Н.С. Филимонов, магистрант, Я.Г. Романович, студент, Е.В. Телеш, ст. препод. (БГУИР, Минск)

ИОННО-ХИМИЧЕСКИЙ СИНТЕЗ ПОКРЫТИЙ ИЗ НИТРИДА УГЛЕРОДА

Нитрид углерода интенсивно исследуется учеными разных стран, т.к. установлено, что β-C₃N₄, аналогичный β-Si₃N₄, должен обладать твердостью, сравнимой с твердостью алмаза. Дальнейшие расчеты показали, что другие кристаллические фазы C₃N₄ должны иметь стабильность, сравнимую или большую, чем стабильность β-C₃N₄, и что многие из этих структур должны быть твердыми по природе. С₃N₄-структуры включают α-, β-, кубический, псевдокубический и графитообразный нитрид углерода. Подобно различным алмазным покрытиям покрытия из нитрида углерода также обладают хорошей износостойкостью и устойчивостью к царапанию [1]. Кроме того, нитриды углерода являются коррозионностойкими главное. ОНИ обладают значительно HO. самое лучшей термостойкостью, соответствующие DLC-покрытия чем (алмазоподобные покрытия).

Покрытия из нитрида углерода могут использоваться для таких областей применения, как износостойкие и противокоррозионные покрытия, в качестве диэлектрических слоев в микроэлектронных устройствах, как оптические покрытия, а также в составе различных композиционных материалов для улучшения свойств, например, металлических, стеклянных и полимерных изделий [2].

Были предприняты попытки получения тонких пленок ИЗ углерода путем реактивных дугового испарения нитрида И магнетронного распыления, лазерной абляции в среде азота, ионноассистированного магнетронного распыления графитовой мишени, химического осаждения в индуктивно-связанной плазме, прямого осаждения из потоков ионов углерода и азота с энергией 10 кэВ, сольвотермального синтеза, электроосаждения a также ИЗ органической жидкости. Большинство сообщений сводятся к тому, что имеет место рост аморфных CN_x-тонких твердых пленок. В большинстве случаев полученные в ходе таких исследований вещества были аморфными с содержанием азота менее 50 %, то есть не обладали С₃N₄-структурами.

Преимуществами вакуумных методов нанесения являются возможность низкотемпературного нанесения и высокая производительность, обусловленная высоким уровнем развития вакуумной напылительной техники.

Формирование покрытий из CN_x осуществлялось на подложках из кремния, кварца и стекла К8 с использованием метода реактивного ионно-лучевого распыления мишени из уплотненного графита АРВ ТУ-48-20-86-76 в среде азота и аргона. Напряжение на аноде составляло 3,0 кВ, ток мишени – 50 мА, остаточное давление в камере $-3,0\cdot10^{-3}$ Па, давление в камере $-6,65\cdot10^{-2}$ Па, парциальное давление азота- 4,0·10⁻² и 5,3·10⁻² Па, температура подложки -313...573 К. Нагрев подложек осуществлялся резистивным нагревателем ИЗ нихрома. Температура контролировалась хромель-копелевой термопарой. Толщину полученных покрытий определяли использованием микроскопа интерферометра МИИ-4. Для измерения электрофизических параметров использовались МДМ структуры. Сопротивление и тангенс угла диэлектрических потерь структур измерялись на частоте 1 МГц с помощью прибора Е7-20. Удельное поверхностное сопротивление измерялось с применением прибора ИУС-3. Исследование оптических характеристик покрытий осуществлялось 200-900 В диапазоне ΗМ С помощью спектрофотометра PROSCAN MC-121.

На рисунке 1 приведены зависимости пропускания и поглощения покрытий на λ =555 нм от температуры подложки T_п. Напряжение на мишени при этом отсутствовало, парциальное давление азота составляло 4,0·10⁻² Па. Установлено, что пропускание покрытий снизилось почти в 3 раза, при повышении T_п с 313 до 573 К. Также происходил рост поглощения.

На рисунке 2 представлены спектральные зависимости пропускания пленок нитрида углерода, синтезированных при разных температурах подложки. Напряжение на мишени составляло 120 В, парциальное давление азота – 4,0·10⁻² Па. Анализ зависимостей показывает значительное ухудшение оптических характеристик покрытий при увеличении температуры подложки.

В таблице 1 приведены результаты измерений сопротивления и тангенса угла диэлектрических потерь покрытий из нитрида углерода, полученных при различных температурах подложки и парциальных давлениях азота. Покрытия были синтезированы при U_м=0.

Установлено, что нагрев подложки способствует увеличению удельного объемного сопротивления ρ_v . Увеличение парциального давления азота способствовало резкому росту ρ_v и значительному

снижению тангенса угла диэлектрических потерь покрытий. Лучшие результаты были получены при T_п = 423 К.

Рисунок 1 – Зависимости пропускания и поглощения покрытий от температуры подложки

Рисунок 2 – Спектры пропускания пленок CN_x , полученных при $T_n = 313$ К (а) и $T_n = 573$ К (б)

Установлено, что нагрев подложки способствует увеличению удельного объемного сопротивления ρ_v . Увеличение парциального давления азота способствовало резкому росту ρ_v и значительному снижению тангенса угла диэлектрических потерь покрытий. Лучшие результаты были получены при $T_n = 423$ К.

Было также проведено измерение удельного поверхностного сопротивления ρ_□ покрытий, полученных при различных условиях. Результаты измерений приведены в таблице 2.

Таблица 1– Режимы нанесения покрытий и результаты измерений электрофизических характеристик покрытий из нитрида углерода

P _{N2} ,	Τ _π ,	d,	ρ _v ,	tgδ
Па	K	HM	Ом · м	
$4,0.10^{-2}$	388	140	$1,85 \cdot 10^2$	>1
$4,0.10^{-2}$	463	140	9,6·10 ¹	>1
$4,0.10^{-2}$	483	130	$2,0.10^2$	>1
$4,0.10^{-2}$	573	130	$5,5 \cdot 10^3$	>1
$5,3 \cdot 10^{-2}$	423	120	$6,25 \cdot 10^{6}$	0,036
$5,3\cdot 10^{-2}$	573	125	$1,12 \cdot 10^{6}$	0,56

Таблица 2 – Режимы нанесения покрытий и результаты измерений удельного поверхностного сопротивления покрытий

P _{N2} ,	Τ _п ,	U _M ,	$ ho_{\Box}$,
Па	Κ	В	кОм/□
$4,0.10^{-2}$	388	75	>100
$4,0.10^{-2}$	483	-	18,2
$4,0.10^{-2}$	313	120	>100
$4,0.10^{-2}$	313	40	26,0
$4,0.10^{-2}$	523	120	6,7
$4,0.10^{-2}$	573	-	2,03
$5,3.10^{-2}$	473	-	25,6
$5,3\cdot 10^{-2}$	573	-	4,3

Установлено, что при температуре подложки 313...388 К и при наличии положительного потенциала на мишени формируются покрытия с очень высоким уровнем р_□. Нагрев свыше 500 К приводит к уменьшению сопротивления. Оптимальные температуры подложки для получения качественных пленок CN_x находятся в диапазоне 350–423 К.

ЛИТЕРАТУРА

1. Cohen, M.L. Structural, electronic and optical properties of carbon nitride/ Material Science Engineering A.–1995.–V.209.–P. 1–4.

2. Khurshudov, A.G. Tribological properties of carbon nitride overcoat for thin-film magnetic rigid disks/ A.G. Khurshudov, K. Kato// Surface and Coatings Technology.-1996.-V.9. P. 537-542.