Е.Н. Галаганова, аспирант Д.А. Сотников, магистрант (МГТУ им. Н.Э.Баумана, г. Москва)

НЕЙРОСЕТЕВОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ВНЕДРЕНИЯ ФУНКЦИОНАЛЬНОГО МАТЕРИАЛА В ФОТОННЫЕ КРИСТАЛЛЫ

В тезисе предложен метод прогнозирования процесса внедрения функционального материала в фотонные кристаллы, полученные из различных материалов при варьировании режимами. Рассмотрены входные параметры системы, влияющие на результат, выбран тип и архитектура нейронных сетей RBF 6-3-2.

В настоящее время разработки технологий получения наноматериалов с различными оптическими, электрическими магнитными свойствами находят применение во всех сферах техники. Объектом изучения является технология изготовления композитных тонкопленочных фотонно-кристаллических структур, которая реализуется посредством заполнения пустот сформированной из коллоидной суспензии опаловой матрицы материалом внедрения методом магнетронного распыления в вакууме.

Задачей нейросетевого моделирования является прогнозирование величины выходных факторов в зависимости от входных параметров. В качестве входных факторов используются параметры коллоидного раствора, характеристики процесса вытягивания фотонного кристалла и параметры процесса внедрения функционального материала: диаметр частиц опала, процентное содержание частиц в растворе, материал матрицы, скорость опаловой вытягивания, продолжительность процесса магнетронного распыления, тип подложки, на которой сформирована нанокомпозитная структура. Такие входные параметры, как материал опаловой матрицы и тип подложки заданы в качестве логических переменных (для материала: полистирол – 1, кремнезем – 0; для подложки: скрайбированный ситалл – 0, гладкий ситалл – 1, поликор – 2). В качестве выходных – длина волны фотонной запрещенной зоны и интенсивность отражения.

За основу построения нейросети взят эксперимент, подробно описанный в [1]. В программе «STATISTICA Автоматизированные Нейронные Сети» для обработки была отобрана выборка, среди которых 50% наблюдений выбрано обучающим множеством, 15% наблюдений было выбрано в качестве контрольного, 20% наблюдений

выбрано в качестве тестового, а остальные наблюдения остались в качестве неизвестных данных для проверки полученной нейросети. Анализ показал, что целесообразнее использовать для моделирования результата сеть RBF с архитектурой 6-3-2 (3 нейрона в скрытом слое), так как именно у этой сети наименьшие обнаружены наименьшие ошибки обучения и обобщения на контрольном и тестовом подмножествах (рис. 1).

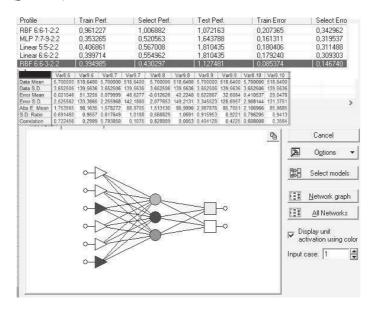


Рисунок 1 - Обучение нейросети и результат контроля

Для выявления показателя отношения стандартных отклонений (S.D. Ratio) было введено контрольное множество в сеть RBF с архитектурой 6-3-2 (Рис. 2). Установлено, ЧТО данная сеть недостаточно точно прогнозирует результаты проведения эксперимента.

Предположительно, на искажение результата влияет использование в моделировании логических параметров для обозначения материала опаловой матрицы и типа подложки. При дальнейшем моделировании результата эксперимента по внедрению функционального материала были исключены логические входные параметры, заново проведено обучение и контроль сети (Рис. 2).

Profile	Train P 9	Select Te	st Perf. Tra	in Error Sele	ot E T	est Error		
Linear 5:5-2:2	0,688997 (0,671375 13	69130 0,2	00908 0,16	9296 5	31853164		
MLP 4:4-10-2:2	0,348437 (0,395271 0,8	03257 0,1	02270 0,11	9382 0	371084		
MLP 2:2-7-2:2	0,336820 (0,415217 0,3	14225 0,1	04241 0,11	8846 0	,201186		
RBF 2:2-3-2:2	0,651602 (0,527670 0,5	61897 0,1	17240 0,08	3088 0	.124941		
RBF 2:2-5-2:2	0,395633 (0,484393 0,6	87700 0,0	83827 0,06	3035 0	165968		
	Var6.2	Var7.2	Var6.3	Var7.3	Var6.4	Var7.4	Var6.5	Var7.5
Data Mean	5,773913	526,3478	5,773913	526,3478	5,7739	13 526,3478	5,773913	526,3478
Data S.D.	3,797621	142,9304	3,797621	142,9304	3,7976	21 142,9304	3,797621	142,9304
Error Mean	0,761255	2,4656	0,069756	17,8224	0,6158	24 29,9081	1,101698	133,0489
Error S.D.	2,235617	152,3514	1,838832	84,2505	2,25613	21 125,8958	1,924877	106,1283
Abs E. Mean	1,775812	101,3385	1,296744	74,2926	1,8684	01 101,7631	1,713714	143,3143
S.D. Ratio	0,588689	1,0659	0,484206	0,5895	0,5940	0,8808	0,506864	0,7425
Correlation	0,809299	0,5917	0,874961	0,8082	0,8177	0,4908	0,862543	0,7442

Рисунок 2 – Результат обучения и контроля измененной нейросети

Проведение повторного обучения сети позволило получить более точный результат и снизить показатель отношения стандартных отклонений. Для получения наилучшего результата в дальнейшем рекомендуется в качестве входного параметра, характеризующего подложку, указывать ее шероховатость, так как от этого параметра напрямую зависит результат получения тонкопленочных покрытий.

ЛИТЕРАТУРА

- 1. Галаганова Е.Н., Сотников Д.А. Получение нанокомпозитных структур при магнетронном осаждении материала на коллоидные пленки кремнезема и исследование их свойств//Сборник XXVI научно-технической конференции с участием зарубежных специалистов «Вакуумная наука и техника». Крым, Судак, 2019. С.167-172.
- 2. Нейронные сети. Под ред. В.П.Боровикова. 2-е изд. перераб. и доп. М.: Горячая линия Телеком, 2008. -392 с.