С. В. Курган, ассистент; Л. А. Башкиров, профессор; Г. С. Петров, доцент

ИК-СПЕКТРЫ ТВЕРДЫХ РАСТВОРОВ КОБАЛЬТИТОВ ЛАНТАНА, НЕОДИМА, ГАДОЛИНИЯ

In the paper IR-spectra of solid solutions of lanthanum, neodymium, gadolinium cobaltites $La_{1-x}Nd_xCoO_3$, $Gd_{1-x}Nd_xCoO_3$, $La_{1-x}Gd_xCoO_3$ were studied at room temperature within $400-900 \text{ sm}^{-1}$ frequencies. Dependence of the obtained results on a nature of rare-earth element, its content in a sample and crystal structure parameters was analyzed. The obtained results were compared with the known literature data for individual rare-earth element cobaltites.

Кобальтиты редкоземельных и щелочноземельных элементов и их твердые растворы со структурой перовскита известны достаточно давно и исследованы относительно полно [1-3]. Интерес к данным объектам обусловлен их высокой электропроводностью [4-6], особыми магнитными свойствами [7] и заметной электрохимической [8] и каталитической активностью [9]. При этом в последние годы различные кобальтиты вновь стали интенсивно исследоваться во всем мире, что связано как с большой научной значимостью получаемых результатов, так и с практическим использованием кобальтитов в качестве резисторов, электродных материалов для гальванических элементов с твердым электролитом и топливных элементов [9, 10], а также для изготовления керамических мембран для получения чистого кислорода из воздуха и устройств (химических реакторов), в которых одновременно используются каталитические свойства и мембранное разделение газовых смесей [3].

Установлено, что в кобальтитах лантана, неодима, гадолиния и других редкоземельных элементов (РЗЭ) со структурой искаженного перовскита в интервале температур 100-800 К наблюдается переход ионов кобальта из низкоспинового состояния $Co^{III}(t^{6}_{2g}e^{0}_{g})(S=0)$ в промежуточноспиновое Co^{3+} ($t^{5}_{2g}e^{1}_{g}$) (S = 1) или в высокоспиновое состояние $(t^4_{2g}e^2_g)$ (S = 2), который сопровождается фазовым переходом полупроводник - металл [1, 11]. Однако в литературе практически отсутствуют сведения по систематическому комплексному исследованию двойных и тройных твердых растворов кобальтитов, в которых один редкоземельный элемент частично замещен другим редкоземельным элементом (кроме работ авторов данной статьи [12–14]).

Так, в работе [15] получены твердые растворы $La_{1-x}Ln'_xCoO_3$ (Ln' = Sm, Ho), $Sm_{1-x}Ln''_xCoO_3$ (Ln'' = Er, Yb), и определены параметры кристаллической решетки этих кобальтитов. В последние годы опубликованы две работы [16, 17], в которых определены температуры спинового перехода в твердых растворах $La_{1-x}Eu_xCoO_3$ (x = 0; 0.25; 0.5) [16] и $La_{1-x}Sm_xCoO_3$ (x = 0-0.2) [17].

Целью настоящей работы является синтез и исследование ИК-спектров твердых растворов кобальтитов редкоземельных элементов $Ln'_{1-r}Ln''_{r}CoO_{3}$ (Ln-La, Nd, Gd).

Синтез твердых растворов проводили керамическим методом на воздухе из оксидов лантана, неодима, гадолиния и Co_3O_4 при температуре 1073-1473 К с неоднократными промежуточными помолами и перепрессовываниями.

Рентгенограммы получали на рентгеновских дифрактометрах ДРОН-3 с использованием Си $_{K\alpha}$ - или Со $_{K\alpha}$ -излучения. Параметры кристаллической структуры исследованных кобальтитов и их твердых растворов определяли при помощи полнопрофильного анализа по Ритвельду (программа FullProf). Относительная погрешность в определении параметров элементарных ячеек не превышала 0.1%.

Инфракрасные спектры синтезированных твердых растворов кобальтитов записывали в интервале частот 400–900 см $^{-1}$ при комнатной температуре в таблетированных смесях с КВг на приборе ИК-Фурье с помощью спектрометра THERMO NICOLET (США). Погрешность определения частот колебаний не превышала ± 2 см $^{-1}$.

ИК-спектры поглощения кобальтитов $La_{1-x}Nd_xCoO_3$ приведены на рис. 1. Полученный ИК-спектр кобальтита лантана $LaCoO_3$ (рис. 1, кривая I) состоит из двух полос валентных колебаний ($v_{s-h}=600~{\rm cm}^{-1}$, $v_{s-l}=560~{\rm cm}^{-1}$) и одной полосы деформационных колебаний ($v_b=422~{\rm cm}^{-1}$), что хорошо согласуется с частотами валентных колебаний ($v_{s-h}=596~{\rm cm}^{-1}$, $v_{s-l}=582~{\rm cm}^{-1}$), приведенными в работе [18], и частотой деформационных колебаний ($v_b=420~{\rm cm}^{-1}$), приведенной в работе [19].

ИК-спектр кобальтита неодима $NdCoO_3$ (рис. 1, кривая 7) состоит из одной полосы валентных колебаний ($v_s = 580 \text{ см}^{-1}$) и одной полосы деформационных колебаний ($v_b = 467 \text{ см}^{-1}$), что хорошо согласуется с частотами валентных ($v_s = 579 \text{ см}^{-1}$) и деформационных колебаний ($v_b = 464 \text{ см}^{-1}$) в спектре $NdCoO_3$, приведенном в работе [18].

Анализ ИК-спектров поглощения твердых растворов $La_{1-x}Nd_xCoO_3$ (рис. 1, кривые 2-6) показывает, что увеличение содержания неодима до x=0.25 не приводит к изменению частоты v_{s-h} и приводит к небольшому увеличению частоты v_{s-h} . При дальнейшем увеличении содержания неодима в твердых растворах $La_{1-x}Nd_xCoO_3$ (x>0.25) (рис. 1, кривые 3-5) происходит заметное смещение частоты v_{s-h} в сторону уменьшения, а частоты v_{s-h} , v_{s-l} в противоположных направлениях приводит к их слиянию, которое наблюдается в спектре твердого раствора $La_{0.1}Nd_{0.9}CoO_3$ ($v_s=582$ см⁻¹) (рис. 1, кривая 6).

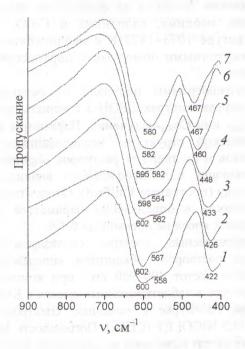


Рис. 1. ИК-спектры кобальтитов системы $La_{1-x}Nd_xCoO_3$ при значениях x, равных 0 (1); 0.1 (2); 0.25 (3); 0.5 (4); 0.75 (5); 0.9 (6); 1.0 (7)

Приведенные на рис. 1 ИК-спектры твердых растворов $La_{1-x}Nd_xCoO_3$ показывают, что увеличение содержания неодима в них приводит к постепенному увеличению частоты деформационных колебаний ν_b от $422~{\rm cm}^{-1}$ для $LaCoO_3$ до $467~{\rm cm}^{-1}$ для $LaO_1Nd_{0.9}CoO_3$ (рис. 1).

В ромбоэдрически искаженной структуре перовскита $LaCoO_3$ трехвалентные ионы Co^{3+} разделены на две разновидности, обозначаемые как Co_I и Co_{II} . Поэтому величины смещения ионов O^{2-} и La^{3+} будут отличаться от величин смещения ионов Co_I и Co_{II} . Это приводит к тому, что расстояние $Co_I - O$ короче, чем расстояние $Co_{II} - O$ [20], т. е. связь $Co_I - O$ прочнее связи $Co_{II} - O$. Поэтому более высокая частота валентных колебаний v_{s-h} относится к колебаниям связи $Co_I - O$, более низкая частота v_{s-l}

определяется колебаниями менее прочной связи Соп - О. Как показали рентгенографические исследования [12-14], увеличение содержания неодима в твердых растворах La_{1-x}Nd_xCoO₃ приводит к постепенному уменьшению степени ромбоэдрического и затем орторомбического искажения кристаллической структуры перовскита. Это, в свою очередь, уменьшает различия в межионных расстояниях $Co_1 - O$, $Co_{II} - O$ и прочности связи Со - О, что и приводит к постепенному смещению частот валентных колебаний v_{s-h} и v_{s-l} в противоположных направлениях до их равенства (табл. 1, рис. 2), т. е. к слиянию этих двух полос в одну, что наглядно видно на полученных нами ИК-спектрах поглощения твердых растворов $La_{1-x}Nd_xCoO_3$ (рис. 2).

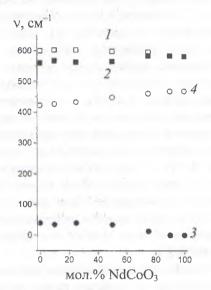


Рис. 2. Зависимость частот v_{s-h} , v_{s-l} валентных и v_b деформационных колебаний от содержания неодима в кобальтитах двойной системы $LaCoO_3 - NdCoO_3$, см⁻¹: $1 - v_{s-h}$; $2 - v_{s-l}$; $3 - \Delta v = v_{s-h} - v_{s-l}$; $4 - v_b$

Таблица 1 Частоты полос поглощения ИК-спектров твердых растворов La_{1-x}Nd_xCoO₃

Состав	Частоты полос валентных колебаний, см ⁻¹		Частоты полос деформацион- ных колеба- ний, v _b , см ⁻¹	
Y 0.0	v_{s-h}	V _{S-1}		
LaCoO ₃	600	560	422	
$La_{0.9}Nd_{0.1}CoO_3$	602	567	426	
La _{0.75} Nd _{0.25} CoO ₃	602	562	433	
La _{0.5} Nd _{0.5} CoO ₃	598	564	448	
La _{0.25} Nd _{0.75} CoO ₃	595	582	460	
La _{0.1} Nd _{0.9} CoO ₃	582		467	
NdCoO ₃	580		467	

ИК-спектры поглощения исследованных кобальтитов двойной системы $La_{1-x}Gd_xCoO_3$ приведены на рис. 3.

Уже отмечалось, что ИК-спектр кобальтита лантана (рис. 1, кривая I; рис. 3, кривая I) состоит из двух полос валентных колебаний ($v_{s-h} = 600 \text{ см}^{-1}$, $v_{s-l} = 560 \text{ см}^{-1}$) и одной полосы деформационных колебаний ($v_b = 422 \text{ см}^{-1}$). ИК-спектр второго компонента исследованной системы $LaCoO_3 - GdCoO_3$ кобальтита гадолиния $GdCoO_3$ (рис. 3, кривая I) состоит из одной полосы валентных колебаний ($v_s = 584 \text{ см}^{-1}$) и двух близко расположенных частот деформационных колебаний ($v_{b-h} = 530 \text{ см}^{-1}$, $v_{b-l} = 502 \text{ см}^{-1}$), что хорошо согласуется с ИК-спектром Illet Gallone Gallone Gallone Gallone Gallone Gallone (<math>Illet Gallone Gallone Gallone Gallone Gallone) при комнатной температуре, приведенным в работе [18] ($v_s = 587 \text{ см}^{-1}$, $v_{b-h} = 526 \text{ cm}^{-1}$, $v_{b-l} = 503 \text{ cm}^{-1}$).

Анализ ИК-спектров поглощения твердых растворов $La_{1-x}Gd_xCoO_3$ (рис. 3, кривые 2–6) по-казывает, что замещение в $LaCoO_3$ 10% ионов лантана ионами Gd^{3+} приводит к увеличению частоты валентных колебаний v_{s-1} на 5 см⁻¹ и не влияет на частоту валентных колебаний v_{s-h} .

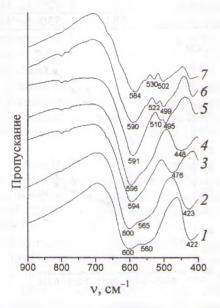


Рис. 3. ИК-спектры кобальтитов системы La_{1-x}Gd_xCoO₃ при значениях *x*, равных 0 (*1*); 0.1 (*2*); 0.25 (*3*); 0.5 (*4*); 0.75 (*5*); 0.9 (*6*); 1.0 (*7*)

При дальнейшем увеличении содержания гадолиния в твердых растворах La_{1-x}Gd_xCoO₃ происходит слияние двух полос поглощения v_{s-h} и v_{s-l} в одну полосу v_s , частота которой постепенно уменьшается от величины 594 см-1 для твердого раствора La_{0.75}Gd_{0.25}CoO₃ до 584 см $^{-1}$ для GdCoO₃. Уменьшение частоты V_{s-h} изменении состава кобальтитов $La_{1-x}Gd_xCoO_3$ от $LaCoO_3$ (x=0) до $GdCoO_3$ (x = 1) составляет 16 см⁻¹, а увеличение частоты $v_{s-1} - 24$ см⁻¹, частота полосы поглощения деформационных колебаний (уь) кобальтита лантана при увеличении степени замещения ионов лантана La³⁺ ионами гадолиния Gd³⁺ постепенно

смещается в сторону увеличения: от 422 см-1 для LaCoO₃, до 476 см⁻¹ – для La_{0.75}Gd_{0.25}CoO₃ и до 448 см⁻¹ – для La_{0.5}Gd_{0.5}CoO₃ (табл. 2). При дальнейшем увеличении содержания ионов гадолиния Gd^{3-} в твердых растворах $La_{1-x}Gd_xCoO_3$ происходит увеличение степени орторомбического искажения кристаллической структуры перовскита, и полоса поглощения деформационных колебаний ур расщепляется на две полосы v_{s-h} , v_{s-l} ($v_{b-h} = 510 \text{ см}^{-1}$ и $v_{b-l} = 495 \text{ см}^{-1}$ для $La_{0.25}Gd_{0.75}CoO_3$; $v_{b-h} = 522 \text{ см}^{-1}$ и $v_{b-l} = 499 \text{ см}^{-1}$ для $La_{0.1}Gd_{0.9}CoO_3$; $v_{b-h} = 530 \text{ cm}^{-1}$, $v_{b-l} = 502 \text{ cm}^{-1}$, $\Delta v = 28 \text{ см}^{-1}$ для GdCoO₃). Следует отметить, что частота деформационных колебаний уы кобальтита гадолиния GdCoO3 больше частоты vb кобальтитата лантана на 108 см-1, и частота валентных колебаний v_s GdCoO₃ меньше v_{s-h} LaCoO₃ Bcero Ha 16 cm⁻¹

Таблица 2 Частоты полос поглощения ИК-спектров кобальтитов La_{1-x}Gd_xCoO₃

Состав	Частоты полос валентных колебаний, v_s , см $^{-1}$		Частоты полос деформаци- онных колебаний, v _b , см ⁻¹	
	v_{s-h}	v_{s-1}	ν_{b-h}	v_{b-l}
LaCoO ₃	600	560	422	
La _{0.9} Gd _{0.1} CoO ₃	600	565	423	
La _{0.75} Gd _{0.25} CoO ₃	594		476	
La _{0.5} Gd _{0.5} CoO ₃	596		448	
La _{0.25} Gd _{0.75} CoO ₃	591		510	495
La _{0.1} Gd _{0.9} CoO ₃	590		522	499
GdCoO ₃	584		530	502

ИК-спектры поглощения исследованных кобальтитов двойной системы NdCoO₃ - GdCoO₃ представлены рис. 4. При на описании ИК-спектров кобальтитов двойной мы LaCoO₃ - NdCoO₃ уже отмечалось, что ИК-спектр кобальтита неодима (рис. 1, кривая 1; рис. 3, кривая 7) состоит из одной полосы валентных колебаний ($v_s = 580 \text{ см}^{-1}$) и одной полосы деформационных колебаний ($v_b = 467 \text{ cm}^{-1}$). ИК-спектр второго компонента GdCoO3 исследованной системы NdCoO₃ - GdCoO₃ (рис. 4, кривая 7), также ранее нами был описан, состоит из одной полосы валентных колебаний ($v_s = 584 \text{ cm}^{-1}$) и двух близко расположенных полос деформационных колебаний ($v_{s-h} = 530 \text{ см}^{-1}$, $v_{s-1} = 502 \text{ см}^{-1}$).

Анализ ИК-спектров поглощения твердых растворов $Nd_{1-x}Gd_xCoO_3$ (рис. 4, кривые 2–6) показывает, что замещение в $NdCoO_3$ ионов неодима меньшими по размеру ионами гадолиния Gd^{3+} приводит к небольшому (не более чем

на 6 см⁻¹, но несколько превышающему ошибку в определении v, равную $\pm 2 \, \text{cm}^{-1}$) смещению частоты валентных колебаний в сторону увеличения, что, вероятно, связано с упрочнением связи Co - O. Увеличение замещения ионов Nd³⁺ ионами Gd в твердых растворах Nd_{1-x}Gd_xCoO₃ до значения x = 0.5 приводит к постепенному смещению частоты деформационных колебаний от значения $v_b = 467 \text{ см}^{-1}$ для $NdCoO_3$ до $v_b =$ $= 490 \text{ см}^{-1}$ для твердого раствора $Nd_{0.5}Gd_{0.5}CoO_3$. При последующем увеличении содержания ионов Gd³⁺ происходит дальнейшее повышение степени орторомбического искажения кристаллической решетки перовскита, и полоса деформационных колебаний ур расщепляется на две полосы v_{b-h} и v_{b-b} частоты которых при увеличении содержания ионов гадолиния смещаются в сторону увеличения частоты: от $v_{b-1} = 516$ см⁻¹, $v_{b-1} =$ = 497 см⁻¹ – для $Nd_{0.25}Gd_{0.75}CoO_3$ до $v_{b-h} = 530$ см⁻¹, $v_{b-1} = 502 \text{ см}^{-1} - \text{для GdCoO}_3 \text{ (табл. 3)}.$

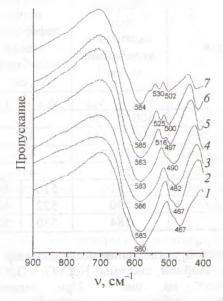


Рис. 4. ИК-спектры твердых растворов $Nd_{1-x}Gd_xCoO_3$ при значениях x, равных 0 (I); 0.1 (2); 0.25 (3); 0.5 (4); 0.75 (5); 0.9 (6); 1.0 (7)

Математическая обработка (по методу наименьших квадратов) зависимости частот поглощения ν_{b-h} и ν_{b-l} от степени орторомбического искажения кристаллической решетки ϵ (табл. 3) показала, что ν_{b-h} и ν_{b-l} от ϵ изменяются линейно (рис. 5): $\nu_{b-h}=493.2+1122.7\cdot\epsilon$, $\nu_{b-l}=489.1+389.0\cdot\epsilon$. Значения ν_{b-h} и ν_{b-l} , ϵ , взятые для твердых растворов $La_{0.25}Gd_{0.75}CoO_3$, $La_{0.1}Gd_{0.9}CoO_3$ двойной системы $La_{1-x}Gd_xCoO_3$ (табл. 1, 2) также хорошо удовлетворяют этим уравнениям (рис. 5, точки l, l). Следует отметить, что экстраполяция полученных прямых (рис. 5) к нулевому значению степени орторомбического искажения приводит к значениям ν_{b-h} и ν_{b-h} , отли-

чающимся всего на 4 см $^{-1}$, что равно сумме ошибок измерения ν_{b-h} , ν_{b-l} (± 2 см $^{-1}$), т. е. при $\epsilon=0$ частоты деформационных колебаний ν_{b-h} и ν_{b-l} практически сливаются в одну полосу частот.

Таблица 3 Частоты полос поглощения ИК-спектров твердых растворов Nd_{1-x}Gd_xCoO₃

		Частоты	
	Частоты	полос деформаци- онных колебаний, _{Vb} , см ⁻¹	
	полос ва-		
Состав	лентных		
	колебаний,		
	v_s , cm^{-1}		
		v_{b-h}	ν_{b-l}
NdCoO ₃	580	467	
$Nd_{0.9}Gd_{0.1}CoO_3$	583	467	
Nd _{0.75} Gd _{0.25} CoO ₃	586	482	
Nd _{0.5} Gd _{0.5} CoO ₃	583	490	
Nd _{0.25} Gd _{0.75} CoO ₃	583	516	497
$Nd_{0.1}Gd_{0.9}CoO_3$	585	525	500
GdCoO ₃	584	530	502

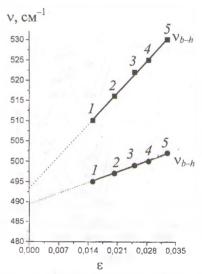


Рис. 5. Зависимость величины частот деформационных колебаний v_{b-h} , v_{b-l} кобальтитов двойных систем $Nd_{1-x}Gd_xCoO_3$ (2, 4, 5) (x=0.75 (2), 0.5 (4), 1.0 (5)) и $La_{1-x}Gd_xCoO_3$ (1, 3) (x=0.75 (1), 0.9 (3)) от степени орторомбического искажения ϵ

Таким образом, наблюдаемое закономерное изменение частот поглощения ИК-спектров исследованных кобальтитов в зависимости от их состава подтверждает вывод, полученный на основе рентгенофазового анализа, об образовании в системах LaCoO₃ — NdCoO₃, LaCoO₃ — GdCoO₃, NdCoO₃ — GdCoO₃ непрерывного ряда твердых растворов.

Литература

1. Пальгуев С. Ф., Гильдерман В. К., Земцов В. И. Высокотемпературные оксидные электронные проводники для электрохимических устройств. — М.: Наука, 1990. — 198 с. 2. Хартон В. В. Физико-химические свойства твердых растворов на основе кобальтитов РЗЭ и стронция: Дис. ... канд. хим. наук: 02.00.04 / Белорус. гос. ун-т. – Мн., 1993. – 185 с.

3. Вашук В. В. Синтез и физико-химические свойства соединений с перовскитной и перовскитоподобной структурой на основе оксидов кобальта и никеля: Дис. ... д-ра хим. наук: 02.00.04 / ИОНХ НАН Беларуси. – Мн., 2000. – 310 с.

4. Толочко С. П., Кононюк И. Ф., Махнач Л. В. Электропроводность сложных оксидов $La_{1-x}Sr_xCoO_{3-\delta}$ (x = 0.2-1.0) // Изв. АН СССР. Неорган. материалы. — 1981. — Т. 17, № 6. — С. 1031—1036.

5. Черепанов В. А., Петров В. А., Кропанев А. Ю. и др. Электрические свойства двойных оксидов РЗЭ и кобальтита состава $RCoO_3$ // Журн. физ. химии. — 1981. — Т. 55, № 7. — С. 1856—1857.

6. Petrov A. N., Kononchuk O. F., Andreev A. V. et al. Crystal structure, electrical and magnetic properties of $La_{1-x}Sr_xCoO_{3-\delta}$. // Solid State Ionics. – 1995. – Vol. 80. – P. 189–199.

7. Yoshii K., Abe H., Nakamura A. Magnetism and transport of $Ln_{0.5}Sr_{0.5}CoO_3$ (Ln = Pr, Nd, Sm and Eu) // Mater. Res. Bull. – 2001. – No 36. – P. 1447–1454.

8. Хартон В. В., Наумович Е. Н., Жук П. П. и др. Физико-химические и электрохимические свойства электродных материалов $Ln(Sr)CoO_3$ // Электрохимия. – 1992. – Т. 28, № 12. – С. 1693–1702.

9. Хартон В. В., Жук П. П., Тоноян А. А. и др. Физико-химические свойства кобальтита неодима, легированного стронцием и кальцием // Изв. АН СССР. Неорган. материалы. — 1991. — Т. 27, № 12. — С. 37—41.

10. Demazeau G., Pouchard M, Hagenmuller P. Sur de nouveaux composes oxygenes du cobalt + III derrives de la perovskite // J. Solid State Chem. – 1974. – Vol. 9, № 3. – P. 202–209.

11. Bhide V. G., Rajoria D. S., Rama Rao. Mossbauer studies of the high-spin-low-spin equilibria and the localized-collective electron transi-

tion in LaCoO₃ // Phys. Rev. - 1972. - Vol. 6, N_{\odot} 3. - P. 1021–1032.

12. Курган С. В., Петров Г. С., Башкиров Л. А., Клындюк А. И. Физико-химические свойства твердых растворов кобальтитов $Nd_{1-x}Gd_xCoO_3$ // Неорган. материалы. — 2004. — Т. 40, № 11. — С. 1389—1394.

13. Курган С. В., Петров Г. С., Башкиров Л. А., Клындюк А. И., Бушинский М. В. Физико-химические свойства твердых растворов кобальтитов $La_{1-x}Gd_xCoO_3$ // Весці НАНБ. Сер. хім. навук. – 2005. – № 1. – С. 34–38.

14. Курган С. В., Петров Г. С., Башкиров Л. А., Клындюк А. И. Физико-химические свойства твердых растворов $La_{1-x}Nd_xCoO_3$ // Труды БГТУ. Сер. III. Химия и технология неорган. в-в. -2004. — Вып. XII. — С. 104—110.

15. Sadaoka Y., Sakamoto M., Nunziante P., Gusmano P. Rare earth perovskite-type oxides containing three metal elements from the decomposition of heteronuclear complexes // Electroceramics V: Book of Abstracts of International Conference on Electronic Ceramics and Applications, Aveiro, Portugal, 2–4 September, 1996. – Portugal, 1996. – Vol. 2. – P. 421–424.

16. Chang J. Y., Lin B. N., Hsu Y. Y., Ku H. C. Co K-edge XANES and spin-state transition of RCoO₃ (R = La, Eu) // Physica B. -2003. - Vol. 30. - P. 483–488.

17. Sun J. R., Li R. W., Shen B. G. Spin-state transition in $La_{1-x}Sm_xCoO_3$ perovskites // J. Appl. Phys. -2001. -Vol. 89, No. 2. -P. 1331-1335.

18. Kim Y. Y., Lee D. H., Kwon T. Y., Park S. H. Infrared Spectra and Seebeck Coefficient of LnCoO₃ with the Perovskite Structure // J. Solid State Chem. – 1994. – Vol. 112. – P. 376–380.

19. Толочко С. П., Кононюк И. Ф., Ламекина Л. М. Условия получения и свойства сложных оксидов $La_{1-x}Ba_xCoO_3$ // Изв. АН СССР. Неорган. материалы. – 1983. – Т. 28, № 6. – С. 1396–1401.

20. Raccah P. M., Goodenough J. B. First-order localized-electron collective electron transition in $LaCoO_3$ // Phys. Rev. – 1967. – Vol. 155, Nomegap 3. – P. 932–940.