентрацией 0,5 г/100мл. В таблице 1 представлены результаты измерения относительной $(\overline{\eta}_{\text{отн}})$, удельной $(\overline{\eta}_{\text{уд}})$, приведенной $(\overline{\eta}_{\text{пр}})$ и характиристической $([\eta]_{\mathcal{C}_{\rightarrow 0}})$ вязкостей для акрилового и стирол-акрилового сополимеров.

На оси ординат каждого из графиков (рисунок) был получен отрезок путём экстраполирования прямой к нулевой концентрации, равный характеристической вязкости. Так как характеристическая вязкость, исходя из уравнения Марка-Куна-Хаувинка, прямо пропорциональна молекулярной массе сополимера, то на основе экспериментальных значений сделан вывод, что молекулярная масса стиролакрилового сополимера превышает молекулярную массу акрилового сополимера.

Таблица 1 – Результаты расчета различных вязкостей сополимеров

$V + V_2$, M	C, 至100 MJI	t, сек	$\eta_{ ext{oth}}$	$\eta_{ m y_{ m J}}$	$\eta_{\pi \mathrm{p}}$	$[\eta]_{\mathcal{C}_{ ightarrow 0}}$
			Расчетные формулы			
			$\eta_{ m p-p}/\eta_{ m p-ль}$	$\eta_{ ext{oth}} - 1$	$\eta_{ m yg}$ /С	$ln\eta_{ m OTH}/{\it C}$ при ${\it C}_{ ightarrow 0}$
Стирол-акриловый сополимер						
10	0,50	271,4	1,23	0,23	0,46	0,41
12	0,42	268,3	1,21	0,21	0,5	0,47
13	0,38	265,6	1,20	0,20	0,526	0,49
15	0,34	262,8	1,19	0,19	0,567	0,49
Акриловый сополимер						
10	0,50	318,9	1,38	0,38	0,76	0,64
12	0,42	300,1	1,30	0,30	0,72	0,63
13	0,38	292,4	1,27	0,27	0,7	0,62
15	0,34	283,5	1,23	0,23	0,69	0,62
18,5	0,27	271,9	1,18	0,18	0,67	0,61

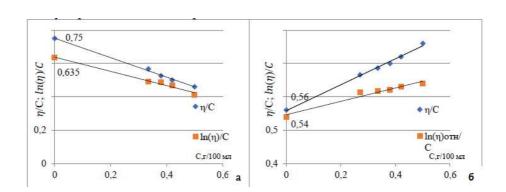


Рисунок 1 – График зависимости $\overline{\eta_{\rm уд}/C}$ и $\overline{\ln{(\eta_{\rm отн})/C}}$ от \overline{C} для стирол-акрилового (а) и акрилового (б) сополимеров

Вязкость по Брукфильду (ГОСТ 25271–93) для исследованных образцов составила 270 и 300 мПа•с (шпиндель № 4) при скорости сдвига 20 об/мин, температуре 20°С и сухом остатке дисперсий 50%.

ЛИТЕРАТУРА

- 1. Елисеева В.И. Полимерные дисперсии. Москва.: Химия, 1980. 296 с.
- 2. Вережников В.Н., Гринфельд Е.А. Синтез латексов: Учебное пособие. Воронеж: Изд-во ВГУ, 2005.-47 с.
- 3. Прокопчук Н.Р., Грушова Е.И., Шашок Ж.С., Кучук А.В. Химия и физика пленкообразующих веществ: лабораторный практикум для студентов специальности «Химическая технология органических веществ, материалов и изделий». Минск: БГТУ, 2003. 59 с.