ФАЗОВО-НЕОДНОРОДНАЯ ТЕРМОЭЛЕКТРИЧЕСКАЯ КЕРАМИКА НА ОСНОВЕ СЛОИСТОГО КОБАЛЬТИТА КАЛЬЦИЯ, ПОЛУЧЕННАЯ ДВУХСТАДИЙНЫМ СПЕКАНИЕМ

© 2020 г. А. И. Клындюк $^{1, *, **}$, Е. А. Чижова 1 , Е. А. Тугова 2 , Р. С. Латыпов 1 , О. Н. Карпов 3 , М. В. Томкович 2

¹ Белорусский государственный технологический университет им. С.М. Кирова, ул. Свердлова, 13А, Минск, 220006 Республика Беларусь
² Физико-технический институт им. А.Ф. Иоффе РАН, ул. Политехническая, 26, Санкт-Петербург, 194021 Россия

³Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова, ул. проф. Попова, 5, Санкт-Петербург, 197376 Россия

*e-mail: klyndyuk@belstu.by **e-mail: kai 17@rambler.ru

Поступила в редакцию 15.07.2020 г. После доработки 03.08.2020 г. Принята к публикации 06.08.2020 г.

Твердофазным методом с последующим двухстадийным спеканием синтезирована фазово-неоднородная керамика на основе слоистого кобальтита кальция с различным содержанием оксида кобальта. Установлен ее фазовый состав, исследованы микроструктура, электропроводность и термо-ЭДС. Выявлено влияние катионного и фазового состава керамики на ее электротранспортные и термоэлектрические свойства. Наибольшее значение фактора мощности (P) демонстрирует фазово-неоднородная керамика состава $Ca_3Co_3{}_4O_9 + \delta$ ($0.7Ca_3Co_4O_9 + \delta$ + $0.3Ca_3Co_2O_6$) – 265 мкВт/(м · K²) при температуре 1100 K, что на 20% выше, чем для образца $Ca_3Co_4O_9 + \delta$ ($P_{1100} = 218$ мкВт/(м · K²)) и в 2.65 раза превышает фактор мощности низкоплотной керамики $Ca_3Co_4O_9 + \delta$, получаемой традиционным твердофазным методом.

Ключевые слова: слоистый кобальтит кальция, фазовая неоднородность, двухстадийное спекание, электропроводность, термо-ЭДС, фактор мощности

DOI: 10.31857/S0132665120060128

ВВЕЛЕНИЕ

Слоистый кобальтит кальция $Ca_3Co_4O_{9+\delta}$ является перспективной основой для разработки материалов p-ветвей высокотемпературных термоэлектрогенераторов, поскольку характеризуется высокими значениями удельной электропроводности и коэффициента термо-ЭДС и низкой теплопроводностью. Он устойчив к воздействию атмосферного кислорода при повышенных температурах и, в отличие от традиционных термоэлектриков на основе халькогенидов тяжелых металлов, не содержит высокотоксичных и дорогостоящих компонентов [1]. Кобальтит $Ca_3Co_4O_{9+\delta}$ кристаллизуется в моноклинной сингонии, его структура образована чередующимися слоями $[Ca_2CoO_3]$ (структурный тип NaCl) и $[CoO_2]$ (структурный тип CdI_2), имеющими различную периодичность в направлении оси b [2]. Основным недостатком получаемой традиционным твердофазным методом керамики $Ca_3Co_4O_{9+\delta}$, ограничивающим ее

практическое использование, является то, что ввиду довольно высокой пористости она характеризуется низкой механической прочностью и удельной электропроводностью.

Попытки снижения пористости керамики путем спекания ее при повышенных температурах [3, 4] не приводят к значительному успеху, поскольку вследствие протекания реакций (1) (на воздухе при T > 1199 K [5], 1222 K [6]) и (2) (на воздухе при T > 1299 K [5], 1313 K [6])

$$Ca_3Co_4O_{9+\delta} \rightarrow Ca_3Co_2O_6 + (Co,Ca)O, \tag{1}$$

$$Ca_3Co_2O_6 \rightarrow (Ca,Co)O + (Co,Ca)O,$$
 (2)

образующаяся керамика является многофазной и низкопроводящей, что обусловливает низкие значения ее функциональных характеристик. Использование при синтезе керамики на основе $Ca_3Co_4O_{9+\delta}$ вместо традиционного твердофазного различных растворных методов синтеза (цитратный, золь-гель и др.) позволяет существенно снизить пористость образующихся при этом материалов (14–17% вместо 30% [7]). Улучшение механических и функциональных свойств керамики при этом, однако, выражено не настолько значительно, чтобы рекомендовать ее к широкому практическому использованию.

Эффективным способом получения высокоплотной керамики $Ca_3Co_4O_{9+\delta}$ является использование горячего прессования [8, 9] или искрового плазменного спекания [10—13], однако эти методы требуют редкого и дорогостоящего оборудования. В ряде работ для получения высокоплотной керамики на основе слоистого кобальтита кальция с улучшенными термоэлектрическими характеристиками предложены различные варианты так называемого двухстадийного метода спекания с использованием [14] и без использования [15—18] специального оборудования. Этот метод объединяет предлагаемые различными авторами подходы физико-химической природа процессов, протекающих при получении низкопористой керамики на основе слоистого кобальтита кальция. На первой стадии при высоких (1373—1473 K [15—18]) температурах происходит эффективное спекание продуктов перитектоидного распада $Ca_3Co_4O_{9+\delta}$ по реакциям (1) и (2) — смеси оксидов (Ca,Co)O + (Co,Ca)O. На второй стадии, в результате длительной низкотемпературной (T=973-1173 K [14—18]) обработки по реакциям (2) и (1) происходит восстановление исходного фазового состава керамики — образование фазы $Ca_3Co_4O_{9+\delta}$.

Перспективным способом улучшения функциональных (термоэлектрических) характеристик керамики на основе слоистого кобальтита кальция является направленное создание фазовой неоднородности. Это может быть достигнуто как введением в шихту второй фазы [19—21], так и самодопированием керамики [9, 22, 23] путем выведения состава исходной шихты за пределы области гомогенности соединения [5, 6, 24].

В данной работе с целью разработки новых термоэлектрических материалов с улучшенными характеристиками на основе слоистого кобальтита кальция твердофазным методом с последующим двухстадийным спеканием синтезирована фазово-неоднородная керамика в системе оксид кальция — оксид кобальта и изучено влияние катионного состава на ее микроструктуру, электротранспортные и функциональные (термоэлектрические) свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Керамические образцы состава $Ca_{2,4}Co_4O_{9+\delta}$, $Ca_{2,6}Co_4O_{9+\delta}$, $Ca_{2,8}Co_4O_{9+\delta}$, $Ca_3Co_4O_{9+\delta}$, $Ca_3Co_{3,6}O_{9+\delta}$ и $Ca_3Co_{3,4}O_{9+\delta}$ получали твердофазным методом. Реактивы $CaCO_3$ "ч. д. а.", Co_3O_4 "ч.", смешивали в заданных стехиометрических соотношениях при помощи мельницы Pulverizette 6.0 фирмы Fritsch (300 об./мин, 30 мин, добавка — этанол, материал размольного стакана и мелющих шаров — ZrO_2), прессовали

Образец	Фаз	$\rho_{\rm T}$, $r/{ m cm}^3$			
Ооразец	$Ca_3Co_4O_{9+\delta}$ Co_3O_4		Ca ₃ Co ₂ O ₆	РТ, 1/СМ	
$Ca_{2.4}Co_4O_{9+\delta}$	75.00	25.00	_	4.87	
$\text{Ca}_{2.6}\text{Co}_4\text{O}_{9+\delta}$	83.05	16.95	_	4.80	
$Ca_{2.8}Co_4O_{9+\delta}$	91.26	8.73	_	4.74	
$Ca_3Co_4O_{9+\delta}$	100.00	_	_	4.68	
$Ca_3Co_{3.8}O_{9+\delta}$	90.00	_	10.00	4.66	
$\text{Ca}_3\text{Co}_{3.6}\text{O}_{9+\delta}$	80.00	_	20.00	4.65	
$Ca_3Co_{3.4}O_{9+\delta}$	70.00	_	30.00	4.64	

Таблица 1. Фазовый состав и теоретическая плотность ($\rho_{\rm T}$) образцов

в таблетки диаметром 19 мм и высотой 2-3 мм и отжигали на воздухе в течение 12 ч при 1173 K на алундовых подложках. Отожженные на воздухе образцы измельчали в агатовой ступке, после чего подвергали повторному помолу при помощи мельницы Pulverizette 6.0 фирмы Fritsch (300 об./мин, 30 мин, добавка — этанол, материал размольного стакана и мелющих шаров — ZrO_2) и прессовали в бруски размером $5 \times 5 \times 30$ мм, которые затем спекали на воздухе в течение 11 ч при 1473 K на алундовых подложках. Для восстановления ожидаемого в соответствии с диаграммой состояния [5] фазового состава (табл. 1) керамики после спекания ее дополнительно отжигали на воздухе при 973 K в течение 8 ч, а затем при 1173 K в течение 64 ч. Во избежание загрязнения спекаемой керамики материалом подложки от последней ее отделяли жертвенным слоем порошка того же состава, что и керамика. Для измерения электропроводности из спеченной керамики вырезали образцы в форме прямоугольных параллелепипедов размером $4 \times 4 \times 2$ мм.

Теоретическую плотность образцов ($\rho_{\rm T}$) рассчитывали по формуле (3):

$$\rho_{\mathrm{T}} = \Sigma \omega_i \rho_i, \tag{3}$$

где ω_i и ρ_i — массовые доли компонентов керамики и их рентгенографические плотности, которые для $Ca_3Co_4O_9 + \delta$, $Ca_3Co_2O_6$ и Co_3O_4 составляли 4.68 [2], 4.498 (PDF-2, Card № 00-051-0311) и 6.056 г/см³ (PDF-2, Card № 00-042-1467) соответственно.

Величину кажущейся плотности (ρ_{κ}) керамики вычисляли по геометрическим размерам и массе образцов, а пористость полученных материалов находили по формуле (4):

$$\Pi = (1 - \rho_{\kappa}/\rho_{T}) \times 100\%. \tag{4}$$

Идентификацию образцов и определение параметров кристаллической структуры основной фазы — $Ca_3Co_4O_{9+\delta}$ — проводили при помощи рентгенофазового анализа (РФА) (рентгеновский дифрактометр Bruker D8 XRD Advance, CoK_{α} -излучение) и ИК-спектроскопии поглощения (ИК Фурье-спектрометр Tensor 27).

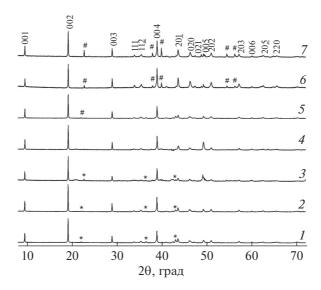
Микроструктуру и элементный состав образцов изучали при помощи сканирующей электронной микроскопии (СЭМ) и энергодисперсионного микрорентнгеноспектрального анализа (МРСА) на сканирующем электронном микроскопе Fei Company Quanta 200, оснащенном приставкой рентгеновского микроанализа EDAX. Электропроводность (σ) спеченной керамики измеряли на постоянном токе ($I \approx 50$ мА) 4-х контактным методом (цифровые вольтметры B7-58, B7-53; источник питания Б5-47) на воздухе в интервале температур 300—1100 К в динамическом режиме со скоростью нагревания/охлаждения ≈ 5 К/мин. Коэффициент термо-ЭДС (S) керамики определяли относительно серебра (цифровой вольтметр B7-65/3) на воздухе в интервале температур 300—1100 К. Градиент температур между горячим и холодным концами образца в

Образец	Номинальный состав, мол. %		Реальный состав, мол. % (данные МРСА)		
	CaO	CoO_z	CaO	CoO_z	
$Ca_{2.4}Co_4O_{9+\delta}$	37.50	62.50	36.09	63.91	
$Ca_{2.6}Co_4O_{9+\delta}$	39.39	60.61	39.00	61.00	
$Ca_{2.8}Co_4O_{9+\delta}$	41.18	58.82	40.07	59.93	
$Ca_3Co_4O_{9+\delta}$	42.86	57.14	43.40	56.60	
$Ca_3Co_{3.8}O_{9+\delta}$	44.12	55.88	43.50	56.50	
$Ca_3Co_{3.6}O_{9+\delta}$	45.45	54.55	43.85	56.15	
$Ca_3Co_{3.4}O_{9+\delta}$	46.88	53.12	44.09	55.51	

Таблица 2. Номинальный и реальный состав образцов

ходе измерений поддерживали на уровне 20-25 К. Перед измерениями электрофизических свойств на поверхности образцов формировали Ад-электроды путем вжигания серебряной пасты при 1073 К в течение 15 мин. Для измерения температуры использовали хромель-алюмелевые термопары. Измерения проводили в направлении, перпендикулярном оси прессования. Значения кажущейся энергии активации электропроводности образцов (E_A) рассчитывали из линейных участков зависимостей $\ln(\sigma T) = f(1/T)$, а величину фактора мощности (P) керамики вычисляли по уравнению (5):

$$P = S^2 \sigma. (5)$$


РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

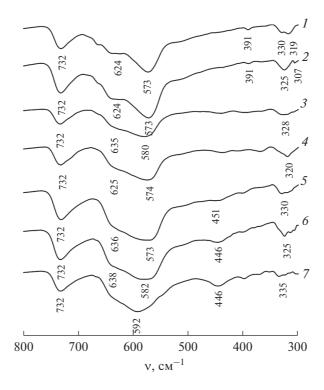
Анализ элементного состава керамики (табл. 2), позволяет заключить, что состав образцов после термообработки, с учетом погрешности MPCA, соответствовал заданному номинальному составу шихты. Согласно результатам MPCA, примеси ZrO_2 и Al_2O_3 в полученной керамике отсутствовали.

После завершения синтеза керамика стехиометрического состава $Ca_3Co_4O_{9}+\delta$ (Ca:Co=3:4) была, в пределах погрешности $P\Phi A$, однофазной, тогда как на дифрактограммах образцов с избытком оксида кобальта (Ca:Co<3:4) либо оксида кальция (Ca:Co>3:4) помимо выраженных рефлексов основной фазы — слоистого кобальтита кальция — наблюдали рефлексы примесных фаз — соответственно Co_3O_4 и $Ca_3Co_2O_6$ (рис. 1), причем количество этих фаз в образцах ожидаемо возрастало (табл. 1) при увеличении отклонения соотношения Ca:Co0 от стехиометрического (3:4).

Параметры кристаллической структуры основной фазы керамики ($\mathrm{Ca_3Co_4O_9}_{+\ \delta}$) в образцах различного состава, близки (табл. 3). Очень хорошо согласуются с литературными данными, согласно которым для $\mathrm{Ca_3Co_4O_9}_{+\ \delta}$ a=0.48376(7) нм, $b_1=0.45565(6)$ нм, $b_2=0.28189(4)$ нм, c=1.0833(1) нм, $\beta=98.06(1)^\circ$ [2].

На ИК-спектрах поглощения всех образцов видны выраженные полосы поглощения с экстремумами при 325–335 см $^{-1}$ (v_1), 573–592 см $^{-1}$ (v_2), 624–638 см $^{-1}$ (v_3) и 732 см $^{-1}$ (v_4) (рис. 2), отвечающие валентным (v_2 – v_4) и деформационным (v_1) колебаниям связей Co–O (v_1 – v_3) и Ca–O (v_4) в структуре слоистого кобальтита кальция [10]. На ИК-спектрах поглощения образцов с избытком оксида кобальта ($Ca_{2.4}Co_4O_{9+8}$ – $Ca_{2.8}Co_4O_{9+8}$) наблюдали дополнительные полосы поглощения с экстремумами при 307–319 см $^{-1}$ (v_5) и 391 см $^{-1}$ (v_6) (рис. 2, кривые I–J), отвечающие валентным (v_5) и деформационным колебаниям связей Co–O (v_6) в оксиде кобальта Co_3O_4 [25], а на ИК-спектрах поглощения образцов с недостатком оксида кобальта ($Ca_3Co_{3.8}O_{9+8}$ –

Рис. 1. Рентгеновские дифрактограммы порошков состава $Ca_{2.4}Co_4O_9+\delta$ (*I*), $Ca_{2.6}Co_4O_9+\delta$ (*2*), $Ca_{2.8}Co_4O_9+\delta$ (*3*), $Ca_3Co_4O_9+\delta$ (*4*), $Ca_3Co_{3.8}O_9+\delta$ (*5*), $Ca_3Co_{3.6}O_9+\delta$ (*6*) и $Ca_3Co_{3.4}O_9+\delta$ (*7*). На дифрактограмме 7 отмечены индексы Миллера фазы $Ca_3Co_4O_9+\delta$. Индексами * и # отмечены рефлексы фаз Co_3O_4 и $Ca_3Co_2O_6$ соответственно.


 $Ca_3Co_{3.4}O_{9+\delta}$) — полосы с экстремумами при 446—451 см⁻¹ (v_7) (рис. 2, кривые 5—7), отвечающие валентным колебаниям связей Ca—O в фазе $Ca_3Co_2O_6$ [26].

Как следует из анализа результатов СЭМ (рис. 3), полученная в работе керамика имела характерную для слоистого кобальтита кальция микроструктуру и состояла из пластин размером 5—10 мкм и толщиной около 200 нм. В табл. 4 представлены результаты МРСА различных областей полученных нами материалов (рис. 3). Как показывает сопоставление данных, приведенных на рис. 1, 2 и в табл. 3, 4, результаты СЭМ и МРСА хорошо согласуются с данными РФА и ИК-спектроскопии поглощения и подтверждают ожидаемый (табл. 1) фазовый состав керамики.

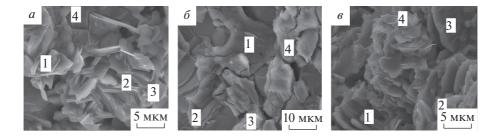

Кажущаяся плотность керамики изменялась в пределах 3.98-4.43 г/см³, что отвечает пористости 6.0-14.6% (табл. 5). По величине пористости полученная в данной работе путем двухстадийного спекания керамика мало отличается от высокоплотной керамики, по-

Таблица 3. Параметры кристаллической структуры основной фазы керами	κ и — $Ca_3Co_4O_{9+\delta}$
--	-------------------------------------

					<u> </u>
Образец	а, нм	b_1 , нм	b_2 , нм	с, нм	β, град
$Ca_{2.4}Co_4O_{9+\delta}$	0.4829(4)	0.4566(4)	0.2829(5)	1.085(1)	98.09(1)
$Ca_{2.6}Co_4O_{9+\delta}$	0.4833(4)	0.4561(4)	0.2832(5)	1.085(1)	98.15(4)
$Ca_{2.8}Co_4O_{9+\delta}$	0.4833(4)	0.4560(5)	0.2838(6)	1.085(1)	98.14(5)
$Ca_3Co_4O_{9+\delta}$	0.4832(5)	0.4565(5)	0.2838(5)	1.084(1)	98.13(6)
$Ca_3Co_{3.8}O_{9+\delta}$	0.4834(5)	0.4566(5)	0.2831(5)	1.085(1)	98.13(6)
$Ca_3Co_{3.6}O_{9+\delta}$	0.4835(6)	0.4557(6)	0.2832(5)	1.083(2)	98.13(7)
$Ca_3Co_{3.4}O_{9+\delta}$	0.4835(6)	0.4556(5)	0.2837(5)	1.084(1)	98.14(7)

Рис. 2. ИК-спектры поглощения порошков состава $Ca_{2.4}Co_4O_{9+\delta}$ (*I*), $Ca_{2.6}Co_4O_{9+\delta}$ (*2*), $Ca_{2.8}Co_4O_{9+\delta}$ (*3*), $Ca_3Co_3O_{9+\delta}$ (*4*), $Ca_3Co_3O_{9+\delta}$ (*5*), $Ca_3Co_3O_{9+\delta}$ (*6*) и $Ca_3Co_3O_{9+\delta}$ (*7*).

Рис. 3. Электронные микрофотографии сколов керамики состава $Ca_{2.4}Co_4O_{9+\delta}(a)$, $Ca_3Co_4O_{9+\delta}(b)$ и $Ca_3Co_{3.4}O_{9+\delta}(b)$. См. табл. 3.

лучаемой методами горячего прессования или искрового плазменного спекания [9, 12, 13], что подтверждает эффективность использованного нами метода. Среди изученных составов пористость была наименьшей для стехиометричной керамики $\text{Ca}_3\text{Co}_4\text{O}_{9+\delta}$ и немного увеличивалась для фазово-неоднородных материалов. По-видимому, спекаемость керамики на основе слоистого кобальтита кальция уменьшается при создании в ней фазовой неоднородности. Полученные нами данные согласуются с результатами работ [9, 19], в которых были установлены аналогичные закономерности.

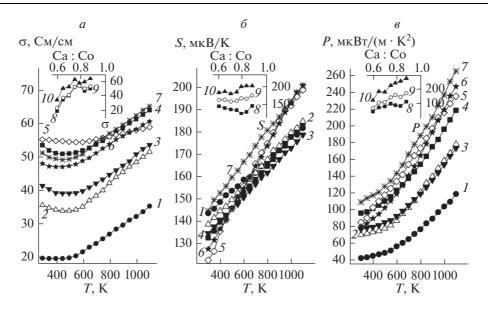

Рисунок О	Область	Содержание компон	нентов, мол. %	Фазовый состав
	Ооласть	CaO	CoO_z	Фазовый состав
3 <i>a</i>	1	37.18	62.82	$Ca_3Co_4O_{9+\delta}, Co_3O_4$
	2	38.25	61.75	$Ca_3Co_4O_{9+\delta}$, Co_3O_4
	3	29.75	70.25	Co_3O_4 , $Ca_3Co_4O_{9+\delta}$
	4	16.05	83.95	Co_3O_4 , $Ca_3Co_4O_{9+\delta}$
36	1	42.99	57.01	Ca ₃ Co ₄ O _{9 + δ}
	2	43.31	56.69	Ca ₃ Co ₄ O _{9 + δ}
	3	43.27	56.73	$Ca_3Co_4O_{9+\delta}$
	4	44.08	55.92	Ca ₃ Co ₄ O _{9 + δ}
3 <i>e</i>	1	43.31	56.69	$Ca_3Co_4O_{9+\delta}$, $Ca_3Co_2O_6$
	2	44.95	55.05	$Ca_3Co_4O_{9+\delta}$, $Ca_3Co_2O_6$
	3	44.08	56.92	$Ca_3Co_4O_{9+\delta}$, $Ca_3Co_2O_6$
	4	43.86	56.14	$Ca_3Co_4O_{9+\delta}$, $Ca_3Co_2O_6$

Таблица 4. Результаты анализа областей 1—4 (рис. 3) по данным MPCA и РФА

Таблица 5. Значения кажущейся плотности (ρ_{κ}), пористости (Π), кажущейся энергии активации электропроводности (E_A), электропроводности (σ_{1100}), коэффициента термо-ЭДС (S_{1100}) и фактора мощности (P_{1100}) спеченной керамики

Образец	$\rho_{\rm K}$, $r/{\rm cm}^3$	П, %	E_A , \ni B	σ ₁₁₀₀ , См/см	S_{1100} , мкВ/К	$P_{1100},$ MKBT/(M·K ²)
$\overline{\text{Ca}_{2.4}\text{Co}_4\text{O}_{9+\delta}}$	4.37	10.3	0.136	35.7	182	118
$Ca_{2.6}Co_4O_{9+\delta}$	4.43	7.7	0.123	51.9	185	177
$Ca_{2.8}Co_4O_{9+\delta}$	4.05	14.6	0.115	54.0	179	173
$Ca_3Co_4O_{9+\delta}$	4.40	6.0	0.104	64.4	184	218
$Ca_3Co_{3.8}O_{9+\delta}$	3.98	14.6	0.086	59.3	199	234
$Ca_3Co_{3.6}O_{9+\delta}$	4.17	10.3	0.103	61.0	201	246
$Ca_3Co_{3.4}O_{9+\delta}$	4.27	8.0	0.106	65.6	201	265

При температурах, близких к комнатной, электропроводность керамики носила слабо выраженный металлический характер $(\partial\sigma/\partial T<0)$, который вблизи 450-500 К изменялся на полупроводниковый $(\partial\sigma/\partial T>0)$ (рис. 4a) вследствие фазового перехода металл—полупроводник, протекающего в слоистом кобальтите кальция в этой области температур [27]. Значения кажущейся энергии активации электропроводности исследованной нами керамики в интервале температур 700-1100 К изменялись в пределах 0.086-0.136 эВ (табл. 5) и были близки к найденным авторами [27] для $Ca_3Co_4O_{9+\delta}$ и его производных (0.083-0.081 эВ). Это указывает на общий механизм электропроводности, который определяется переносом заряда в пределах основной фазы — слоистого кобальтита кальция. Величины удельной электропроводности композитов системы $Ca_3Co_4O_{9+\delta}-Ca_3Co_2O_6$ (0.79 < Ca : Co < 0.88) и фазово однородной керамики $Ca_3Co_4O_{9+\delta}$ (Ca : Co = 0.75) были близки, а для композитов системы $Ca_3Co_4O_{9+\delta}$ (Ca : Co < 0.70) значения σ значительно уменьшались при увеличении содержания в них фазы Co_3O_4 (рис. 4e, табл. 5). Величина удельной электропроводности полученной двухстадийным спеканием керамики $Ca_3Co_4O_{9+\delta}$ была значительно

Рис. 4. Температурные (a-s) и концентрационные (z-e) зависимости удельной электропроводности (σ) (a, e), коэффициента термо-ЭДС (S) (b, d) и фактора мощности (P) (s, e) спеченной керамики состава $Ca_{2.4}Co_4O_9 + \delta$ (I), $Ca_{2.6}Co_4O_9 + \delta$ (2), $Ca_{2.8}Co_4O_9 + \delta$ (3), $Ca_3Co_4O_9 + \delta$ (4), $Ca_3Co_{3.8}O_9 + \delta$ (5), $Ca_3Co_{3.6}O_9 + \delta$ (6) и $Ca_3Co_3 + \delta$ (7) при температурах 300 К (8), 700 К (9) и 1100 К (10).

выше ($\sigma \sim 50-65$ См/см (рис. 4*a*)), чем для керамики, получаемой обычным твердофазным методом ($\sigma \sim 25-30$ См/см [23]), что обусловлено низким значением ее пористости.

Положительный знак коэффициента термо-ЭДС (S>0) исследованных материалов указывает на то, что основными носителями заряда в них являются "дырки", а сами материалы представляют собой проводники p-типа (рис. 4δ). Величина S керамики возрастала при увеличении температуры и для образцов, содержащих избыточное по сравнению со стехиометрическим количество оксидов кальция или кобальта, в целом, была выше, чем для $Ca_3Co_4O_{9+\delta}$ (рис. 4δ , δ , табл. 5). Создание в данной керамике фазовой неоднородности за счет введения в нее менее проводящих фаз — $Ca_3Co_2O_6$ или Co_3O_4 — позволяет повысить величину ее коэффициента термо-ЭДС.

Значения фактора мощности изученных нами материалов увеличивались с ростом температуры и при увеличении в них соотношения Ca : Co (рис. 46, e, табл. 5), что обусловлено повышенными значениями удельной электропроводности и коэффициента термо-ЭДС композиционной керамики системы $Ca_3Co_4O_{9+\delta}-Ca_3Co_2O_6$ (0.79 < Ca : Co < 0.88). Наибольшая величина фактора мощности наблюдалась для фазовонеоднородной керамики состава $Ca_3Co_{3.4}O_{9+\delta}$ (0.7 $Ca_3Co_4O_{9+\delta}+0.3Ca_3Co_2O_6$) — $P_{1100}=265$ мкВт/(м · K²). Это на 20% выше, чем для базовой керамики состава $Ca_3Co_4O_{9+\delta}$ ($P_{1100}=218$ мкВт/(м · K²)), полученной двухстадийным спеканием и в 2.65 раза выше, чем фактор мощности низкоплотной керамики $Ca_3Co_4O_{9+\delta}$, получаемой традиционным твердофазным методом ($P_{1100}=100$ мкВт/(м · K²) [3, 4, 23]).

ЗАКЛЮЧЕНИЕ

Методом твердофазных реакций с последующим двухстадийным спеканием на воздухе получена фазово неоднородная керамика на основе слоистого кобальтита кальция $Ca_3Co_4O_{9+\delta}$, содержащая в качестве примесных фаз одномерный кобальтит кальция $Ca_3Co_2O_6$ либо оксид кобальта Co_3O_4 . Изучены ее микроструктура, электротранспортные и термоэлектрические свойства. Показано. двухстадийного спекания позволяет получить на основе слоистого кобальтита кальция керамику с пониженной пористостью ($\Pi = 6-15\%$), а создание в образцах фазовой неоднородности незначительно ухудшает их спекаемость. Установлено, что удельная электропроводность, коэффициент термо-ЭДС и, как следствие, фактор мощности керамики возрастают при увеличении содержания в ней Ca₃Co₂O₆ и уменьшаются при увеличении содержания в керамике Со₃О₄. Наибольшим значением фактора мощности характеризуется фазово неоднородная керамика состава $Ca_3Co_3 {}_4O_9 + {}_8$ — 265 мкВт/(м· K^2), при T = 1100 K, что на 20% выше, чем для базового слоистого кобальтита кальция, полученного двухстадийным спеканием ($P_{1100} = 218 \text{ мкBt/(м} \cdot \text{K}^2$)) и более, чем в два с половиной раза превышает фактор мощности высокопористой керамики $Ca_3Co_4O_{9+\delta}$ ($\Pi=43-47\%$), получаемой обычным твердофазным способом $(P_{1100} = 100 \text{ MKBT/(M} \cdot \text{K}^2)).$

Работа выполнена при поддержке ГПНИ "Физическое материаловедение, новые материалы и технологии" (подпрограмма "Материаловедение и технологии материалов", задание 1.55 "Разработка и исследование композиционных термоэлектриков на основе слоистого кобальтита кальция").

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. Oxide Thermoelectrics. Research Signpost / Ed. K. Koumoto, I. Terasaki, N. Murayama, Trivandrum, India, Research Signpost, 2002. 255 p.
- 2. Masset A.C., Michel C., Maignan A. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca₃Co₄O₉ // Phys. Rev. B. 2000–I. V. 62. № 1. P. 166–175.
- 3. *Tahashi M., Tanimoto T., Goto H., Takahashi M., Ido T.* Sintering Temperature Dependence of Thermoelectric Performance and Crystal Phase of Calcium Cobalt Oxide // J. Am. Ceram. Soc. 2010. V. 93. № 10. P. 3046–3048.
- 4. *Tahashi M., Takahashi M., Goto H.* Thermoelectric performance and crystal phase of calcium cobalt oxides sintered in oxygen gas // J. Am. Ceram. Soc. 2018. V. 101. Iss. 4. P. 1402–1406.
- 5. Woermann E., Muan A. Phase Equilibria in the system CaO-cobalt oxide in air // J. Inorg. Nucl. Chem. 1970. V. 32. P. 1455–1459.
- Sedmidubsky D., Jakes V., Jankovsky O., Leitner J., Sofer Z., Hejtmanek J. Phase equilibria in Ca–Co–O system // J. Solid State Chem. 2012. V. 194. P. 199–205.
- 7. *Мацукевич И.В., Клындюк А.И.* Получение слоистого кобальтита кальция $Ca_3Co_4O_{9+\delta}$ растворными методами и его свойства // Укр. хим. журн. 2013. Т. 79. Т 12. С. 104-110.
- 8. *Katsuyama S., Takiguchi Y., Ito M.* Synthesis of Ca₃Co₄O₉ ceramics by polymerized complex and hydrothermal hot-pressing processes and the investigation of its thermoelectric properties // J. Mater. Sci. 2008. V. 43. P. 3553–3559.
- 9. Клындюк А.И., Мацукевич И.В., Янек М., Чижова Е.А., Ленчеш 3., Ханзел О., Ветешка П. Термоэлектрические свойства фазово-неоднородной керамики на основе $Ca_3Co_4O_9+\delta$, полученной методом горячего прессования // Журн. прикл. химии. 2020. Т. 93. Вып. 8. С. 1091-1097.
- 10. Zhang Y., Zhang J. Rapid Reactive Synthesis and Sintering of Textured Ca₃Co₄O₉ Ceramics by Spark Plasma Sintering // J. Mater. Process. Technol. 2008. V. 208. P. 70–74.
- 11. Wu N.Y., Holgate T.C., Nong N.V., Pryds N., Linderoth S. High temperature thermoelectric properties of Ca₃Co₄O_{9 + δ} by auto-combustion synthesis and spark plasma sintering // J. Eur. Ceram. Soc. 2014. V. 34. P. 925–931.

- 12. Królicka A.K., Piersa M., Mirowska A., Michalska M. Effect of sol-gel and solid-state synthesis techniques on structural, morphological and thermoelectric performance of Ca₃Co₄O₉ // Ceram. Int. 2018. V. 44. № 12. P. 13736—13743.
- 13. Kanas N., Singh S.P., Rotan M., Saleemi M., Bittner M., Feldhoff A., Norby T., Wiik K., Grande T., Einarsrud M.-A. Influence of processing on stability, microstructure and thermoelectric properties of Ca₃Co_{4-x}O_{9+δ}// J. Eur. Ceram. Soc. 2018. V. 38. № 4. P. 1592–1599.
- 14. Madre M.A., Costa F.M., Ferreira N.M., Sotelo A., Torres M.A., Constantinescu G., Rasekh Sh., Diez J.C. Preparation of high-performance Ca₃Co₄O₉ thermoelectric ceramics produced by a new twostep method // J. Eur. Ceram. Soc. 2013. V. 33. P. 1747–1754.
- 15. Kang M.-G., Cho K.-H., Kim J.-S., Nahm S., Yoon S.-J., Kang C.-Y. Post-calcination, a novel method to synthesize cobalt oxide-based thermoelectric materials // Acta Mater. 2014. V. 73. P. 251-258.
- 16. Schulz T., Töpfer J. Thermoelectric properties of $Ca_3Co_4O_9$ ceramics prepared by an alternative pressure-less sintering/annealing method // J. Alloys Compd. 2016. V. 659. P. 122–126.
- 17. Shi Z., Xu J., Zhu J., Zhang R., Qin M., Lou Z., Gao T., Reece M., Gao F. High thermoelectric performance of Ca₃Co₄O₉ ceramics with duplex structure fabricated via two-step pressureless sintering // J. Mater. Sci.: Mater. Electron. 2020. V. 31. P. 2938-2948.
- 18. Constantinescu G., Sarabando A.R., Rasekh Sh., Lopes D., Sergiienko S., Amirkhizi P., Frade J.R., Kovalevsky A.V. Redox-Promoted Tailoring of the High-Temperature Electrical Performance in Ca₃Co₄O₉ Thermoelectric Materials by Metallic Cobalt Addition // Materials. 2020. V. 13. P. 1060.
- 19. Delorme F., Diaz-Chao P., Guilmeau E., Giovannelli F. Thermoelectric properties of Ca₃Co₄O₉-Co₃O₄ composites // Ceram. Int. 2015. V. 41. № 8. P. 10038–10043.
- 20. Jankowski O., Huber S., Sedmidubsky D., Nadherny L., Hlasek T., Sofer Z. Towards highly efficient thermoelectric: Ca₃Co₄O_{9 + δ} · nCaZrO₃ composite // Ceramics—Silikaty. 2014. V. 58. № 2. P. 106-110.
- 21. Gupta R.K., Sharma R., Mahapatro A.K., Tandon R.P. The effect of ZrO₂ dispersion on the thermoelectric power factor of Ca₃Co₄O₉ // Physica B. 2016. V. 483. P. 48–53.
- 22. Zhou X.- D., Pederson L.R., Thomsen E., Nie Z., Coffey G. Nonstoichiometry and Transport Properties of $Ca_3Co_{4\pm x}O_{9+\delta}$ (x=0-0.4) // Electrochem. Solid-State Lett. 2009. V. 12. No 2. P. F1-F3.
- 23. Мацукевич И.В., Клындюк А.И., Тугова Е.А., Томкович М.В., Красуцкая Н.С., Гусаров В.В. Синтез и свойства материалов на основе слоистых кобальтитов кальция и висмута // Журн. прикл. химии. 2015. Т. 88. Вып. 8. С. 1117-1123.
- 24. Клындюк А.И., Красуцкая Н.С., Машукевич И.В., Тугова Е.А., Чижова Е.А. Фазовые равновесия в системе ВіО_{1.5}—СаО—СоО_у // Журн. общ. химии. 2018. Т. 88. Вып. 6. С. 881—883.
 25. Клындюк А.И., Красуцкая Н.С., Чижова Е.А. Синтез и термоэлектрические свойства керамики на основе оксида Ві₂Са₂Со_{1.7}О_у // Физ. хим. стекла. 2018. Т. 44. № 2. С. 128—137.
 26. Lu D., Chen G., Pei J., Yang X., Xian H. Effect of cribium substitution on thermoelectric properties.
- of complex oxide $Ca_3Co_2O_6$ at high temperatures // J. Rare Earths. 2008. V. 26. No 2. P. 168-172.
- 27. Lin Y.-H., Lan J., Shen Z., Liu Y., Nan C.-W., Li J.-F. High-temperature electrical transport behaviors in textured Ca₃Co₄O₉-based polycrystalline ceramics // Appl. Phys. Lett. 2009. V. 94. P. 072107.