2 Xiaobo, Chen Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications / Chen Xiaobo, Samuel S. Mao // Chem. Rev. – 2007. – Vol. 107, Issue 7. – P. 2891–2959.

3 Mariotti, D. Plasma–Liquid Interactions at Atmospheric Pressure for Nanomaterials Synthesis and Surface Engineering / D. Mariotti, J. Patel, V. Svrcek, P. Maguire // Plasma Processes and Polymers. – 2012. – Vol. 9, Isuue 11-12. – P. 1074–1085.

4 Patel, J. Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry / J. Patel, L. Nemcova, P. Maguire, W. G. Graham, D. Mariotti // Nanotechnology. – 2013. – Vol. 24, Issue 24. – P. 1–11.

5 Vollath, D. Plasma synthesis of nanopowders / D. Vollath // J Nanopart Res. – 2008. – Vol. 10, Issue S1. – P. 39–57.

6 Richmonds, C. Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations / C. Richmonds, R. Mohan Sankaran // Appl. Phys. Lett. – 2008. – Vol. 93, Issue 13. – P. 385–388.

7 Пивоваров, А. А. Контактная неравновесная плазма как инструмент для обработки воды и водных растворов. Теория и практика / А. А. Пивоваров, А. В. Кравченко, А. П. Тищенко, Н. В. Николенко, О. В. Сергеева, М. И. Воробьёва, С. В. Трещук // Рос. хим. ж. об-ва им. Д.И. Менделеева. – 2013. – Т. LVII, № 3-4. – С. 134–145.

8 Кравченко, А. В. Низкотемпературный электролиз: теория и практика / А. В. Кравченко, В. С. Кублановский, А. А. Пивоваров, В. П. Пустовойтенко. – Днепропетровск: Акцент ПП, 2013. –229 с.

УДК 538.911+621.78.011+548.75 С.В. Шевченко, Л.А. Башкиров, Г.С. Петров

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА, ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ И ИК-СПЕКТРЫ ПОГЛОЩЕНИЯ ТВЕРДЫХ РАСТВОРОВ La_{1-x}Nd_xCoO₃, La_{1-x}Gd_xCoO₃, Nd_{1-x}Gd_xCoO₃

УО «Белорусский государственный технологический университет», г. Минск, Республика Беларусь

Кобальтиты ACoO₃ (А – редкоземельный или щелочно-земельный элемент) со структурой перовскита известны достаточно давно и исследованы относительно полно, причем интерес к данным объектам обусловлен их высокой электропроводностью, особыми магнитными свойствами, заметной электрохимической и каталитической активностью, сенсорными свойствами [1–5]. Установлено, что в кобальтитах лантана, неодима и гадолиния в интервале температур 320–860 К наблюдается фазовый переход типа полупроводник–металл, обусловленный переходом ионов кобальта Co³⁺ из низкоспинового состояния ($t_{2g}^{6}e_{g}^{0}$) в промежуточно- ($t_{2g}^{5}e_{g}^{1}$) и / или высокоспиновое ($t_{2g}^{4}e_{g}^{2}$) состояние [1–5]. Есть основания предполагать, что данные кобальтиты могут

образовывать непрерывный ряд твердых растворов Ln_{1-x}'Ln_x''CoO₃, где Ln', Ln'' – La, Nd, Gd. Однако в литературе практически отсутствуют сведения по систематическому комплексному исследованию двойных и тройных твердых растворов кобальтитов РЗЭ, хотя физико-химические данные для них позволяют получать функциональные материалы с регулируемыми свойствами.

Целью настоящей работы является синтез, определение параметров кристаллической решетки, исследование термического расширения и ИКспектров твердых растворов кобальтитов редкоземельных элементов $Ln'_{1-x}Ln''_xCoO_3$ (Ln – La, Nd, Gd, x = 0; 0,1; 0,25; 0,5; 0,75; 0,9; 1,0).

Синтез твердых растворов проводили керамическим методом на воздухе из оксидов лантана, неодима, гадолиния и Со₃О₄ при температуре 1073–1473 К с неоднократными промежуточными помолами и перепрессовываниями. Рентгенограммы получали на рентгеновском дифрактометре D8 ADVANCED с использованием Си_{Ка}- излучения. фирмы BRUKER Параметры кристаллической структуры исследованных кобальтитов определяли при помощи полнопрофильного анализа по Ритвельду (программа FullProf). Относительная погрешность в определении параметров элементарных ячеек не превышала 0,1 %. Термическое расширение образцов изучали на кварцевом дилатометре собственной конструкции, описанном в работе [6], при нагревании на воздухе в интервале температур 300-1100 К. Точность определения линейных размеров с помощью индикатора часового типа составляла 0,001 мм. Инфракрасные спектры записывали в интервале частот 400-900 см⁻¹ при комнатной температуре в таблетированных смесях с КВг на ИК-Фурье спектрометре NEXUS фирмы THERMO NICOLET. Погрешность определения частот колебаний не превышала ± 2 см⁻¹.

Показано, что все синтезированные образцы были практически однофазными. На основании рентгеновских данных были рассчитаны параметры кристаллической структуры, которые в качестве примера приведены на рисунке 1 для Nd_xGd_{1-x}CoO₃.

Результаты рентгеноструктурных исследований показали, что кобальтиты LaCoO₃ имеют ромбоэдрически, а NdCoO₃, GdCoO₃ – орторомбически

искаженную структуру перовскита. Это хорошо согласуется с литературными данными. Кобальтиты системы Nd_xGd_{1-x}CoO₃ обладают орторомбической симметрией. Зависимости параметров кристаллической решетки от состава не всегда носят монотонный характер (например, зависимость параметра b от величины x в системе $Nd_xGd_{1-x}CoO_3$). Параметры a и c для твердых растворов Nd_xGd_{1-x}CoO₃, как и следовало ожидать, увеличиваются с ростом содержания в твердом растворе иона Nd^{3+} , имеющего больший ионный радиус, чем ион Gd^{3+} . Твердые растворы $La_{1-x}Nd_xCoO_3$ при x = 0,10 имеют ромбоэдрическую структуру, при x = 0.75; 0.90 – орторомбическую структуру, а при x = 0.25; 0.50 - сосуществуют структуры перовскита с орторомбическим и ромбоэдрическим искажением. При этом степень ромбоэдрического искажения кристаллической решетки постепенно уменьшается по мере увеличения содержания неодима. Твердые растворы $La_{1-x}Gd_xCoO_3$ при x = 0,10 имеют ромбоздрическую структуру, при x = 0.25; 0.50; 0.75; 0.90 – структуру перовскита с орторомбическим искажением. При этом степень орторомбического искажения кристаллической решетки постепенно увеличивается по мере увеличения содержания гадолиния.

На температурных зависимостях относительного удлинения образцов $La_{1-x}Nd_xCoO_3$, $La_{1-x}Gd_xCoO_3$, $Nd_xGd_{1-x}CoO_3$ (x = 0; 0,1; 0,25; 0,5; 0,75; 0,9; 1,0) наблюдаются аномалии (изломы), связанные с фазовыми переходами. На основании дилатометрических данных рассчитаны величины термического коэффициента линейного расширения (α) образцов для различных температурных интервалов, которые в общем были близки (особенно при высоких температурах) к соответствующим величинам для индивидуальных кобальтитов РЗЭ. Результаты измерения термического расширения в качестве примера приведены на рисунке 2 для твердых растворов La_{1-x}Nd_xCoO₃. α_2 , отвечают состояниям, соответственно, Коэффициенты α_1 , αz ЛО температуры T₁ начала фазового перехода полупроводник-металл, интервалу температур, в котором протекает этот фазовый переход, и выше температуры Т₂, т. е. в металлическом состоянии. В металлическом состоянии все исследованные кобальтиты имеют приблизительно одинаковые значения α₃. Значения α_2 исследованных кобальтитов в интервале температур ($T_1 - T_2$), т. е. в интервале температур процесса фазового перехода полупроводник-металл, несколько выше величин α1 и α3, отвечающих соответственно состояниям до и после этого фазового перехода. Установлено, что для кобальтитов La₁. _xNd_xCoO₃ средние температуры изломов T_1 и T_2 составили 415 и 700 К, для системы Nd_xGd_{1-x}CoO₃ они были равны 390 и 735 К, для системы La_{1-x}Gd_xCoO₃ они составили 405 и 760 К. Средние значения КТР (α₁, α₂, α₃) для соответствующих температурных интервалов были равны: 2,7·10⁻⁵ K⁻¹, 3,4·10⁻⁵ ⁵ K⁻¹, 2,0·10⁻⁵ K⁻¹ (система La_{1-x}Nd_xCoO₃); 1,8·10⁻⁵ K⁻¹, 3,2·10⁻⁵ K⁻¹, 2,0·10⁻⁵ K⁻¹ (система Nd_xGd_{1-x}CoO₃); 1,8·10⁻⁵ K⁻¹, 3,3·10⁻⁵ K⁻¹, 2,0·10⁻⁵ K⁻¹ (система La₁₋ $_{r}Gd_{r}CoO_{3}).$

Рисунок 2 - Температурная зависимость относительного удлинения твердых растворов La_{1-x}Nd_xCoO₃ при значениях *x*, равных 0 (1); 0,1 (2); 0,25 (3); 0,5 (4); 0,75 (5); 0,9 (6); 1,0 (7)

Рисунок 3 - ИК-спектры кобальтитов системы La_{1-x}Gd_xCoO₃ при значениях *x*, равных 0 (*1*); 0,1 (*2*); 0,25 (*3*); 0,5 (*4*); 0,75 (*5*); 0,9 (*6*); 1,0 (*7*)

В качестве примера ИК-спектры поглощения приведены на рисунке 3 для кобальтитов La_{1-r}Gd_rCoO₃. Анализ ИК-спектров поглощения твердых растворов La_{1-x}Gd_xCoO₃ (рисунок 3, кривые 2-6) показывает, что замещение в LaCoO₃ 10 % ионов лантана ионами Gd³⁺ приводит к увеличению частоты валентных колебаний v_{s-1} на 5 см⁻¹ и не влияет на частоту валентных колебаний v_{s-h} . При дальнейшем увеличении содержания гадолиния в твердых растворах La₁₋ $_x$ Gd $_x$ CoO $_3$ происходит слияние двух полос поглощения v_{s-h} и v_{s-h} в одну полосу v_s , частота которой постепенно уменьшается от величины 594 см⁻¹ для твердого раствора La_{0.75}Gd_{0.25}CoO₃ до 584 см⁻¹ для GdCoO₃. Уменьшение частоты v_{s-h} при изменении состава кобальтитов $La_{1-x}Gd_xCoO_3$ от $LaCoO_3$ (x=0) до $GdCoO_3$ (x = 1) составляет 16 см⁻¹, а увеличение частоты $v_{s-1} - 24$ см⁻¹, частота полосы деформационных колебаний (v_b) кобальтита лантана поглошения при увеличении степени замещения ионов лантана La³⁺ ионами гадолиния Gd³⁺ постепенно смещается в сторону увеличения: от 422 см⁻¹ – для LaCoO₃, до 476 см⁻¹ – для La_{0.75}Gd_{0.25}CoO₃ и до 448 см⁻¹ – для La_{0.5}Gd_{0.5}CoO₃. При дальнейшем увеличении содержания ионов гадолиния Gd³⁺ в твердых растворах La_{1-x}Gd_xCoO₃ происходит увеличение степени орторомбического искажения кристаллической структуры перовскита, и полоса поглощения деформационных колебаний v_b расщепляется на две полосы v_{s-h}, v_{s-h} (v_{b-}) $_{h} = 510 \text{ см}^{-1}$ и $v_{b-l} = 495 \text{ см}^{-1}$ для $La_{0,25}Gd_{0,75}CoO_{3}$; $v_{b-h} = 522 \text{ см}^{-1}$ и v_{b-} $_{1} = 499 \text{ см}^{-1}$ для $\text{La}_{0,1}\text{Gd}_{0,9}\text{CoO}_{3}$; $v_{b-h} = 530 \text{ см}^{-1}$, $v_{b-l} = 502 \text{ см}^{-1}$, $\Delta v = 28 \text{ см}^{-1}$ для GdCoO₃). Следует отметить, что частота деформационных колебаний v_{b-h}

кобальтита гадолиния GdCoO₃ больше частоты v_b кобальтитата лантана на 108 см⁻¹, и частота валентных колебаний v_s GdCoO₃ меньше v_{s-h} LaCoO₃ всего на 16 см⁻¹.

Таким образом, керамическим методом получены твердые растворы $La_{1-x}Nd_xCoO_3$, $La_{1-x}Gd_xCoO_3$, $Nd_{1-x}Gd_xCoO_3$ (x = 0, 0 - 1, 0), кобальтитов определены параметры их кристаллической решетки, в интервале температур 300-1100 К на воздухе изучено термическое расширение, а также ИК-спектры поглощения. Для всех исследованных кобальтитов обнаружены аномалии соответствующие термического расширения, фазовым переходам полупроводник-металл. Наблюдаемое закономерное изменение частот поглощения ИК-спектров кобальтитов в зависимости от ИХ состава подтверждает вывод, полученный на основе рентгенофазового анализа, об образовании в системах $LaCoO_3 - NdCoO_3$, $LaCoO_3 - GdCoO_3$, $NdCoO_3 - GdCoO_3$, $NdCoO_3$, $NdCoO_3 - GdCoO_3$, $NdCoO_3$, NdCOOGdCoO₃ непрерывного ряда твердых растворов.

Список литературы

1 Пальгуев С. Ф., Гильдерман В. К., Земцов В. И. Высокотемпературные оксидные электронные проводники для электрохимических устройств. - М., 1990.

2 Radaelli P. G., Cheong S.-W. // Phys. Rev. B. – 2002. – Vol. 66, № 6. – P. 094408-1.

3 Zobel C. [et al.] // Phys. Rev. B. –2002. – Vol. 66, № 3. – P. 020402-1.

4 Sudheendra L., Motin Seikh Md., RajuA. R., Narayana Chandrabhas. // Chem. Phys. Lett. – 2001. – Vol. 340. – P. 275.

5 Башкиров Л.А., Барди У., Гунько Ю.К. и др. // Сенсор. – 2003. – №. 2. – С. 34.

6 Petrov G. S., Clyndyuck A. I., Massyuck S. V. et al. // High Temp. – High Press. – 1998. – Vol. 30. – P. 483.

УДК 542.943:661.882:661.491

Р.У. Харрасов¹⁾, Р.Р. Талипова¹⁾, Л.Ф. Бикеева²⁾, Б.И. Кутепов¹⁾

ИСПОЛЬЗОВАНИЕ ЭКОЛОГИЧЕСКИ ЧИСТОГО ОКИСЛИТЕЛЯ -ПЕРОКСИДА ВОДОРОДА – В ПОЛУЧЕНИИ 4-ТРЕТБУТИЛПИРОКАТЕХИНА

¹⁾ ФГБУ науки «Институт нефтехимии и катализа РАН», г. Уфа, Россия ²⁾ ФГБОУ ВПО «Башкирский государственный университет», г. Уфа, Россия

В современной промышленности с использованием каталитических окислительных процессов получают четверть основных химических продуктов, однако основным промышленным способом получения кислородсодержащих соединений до сих пор остается стехиометрическое окисление солями (комплексами) переходных металлов или азотной кислотой. Поскольку